Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Am Nat ; 199(3): 436-442, 2022 03.
Article in English | MEDLINE | ID: mdl-35175896

ABSTRACT

AbstractIn many species, parental age at reproduction can influence offspring performance and life span, but the direction of these effects and the traits affected vary among studies. Data on parental age effects are still scarce in noncaptive populations, especially insects, despite species such as fruit flies being models in laboratory-based aging research. We performed a biologically relevant experimental manipulation of maternal and paternal age at reproduction of antler flies (Protopiophila litigata) in the laboratory and tracked the adult life span and reproductive success of their male offspring released in the wild. Increased paternal, but not maternal, age somewhat increased sons' adult life span, while parental ages did not influence sons' mating rate or reproductive senescence. Our results indicate that while parental age effects do exist in an insect in the field, they may be beneficial in such a short-lived animal, in contrast to results from most wild vertebrates and laboratory invertebrates.


Subject(s)
Diptera , Aging , Animals , Longevity , Male , Maternal Age , Paternal Age , Reproduction
2.
Am Nat ; 198(2): 219-231, 2021 08.
Article in English | MEDLINE | ID: mdl-34260866

ABSTRACT

AbstractMales can harm the females that they interact with, but populations and species widely vary in the occurrence and extent of harm. We consider the merits and limitations of two common approaches to investigating male harm and apply these to an experimental study of divergence in harm. Different physical environments can affect how the sexes interact, causing plastic and/or evolved changes in harm. If harmful male phenotypes are less likely to evolve in situations where females have more control over sexual interactions, populations evolving in environments in which females have greater control should have less harmful males. We test this idea using experimental populations of Drosophila melanogaster that have evolved in either of two environments that vary in the extent to which females can avoid males or in a third environment without mate competition (i.e., enforced monogamy). We demonstrate an evolved reduction in harm in the absence of mate competition and also in a mate competition environment in which females have greater control. We also show a plastic effect in that otherwise harmful males are no longer so when tested in the environment in which females have greater control. Our results reveal the different perspectives provided by the two methods of studying harm.


Subject(s)
Drosophila melanogaster , Sexual Behavior, Animal , Animals , Female , Male , Reproduction
3.
J Evol Biol ; 34(8): 1279-1289, 2021 08.
Article in English | MEDLINE | ID: mdl-34107129

ABSTRACT

A longstanding focus in evolutionary physiology concerns the causes and consequences of variation in maintenance metabolism. Insight into this can be gained by estimating the sex-specific genetic architecture of maintenance metabolism alongside other, potentially correlated traits on which selection may also act, such as body mass and locomotor activity. This may reveal potential genetic constraints affecting the evolution of maintenance metabolism. Here, we used a half-sibling breeding design to quantify the sex-specific patterns of genetic (co)variance in standard metabolic rate (SMR), body mass and daily locomotor activity in Drosophila melanogaster. There was detectable additive genetic variance for all traits in both sexes. As expected, SMR and body mass were strongly and positively correlated, with genetic allometry exponents (bA  ± SE) that were close to 2/3 in females (0.66 ± 0.16) and males (0.58 ± 0.32). There was a significant and positive genetic correlation between SMR and locomotor activity in males, suggesting that alleles that increase locomotion have pleiotropic effects on SMR. Sexual differences in the genetic architecture were largely driven by a difference in genetic variance in locomotor activity between the sexes. Overall, genetic variation was mostly shared between males and females, setting the stage for a potential intralocus sexual conflict in the face of sexually antagonistic selection.


