Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Cell ; 176(3): 435-447.e15, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30611538

ABSTRACT

Mitochondrial ADP/ATP carriers transport ADP into the mitochondrial matrix for ATP synthesis, and ATP out to fuel the cell, by cycling between cytoplasmic-open and matrix-open states. The structure of the cytoplasmic-open state is known, but it has proved difficult to understand the transport mechanism in the absence of a structure in the matrix-open state. Here, we describe the structure of the matrix-open state locked by bongkrekic acid bound in the ADP/ATP-binding site at the bottom of the central cavity. The cytoplasmic side of the carrier is closed by conserved hydrophobic residues, and a salt bridge network, braced by tyrosines. Glycine and small amino acid residues allow close-packing of helices on the matrix side. Uniquely, the carrier switches between states by rotation of its three domains about a fulcrum provided by the substrate-binding site. Because these features are highly conserved, this mechanism is likely to apply to the whole mitochondrial carrier family. VIDEO ABSTRACT.


Subject(s)
Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial ADP, ATP Translocases/ultrastructure , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding Sites , Biological Transport , Bongkrekic Acid/metabolism , Cytoplasm/metabolism , Mitochondria/physiology , Mitochondrial ADP, ATP Translocases/physiology , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/physiology , Mitochondrial Membrane Transport Proteins/ultrastructure , Models, Molecular , Protein Conformation , Protein Structure, Secondary , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
2.
Trends Biochem Sci ; 49(6): 506-519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565497

ABSTRACT

In mitochondria, the oxidation of nutrients is coupled to ATP synthesis by the generation of a protonmotive force across the mitochondrial inner membrane. In mammalian brown adipose tissue (BAT), uncoupling protein 1 (UCP1, SLC25A7), a member of the SLC25 mitochondrial carrier family, dissipates the protonmotive force by facilitating the return of protons to the mitochondrial matrix. This process short-circuits the mitochondrion, generating heat for non-shivering thermogenesis. Recent cryo-electron microscopy (cryo-EM) structures of human UCP1 have provided new molecular insights into the inhibition and activation of thermogenesis. Here, we discuss these structures, describing how purine nucleotides lock UCP1 in a proton-impermeable conformation and rationalizing potential conformational changes of this carrier in response to fatty acid activators that enable proton leak for thermogenesis.


Subject(s)
Thermogenesis , Uncoupling Protein 1 , Humans , Uncoupling Protein 1/metabolism , Animals , Mitochondria/metabolism , Adipose Tissue, Brown/metabolism
3.
Trends Biochem Sci ; 45(3): 244-258, 2020 03.
Article in English | MEDLINE | ID: mdl-31787485

ABSTRACT

Members of the mitochondrial carrier family (SLC25) provide the transport steps for amino acids, carboxylic acids, fatty acids, cofactors, inorganic ions, and nucleotides across the mitochondrial inner membrane and are crucial for many cellular processes. Here, we use new insights into the transport mechanism of the mitochondrial ADP/ATP carrier to examine the structure and function of other mitochondrial carriers. They all have a single substrate-binding site and two gates, which are present on either side of the membrane and involve salt-bridge networks. Transport isĀ likely to occur by a common mechanism, in which the coordinated movement of six structural elements leads to the alternating opening and closing of the matrix or cytoplasmic side of the carriers.


Subject(s)
Mitochondrial ADP, ATP Translocases/chemistry , Mitochondrial ADP, ATP Translocases/metabolism , Animals , Biological Transport , Cytoplasm/metabolism , Humans , Mitochondria/chemistry , Mitochondria/metabolism
4.
Biophys J ; 120(23): 5187-5195, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34748764

ABSTRACT

The mitochondrial ADP/ATP carrier (AAC) performs the first and last step in oxidative phosphorylation by exchanging ADP and ATP across the mitochondrial inner membrane. Its optimal function has been shown to be dependent on cardiolipins (CLs), unique phospholipids located almost exclusively in the mitochondrial membrane. In addition, AAC exhibits an enthralling threefold pseudosymmetry, a unique feature of members of the SLC25 family. Recently, its conformation poised for binding of ATP was solved by x-ray crystallography referred to as the matrix state. Binding of the substrate leads to conformational changes that export of ATP to the mitochondrial intermembrane space. In this contribution, we investigate the influence of CLs on the structure, substrate-binding properties, and structural symmetry of the matrix state, employing microsecond-scale molecular dynamics simulations. Our findings demonstrate that CLs play a minor stabilizing role on the AAC structure. The interdomain salt bridges and hydrogen bonds forming the cytoplasmic network and tyrosine braces, which ensure the integrity of the global AAC scaffold, highly benefit from the presence of CLs. Under these conditions, the carrier is found to be organized in a more compact structure in its interior, as revealed by analyses of the electrostatic potential, measure of the AAC cavity aperture, and the substrate-binding assays. Introducing a convenient structure-based symmetry metric, we quantified the structural threefold pseudosymmetry of AAC, not only for the crystallographic structure, but also for conformational states of the carrier explored in the molecular dynamics simulations. Our results suggest that CLs moderately contribute to preserve the pseudosymmetric structure of AAC.