Subject(s)
Drosophila melanogaster , Selection, Genetic , Animals , Drosophila melanogaster/genetics , Female , Locomotion , Male , Phenotype , Sex Characteristics
4.
Proc Natl Acad Sci U S A ; 115(26): 6762-6767, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29891650

ABSTRACT

Competition for mates can be a major source of selection, not just on secondary sexual traits but across the genome. Mate competition strengthens selection on males via sexual selection, which typically favors healthy, vigorous individuals and, thus, all genetic variants that increase overall quality. However, recent studies suggest another major effect of mate competition that could influence genome-wide selection: Sexual harassment by males can drastically weaken selection on quality in females. Because of these conflicting effects, the net effect of mate competition is uncertain, although perhaps not entirely unpredictable. We propose that the environment in which mate competition occurs mediates the importance of sexual selection relative to sexual conflict and, hence, the net effect of mate competition on nonsexual fitness. To test this, we performed experimental evolution with 63 fruit fly populations adapting to novel larval conditions where each population was maintained with or without mate competition. In half the populations with mate competition, adults interacted in simple, high-density environments. In the remainder, adults interacted in more spatially complex environments in which male-induced harm is reduced. Populations evolving with mate competition in the complex environment adapted faster to novel larval environments than did populations evolving without mate competition or with mate competition in the simple environment. Moreover, mate competition in the complex environment caused a substantial reduction in inbreeding depression for egg-to-adult viability relative to the other two mating treatments. These results demonstrate that the mating environment has a substantial and predictable effect on nonsexual fitness through adaptation and purging.


Subject(s)
Competitive Behavior , Drosophila melanogaster/physiology , Mating Preference, Animal , Adaptation, Physiological , Animal Feed , Animals , Cold Temperature , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Ethanol , Female , Genetic Fitness , Hot Temperature , Inbreeding Depression , Larva , Male , Ovum , Starch , Zea mays
5.
Proc Biol Sci ; 287(1938): 20201876, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33143587

ABSTRACT

High-quality developmental environments often improve individual performance into adulthood, but allocating toward early life traits, such as growth, development rate and reproduction, may lead to trade-offs with late-life performance. It is, therefore, uncertain how a rich developmental environment will affect the ageing process (senescence), particularly in wild insects. To investigate the effects of early life environmental quality on insect life-history traits, including senescence, we reared larval antler flies (Protopiophila litigata) on four diets of varying nutrient concentration, then recorded survival and mating success of adult males released in the wild. Declining diet quality was associated with slower development, but had no effect on other life-history traits once development time was accounted for. Fast-developing males were larger and lived longer, but experienced more rapid senescence in survival and lower average mating rate compared to slow developers. Ultimately, larval diet, development time and body size did not predict lifetime mating success. Thus, a rich environment led to a mixture of apparent benefits and costs, mediated by development time. Our results indicate that 'silver spoon' effects can be complex and that development time mediates the response of adult life-history traits to early life environmental quality.


Subject(s)
Diptera/physiology , Larva/physiology , Animals , Body Size , Diet , Female , Life History Traits , Male , Sexual Behavior, Animal
6.
PLoS Genet ; 13(8): e1006935, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28817572

ABSTRACT

Individuals choose their mates so as to maximize reproductive success, and one important component of this choice is assessment of traits reflecting mate quality. Little is known about why specific traits are used for mate quality assessment nor about how they reflect it. We have previously shown that global manipulation of insulin signaling, a nutrient-sensing pathway governing investment in survival versus reproduction, affects female sexual attractiveness in the fruit fly, Drosophila melanogaster. Here we demonstrate that these effects on attractiveness derive from insulin signaling in the fat body and ovarian follicle cells, whose signals are integrated by pheromone-producing cells called oenocytes. Functional ovaries were required for global insulin signaling effects on attractiveness, and manipulations of insulin signaling specifically in late follicle cells recapitulated effects of global manipulations. Interestingly, modulation of insulin signaling in the fat body produced opposite effects on attractiveness, suggesting a competitive relationship with the ovary. Furthermore, all investigated tissue-specific insulin signaling manipulations that changed attractiveness also changed fecundity in the corresponding direction, pointing to insulin pathway activity as a reliable link between fecundity and attractiveness cues. The cues themselves, cuticular hydrocarbons, responded distinctly to fat body and follicle cell manipulations, indicating independent readouts of the pathway activity from these two tissues. Thus, here we describe a system in which female attractiveness results from an apparent connection between attractiveness cues and an organismal state of high fecundity, both of which are created by lowered insulin signaling in the fat body and increased insulin signaling in late follicle cells.


Subject(s)
Drosophila melanogaster/physiology , Fat Body/physiology , Insulin/physiology , Ovarian Follicle/physiology , Sexual Behavior, Animal , Signal Transduction , Adiposity , Animals , Epithelial Cells/physiology , Female , Fertility/physiology , Hydrocarbons/blood , Male , Pheromones/physiology , Reproduction
7.
Am Nat ; 194(6): E164-E176, 2019 12.
Article in English | MEDLINE | ID: mdl-31738101

ABSTRACT

A key endeavor in evolutionary physiology is to identify sources of among- and within-individual variation in resting metabolic rate (RMR). Although males and females often differ in whole-organism RMR due to sexual size dimorphism, sex differences in RMR sometimes persist after conditioning on body mass, suggesting phenotypic differences between males and females in energy-expensive activities contributing to RMR. One potential difference is locomotor activity, yet its relationship with RMR is unclear and different energy budget models predict different associations. We quantified locomotor activity (walking) over 24 h and RMR (overnight) in 232 male and 245 female Drosophila melanogaster that were either mated or maintained as virgins between two sets of measurements. Accounting for body mass, sex, and reproductive status, RMR and activity were significantly and moderately repeatable (RMR: R=0.33±0.06; activity: R=0.58±0.03). RMR and activity were positively correlated among (rind=0.26±0.09) but not within (re=0.05±0.06) individuals. Moreover, activity varied throughout the day and between the sexes. Partitioning our analysis by sex and activity by time of day revealed that all among-individual correlations were positive and significant in males but nonsignificant or even significantly negative in females. Such differences in the RMR-activity covariance suggest fundamental differences in how the sexes manage their energy budget.


Subject(s)
Basal Metabolism , Drosophila melanogaster/physiology , Locomotion , Animals , Body Weight , Copulation , Drosophila melanogaster/metabolism , Female , Male , Sex Characteristics
8.
Heredity (Edinb) ; 122(1): 93-109, 2019 01.
Article in English | MEDLINE | ID: mdl-29777168

ABSTRACT

Chemical signals are one means by which many insect species communicate. Differences in the combination of surface chemicals called cuticular hydrocarbons (CHCs) can influence mating behavior and affect reproductive isolation between species. Genes influencing three CHC compounds have been identified in Drosophila melanogaster. However, the genetic basis of other CHC compounds, whether these genes affect species differences in CHCs, and the genes' resulting effect on interspecies mating, remains unknown. We used fine-scale deficiency mapping of the third chromosome to identify 43 genomic regions that influence production of CHCs in both D. melanogaster and Drosophila simulans females. We identified an additional 23 small genomic regions that affect interspecies divergence in CHCs between females of these two species, one of which spans two genes known to influence the production of multiple CHCs within D. melanogaster. By testing these genes individually, we determined that desat1 also affects interspecific divergence in one CHC compound, while desat2 has no effect on interspecific divergence. Thus, some but not all genes affecting intraspecific amounts of CHCs also affect interspecific divergence, but not all genes or all CHCs. Lastly, we find no evidence of a relationship between the CHC profile and female attractiveness or receptivity towards D. melanogaster males.