Subject(s)
Adenosine Triphosphate , Mitochondrial ADP, ATP Translocases , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Mitochondria , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial Membranes/metabolism
5.
Physiology (Bethesda) ; 35(5): 302-327, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32783608

ABSTRACT

Members of the mitochondrial carrier family (SLC25) transport a variety of compounds across the inner membrane of mitochondria. These transport steps provide building blocks for the cell and link the pathways of the mitochondrial matrix and cytosol. An increasing number of diseases and pathologies has been associated with their dysfunction. In this review, the molecular basis of these diseases is explained based on our current understanding of their transport mechanism.


Subject(s)
Energy Metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Organic Anion Transporters/metabolism , Animals , Biological Transport , Humans , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Membranes/pathology , Mitochondrial Proteins/genetics , Mutation, Missense , Organic Anion Transporters/genetics
6.
Biochem Soc Trans ; 48(4): 1419-1432, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32725219

ABSTRACT

For more than 40 years, the oligomeric state of members of the mitochondrial carrier family (SLC25) has been the subject of debate. Initially, the consensus was that they were dimeric, based on the application of a large number of different techniques. However, the structures of the mitochondrial ADP/ATP carrier, a member of the family, clearly demonstrated that its structural fold is monomeric, lacking a conserved dimerisation interface. A re-evaluation of previously published data, with the advantage of hindsight, concluded that technical errors were at the basis of the earlier dimer claims. Here, we revisit this topic, as new claims for the existence of dimers of the bovine ADP/ATP carrier have emerged using native mass spectrometry of mitochondrial membrane vesicles. However, the measured mass does not agree with previously published values, and a large number of post-translational modifications are proposed to account for the difference. Contrarily, these modifications are not observed in electron density maps of the bovine carrier. If they were present, they would interfere with the structure and function of the carrier, including inhibitor and substrate binding. Furthermore, the reported mass does not account for three tightly bound cardiolipin molecules, which are consistently observed in other studies and are important stabilising factors for the transport mechanism. The monomeric carrier has all of the required properties for a functional transporter and undergoes large conformational changes that are incompatible with a stable dimerisation interface. Thus, our view that the native mitochondrial ADP/ATP carrier exists and functions as a monomer remains unaltered.


Subject(s)
Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Animals , Biopolymers/metabolism , Cattle , Detergents/chemistry , Mitochondrial ADP, ATP Translocases/chemistry , Mitochondrial Membranes/metabolism , Protein Conformation
7.
Biochim Biophys Acta Biomembr ; 1860(5): 1035-1045, 2018 May.
Article in English | MEDLINE | ID: mdl-29366674

ABSTRACT

Cardiolipin in eukaryotes is found in the mitochondrial inner membrane, where it interacts with membrane proteins and, although not essential, is necessary for the optimal activity of a number of proteins. One of them is the mitochondrial ADP/ATP carrier, which imports ADP into the mitochondrion and exports ATP. In the crystal structures, cardiolipin is bound to three equivalent sites of the ADP/ATP carrier, but its role is unresolved. Conservation of residues at these cardiolipin binding sites across other members of the mitochondrial carrier superfamily indicates cardiolipin binding is likely to be important for the function of all mitochondrial carriers. Multiscale simulations were performed in a cardiolipin-containing membrane to investigate the dynamics of cardiolipin around the yeast and bovine ADP/ATP carriers in a lipid bilayer and the properties of the cardiolipin-binding sites. In coarse-grain simulations, cardiolipin molecules bound to the carriers for longer periods of time than phosphatidylcholine and phosphatidylethanolamine lipids-with timescales in the tens of microseconds. Three long-lived cardiolipin binding sites overlapped with those in the crystal structures of the carriers. Other shorter-lived cardiolipin interaction sites were identified in both membrane leaflets. However, the timescales of the interactions were of the same order as phosphatidylcholine and phosphatidylethanolamine, suggesting that these sites are not specific for cardiolipin binding. The calculation of lipid binding times and the overlap of the cardiolipin binding sites between the structures and simulations demonstrate the potential of multiscale simulations to investigate the dynamics and behavior of lipids interacting with membrane proteins.