Subject(s)
Drosophila melanogaster/genetics , Drosophila simulans/genetics , Sex Attractants/genetics , Sexual Behavior, Animal , Animals , Drosophila melanogaster/physiology , Drosophila simulans/physiology , Female , Genetic Variation/genetics , Genome, Insect/genetics , Hydrocarbons/metabolism , Male , Reproductive Isolation , Sex Attractants/biosynthesis , Species Specificity
9.
J Anim Ecol ; 88(12): 1913-1924, 2019 12.
Article in English | MEDLINE | ID: mdl-31368156

ABSTRACT

Few studies have simultaneously compared ageing within genetically similar populations in both laboratory and natural environments. Such comparisons are important for interpreting laboratory studies, because factors such as diet could affect ageing in environment-dependent ways. Using a natural population of antler flies (Protopiophila litigata), we conducted separate factorial experiments in 2012 and 2013 that compared age-specific male survival and mating success in laboratory cages versus a natural field environment while supplementing their diets with protein or sugar. We found consistent and substantial increases in both survival and mating rates in the laboratory compared to the field, but remarkably, despite these large differences actuarial ageing was only higher in the laboratory than in the field in 2012 and similar in the two environments in 2013. In both years, there was no difference between environments in reproductive ageing. We found that males fed protein had a higher mortality rate than males fed sugar (strong and low support in 2012 and 2013, respectively). In contrast, diet did not strongly impact average mating rates, actuarial ageing or reproductive ageing in either experiment. Our results provide the first evidence that the negative effect of protein on life span reported in many laboratory studies can also occur in wild populations, although perhaps less consistently. They also highlight how laboratory environments can influence life-history traits and suggest caution when extrapolating from the laboratory to the field.


Subject(s)
Antlers , Diptera , Animals , Diet , Dietary Supplements , Housing, Animal , Male
10.
Biol Lett ; 14(8)2018 08.
Article in English | MEDLINE | ID: mdl-30158138

ABSTRACT

Mate competition provides the opportunity for sexual selection which often acts strongly on males, but also the opportunity for sexual conflict that can alter natural selection on females. Recent attention has focused on the potential of sexual conflict to weaken selection on females if male sexual attention, and hence harm, is disproportionately directed towards high- over low-quality females, thereby reducing the fitness difference between these females. However, sexual conflict could instead strengthen selection on females if low-quality females are more sensitive to male harm than high-quality females, thereby magnifying fitness differences between them. We quantify the effects of male exposure on low- versus high-quality females in Drosophila melanogaster in each of two environments ('simple' and 'complex') that are known to alter behavioural interactions. We show that the effects of male harm are greater for low- compared to high-quality females in the complex but not the simple environment, consistent with mate competition strengthening selection on females in the former but not in the latter environment.


Subject(s)
Drosophila melanogaster/physiology , Ecosystem , Animals , Competitive Behavior , Female , Fertility , Male , Sexual Behavior, Animal/physiology , Survival Analysis
11.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28679725

ABSTRACT

Recent experiments indicate that male preferential harassment of high-quality females reduces the variance in female fitness, thereby weakening natural selection through females and hampering adaptation and purging. We propose that this phenomenon, which results from a combination of male choice and male-induced harm, should be mediated by the physical environment in which intersexual interactions occur. Using Drosophila melanogaster, we examined intersexual interactions in small and simple (standard fly vials) versus slightly more realistic (small cages with spatial structure) environments. We show that in these more realistic environments, sexual interactions are less frequent, are no longer biased towards high-quality females, and that overall male harm is reduced. Next, we examine the selective advantage of high- over low-quality females while manipulating the opportunity for male choice. Male choice weakens the viability advantage of high-quality females in the simple environment, consistent with previous work, but strengthens selection on females in the more realistic environment. Laboratory studies in simple environments have strongly shaped our understanding of sexual conflict but may provide biased insight. Our results suggest that the physical environment plays a key role in the evolutionary consequences of sexual interactions and ultimately the alignment of natural and sexual selection.


Subject(s)
Drosophila melanogaster/physiology , Environment , Selection, Genetic , Sexual Behavior, Animal , Adaptation, Physiological , Animals , Biological Evolution , Drosophila melanogaster/genetics , Female , Genetic Fitness , Male
12.
Biol Lett ; 13(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-29021319

ABSTRACT

There is a general expectation that sexual selection should align with natural selection to aid the purging of deleterious mutations, yet experiments comparing purging under monogamy versus polygamy have provided mixed results. Recent studies suggest that this may be because the simplified mating environments used in these studies reduce the benefit of sexual selection through males and hamper natural selection through females by increasing costs associated with sexual conflict. To test the effect of the physical mating environment on purging, we use experimental evolution in Drosophila melanogaster to track the frequency of four separate deleterious mutations in replicate populations that experience polygamy under either a simple or structurally complex mating arena while controlling for arena size. Consistent with past results suggesting a greater net benefit of polygamy in a complex environment, two of the mutations were purged significantly faster in this environment. The other two mutations showed no significant difference between environments.


Subject(s)
Drosophila melanogaster/genetics , Mating Preference, Animal , Selection, Genetic , Animals , Biological Evolution , Drosophila melanogaster/physiology , Female , Genes, Insect , Male , Mutation , Phenotype
13.
Ecol Lett ; 18(4): 317-26, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25649176

ABSTRACT

Condition is a central concept in evolutionary ecology, but the roles of genetic and environmental quality in condition-dependent trait expression remain poorly understood. Theory suggests that condition integrates genetic, epigenetic and somatic factors, and therefore predicts alignment between the phenotypic effects of genetic and environmental quality. To test this key prediction, we manipulated both genetic (mutational) and environmental (dietary) quality in Drosophila melanogaster and examined responses in morphological and chemical (cuticular hydrocarbon, CHC) traits in both sexes. While the phenotypic effects of diet were consistent among genotypes, effects of mutation load varied in magnitude and direction. Average effects of diet and mutation were aligned for most morphological traits, but non-aligned for the male sexcombs and CHCs in both sexes. Our results suggest the existence of distinct forms of condition dependence, one integrating both genetic and environmental effects and the other purely environmental. We propose a model to account for these observations.


Subject(s)
Diet , Drosophila melanogaster/genetics , Mutation , Animals , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/chemistry , Environment , Female , Genetic Fitness , Genotype , Hydrocarbons/chemistry , Likelihood Functions , Linear Models , Male , Models, Genetic , Phenotype
14.
Proc Natl Acad Sci U S A ; 109(26): 10414-9, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22615415

ABSTRACT

Phenotypes tend to remain relatively constant in natural populations, suggesting a limit to trait evolution. Although stationary phenotypes suggest stabilizing selection, directional selection is more commonly reported. However, selection on phenotypes will have no evolutionary consequence if the traits do not genetically covary with fitness, a covariance known as the Robertson-Price Identity. The nature of this genetic covariance determines if phenotypes will evolve directionally or whether they reside at an evolutionary optimum. Here, we show how a set of traits can be shown to be under net stabilizing selection through an application of the multivariate Robertson-Price Identity. We characterize how a suite of male sexual displays genetically covaries with fitness in a population of Drosophila serrata. Despite strong directional sexual selection on these phenotypes directly and significant genetic variance in them, little genetic covariance was detected with overall fitness. Instead, genetic analysis of trait deviations showed substantial stabilizing selection on the genetic variance of these traits with respect to overall fitness, indicating that they reside at an evolutionary optimum. In the presence of widespread pleiotropy, stabilizing selection on focal traits will arise through the net effects of selection on other, often unmeasured, traits and will tend to be stronger on trait combinations than single traits. Such selection may be difficult to detect in phenotypic analyses if the environmental covariance between the traits and fitness obscures the underlying genetic associations. The genetic analysis of trait deviations provides a way of detecting the missing stabilizing selection inferred by recent metaanalyses.


Subject(s)
Biological Evolution , Drosophila/genetics , Animals , Male , Multivariate Analysis
15.
Article in English | MEDLINE | ID: mdl-25460832

ABSTRACT

The success of insects in terrestrial environments is due in large part to their ability to resist desiccation stress. Since the majority of water is lost across the cuticle, a relatively water-impermeable cuticle is a major component of insect desiccation resistance. Cuticular permeability is affected by the properties and mixing effects of component hydrocarbons, and changes in cuticular hydrocarbons can affect desiccation tolerance. A pre-exposure to a mild desiccation stress increases duration of desiccation survival in adult female Drosophila melanogaster, via a decrease in cuticular permeability. To test whether this acute response to desiccation stress is due to a change in cuticular hydrocarbons, we treated male and female D. melanogaster to a rapid desiccation hardening (RDH) treatment and used gas chromatography to examine the effects on cuticular hydrocarbon composition. RDH led to reduced proportions of unsaturated and methylated hydrocarbons compared to controls in females, but although RDH modified the cuticular hydrocarbon profile in males, there was no coordinated pattern. These data suggest that the phenomenon of RDH leading to reduced cuticular water loss occurs via an acute change in cuticular hydrocarbons that enhances desiccation tolerance in female, but not male, D. melanogaster.


Subject(s)
Desiccation , Hydrocarbons/metabolism , Stress, Physiological , Water/metabolism , Adaptation, Physiological/genetics , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Female , Lipid Metabolism , Male , Permeability , Sex Characteristics
16.
Ecol Lett ; 17(2): 221-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24215269

ABSTRACT

The prevalence of sexual conflict in nature, along with the potentially stochastic nature of the resulting coevolutionary trajectories, makes it an important driver of phenotypic divergence and speciation that can operate even in the absence of environmental differences. The majority of empirical work investigating sexual conflict's role in population divergence/speciation has therefore been done in uniform environments and any role of ecology has largely been ignored. However, theory suggests that natural selection can constrain phenotypes influenced by sexual conflict. We use replicate populations of Drosophila melanogaster adapted to alternative environments to test how ecology influences the evolution of male effects on female longevity. The extent to which males reduce female longevity, as well as female resistance to such harm, both evolved in association with adaptation to the different environments. Our results demonstrate that ecology plays a central role in shaping patterns of population divergence in traits under sexual conflict.


Subject(s)
Adaptation, Biological , Biological Evolution , Drosophila melanogaster/genetics , Selection, Genetic , Sex Characteristics , Animals , Female , Longevity , Male
17.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25143030

ABSTRACT

Recent work on Drosophila cuticular hydrocarbons (CHCs) challenges a historical assumption that CHCs in flies are largely invariant. Here, we examine the effect of time of day and social environment on a suite of sexually selected CHCs in Drosophila serrata. We demonstrate that males become more attractive to females during the time of day that flies are most active and when most matings occur, but females become less attractive to males during the same time of day. These opposing temporal changes may reflect differences in selection among the sexes. To evaluate the effect of social environment on male CHC attractiveness, we manipulated male opportunity for mating: male flies were housed either alone, with five females, with five males or with five males and five females. We found that males had the most attractive CHCs when with females, and less attractive CHCs when with competitor males. Social environment mediated how male CHC attractiveness cycled: males housed with females and/or other males showed temporal changes in CHC attractiveness, whereas males housed alone did not. In total, our results demonstrate temporal patterning of male CHCs that is dependent on social environment, and suggest that such changes may be beneficial to males.


Subject(s)
Drosophila/physiology , Hydrocarbons/metabolism , Mating Preference, Animal/physiology , Sex Attractants/metabolism , Sexual Behavior, Animal , Animals , Circadian Rhythm/physiology , Drosophila/metabolism , Female , Male , Sex Factors , Social Environment
18.
Evolution ; 78(4): 746-757, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38270064

ABSTRACT

Many genes are differentially expressed between males and females and patterns of sex-biased gene expression (SBGE) vary among species. Some of this variation is thought to have evolved in response to differences in mate competition among species that cause varying patterns of sex-specific selection. We used experimental evolution to test this by quantifying SBGE and sex-specific splicing in 15 Drosophila melanogaster populations that evolved for 104 generations in mating treatments that removed mate competition via enforced monogamy, or allowed mate competition in either small, simple, or larger, structurally more complex mating environments. Consistent with sex-specific selection affecting SBGE, initially sex-biased genes diverged in expression more among treatments than unbiased genes, and there was greater expression divergence for male- than female-biased genes. It has been suggested the transcriptome should be "feminized" under monogamy because of the removal of sexual selection on males; we did not observe this, likely because selection differs in additional ways between monogamy vs. polygamy. Significant divergence in average expression dimorphism between treatments was observed and, in some treatment comparisons, the direction of the divergence differed across different sex-bias categories. There was not a generalized reduction in expression dimorphism under enforced monogamy.


Subject(s)
Drosophila melanogaster , Sex Characteristics , Animals , Female , Male , Drosophila melanogaster/genetics , Sexual Behavior, Animal/physiology , Reproduction , Transcriptome , Biological Evolution
19.
Ecol Evol Physiol ; 97(1): 64-70, 2024.
Article in English | MEDLINE | ID: mdl-38717371

ABSTRACT

AbstractIn ectotherms, temperature has a strong effect on metabolic rate (MR), yet the extent to which the thermal sensitivity of MR varies among versus within individuals is largely unknown. This is of interest because significant among-individual variation is a prerequisite for the evolution of metabolic thermal sensitivity. Here, we estimated the repeatability (R) of the thermal sensitivity of MR in individual virgin, adult male Drosophila melanogaster (N=316) by taking repeated overnight measures of their MRs at two temperatures (~24°C and ~27°C). At the population level, thermal sensitivity decreased with locomotor activity, and older individuals showed a higher thermal sensitivity of MR than younger individuals. Taking these effects (and body mass) into account, we detected significant repeatability in both the centered intercept (Rint=0.52±0.04) and the slope (Rslp=0.21±0.07) of the metabolic thermal reaction norms, which respectively represent average MR and thermal sensitivity of MR. Furthermore, individuals with a higher overall MR also displayed greater increases in MR as temperature increased from ~24°C to ~27°C (rind=0.32±0.14). Average MR and thermal sensitivity of MR were also positively correlated within individuals (re=0.15±0.07). Our study represents a point of departure for future larger studies, in which more complex protocols (e.g., wider temperature range, breeding design) can be applied to quantify the causal components of variation in thermal sensitivity that are needed to make accurate predictions of adaptive responses to global warming.


Subject(s)
Drosophila melanogaster , Male , Animals , Drosophila melanogaster/metabolism , Temperature , Basal Metabolism/physiology
20.
Evol Lett ; 8(3): 448-454, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38818417

ABSTRACT

The evolution of behavioral isolation is often the first step toward speciation. While past studies show that behavioral isolation will sometimes evolve as a by-product of divergent ecological selection, we lack a more nuanced understanding of factors that may promote or hamper its evolution. The environment in which mating occurs may be important in mediating whether behavioral isolation evolves for two reasons. Ecological speciation could occur as a direct outcome of different sexual interactions being favored in different mating environments. Alternatively, mating environments may vary in the constraint they impose on traits underlying mating interactions, such that populations evolving in a "constraining" mating environment would be less likely to evolve behavioral isolation than populations evolving in a less constraining mating environment. In the latter, mating environment is not the direct cause of behavioral isolation but rather permits its evolution only if other drivers are present. We test these ideas with a set of 28 experimental fly populations, each of which evolved under one of two mating environments and one of two larval environments. Counter to the prediction of ecological speciation by mating environment, behavioral isolation was not maximal between populations evolved in different mating environments. Nonetheless, mating environment was an important factor as behavioral isolation evolved among populations from one mating environment but not among populations from the other. Though one mating environment was conducive to the evolution of behavioral isolation, it was not sufficient: assortative mating only evolved between populations adapting to different-larval environments within that mating environment, indicating a role for ecological speciation. Intriguingly, the mating environment that promoted behavioral isolation is characterized by less sexual conflict compared to the other mating environment. Our results suggest that mating environments play a key role in mediating ecological speciation via other axes of divergent selection.

SELECTION OF CITATIONS
SEARCH DETAIL