Subject(s)
Cardiolipins/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Protein Interaction Domains and Motifs , Amino Acid Sequence , Animals , Binding Sites/genetics , Cardiolipins/chemistry , Cardiolipins/genetics , Cattle , Conserved Sequence/genetics , Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial Membranes/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Binding/genetics , Protein Interaction Domains and Motifs/genetics , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins
8.
Biochim Biophys Acta ; 1863(10): 2379-93, 2016 10.
Article in English | MEDLINE | ID: mdl-27001633

ABSTRACT

The mitochondrial ADP/ATP carrier imports ADP from the cytosol and exports ATP from the mitochondrial matrix, which are key transport steps for oxidative phosphorylation in eukaryotic organisms. The transport protein belongs to the mitochondrial carrier family, a large transporter family in the inner membrane of mitochondria. It is one of the best studied members of the family and serves as a paradigm for the molecular mechanism of mitochondrial carriers. Structurally, the carrier consists of three homologous domains, each composed of two transmembrane α-helices linked with a loop and short α-helix on the matrix side. The transporter cycles between a cytoplasmic and matrix state in which a central substrate binding site is alternately accessible to these compartments for binding of ADP or ATP. On both the cytoplasmic and matrix side of the carrier are networks consisting of three salt bridges each. In the cytoplasmic state, the matrix salt bridge network is formed and the cytoplasmic network is disrupted, opening the central substrate binding site to the intermembrane space and cytosol, whereas the converse occurs in the matrix state. In the transport cycle, tighter substrate binding in the intermediate states allows the interconversion of conformations by lowering the energy barrier for disruption and formation of these networks, opening and closing the carrier to either side of the membrane in an alternating way. Conversion between cytoplasmic and matrix states might require the simultaneous rotation of three domains around a central translocation pathway, constituting a unique mechanism among transport proteins. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.


Subject(s)
Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial Membranes/metabolism , Amino Acid Sequence , Animals , Biological Transport, Active , Bongkrekic Acid/pharmacology , Cardiolipins/metabolism , Cattle , Consensus Sequence , Humans , Mitochondrial ADP, ATP Translocases/antagonists & inhibitors , Mitochondrial ADP, ATP Translocases/chemistry , Models, Molecular , Phosphate Transport Proteins/metabolism , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Substrate Specificity
9.
Proc Natl Acad Sci U S A ; 111(4): E426-34, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24474793

ABSTRACT

The mitochondrial ADP/ATP carrier imports ADP from the cytosol and exports ATP from the mitochondrial matrix. The carrier cycles by an unresolved mechanism between the cytoplasmic state, in which the carrier accepts ADP from the cytoplasm, and the matrix state, in which it accepts ATP from the mitochondrial matrix. Here we present the structures of the yeast ADP/ATP carriers Aac2p and Aac3p in the cytoplasmic state. The carriers have three domains and are closed at the matrix side by three interdomain salt-bridge interactions, one of which is braced by a glutamine residue. Glutamine braces are conserved in mitochondrial carriers and contribute to an energy barrier, preventing the conversion to the matrix state unless substrate binding occurs. At the cytoplasmic side a second salt-bridge network forms during the transport cycle, as demonstrated by functional analysis of mutants with charge-reversed networks. Analyses of the domain structures and properties of the interdomain interfaces indicate that interconversion between states involves movement of the even-numbered α-helices across the surfaces of the odd-numbered α-helices by rotation of the domains. The odd-numbered α-helices have an L-shape, with proline or serine residues at the kinks, which functions as a lever-arm, coupling the substrate-induced disruption of the matrix network to the formation of the cytoplasmic network. The simultaneous movement of three domains around a central translocation pathway constitutes a unique mechanism among transport proteins. These findings provide a structural description of transport by mitochondrial carrier proteins, consistent with an alternating-access mechanism.


Subject(s)
Mitochondrial ADP, ATP Translocases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Amino Acids/chemistry , Cytoplasm/chemistry , Models, Molecular , Protein Conformation , Protein Transport
10.
J Biol Chem ; 290(13): 8206-17, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25653283

ABSTRACT

Mitochondrial carriers, including uncoupling proteins, are unstable in detergents, which hampers structural and mechanistic studies. To investigate carrier stability, we have purified ligand-free carriers and assessed their stability with a fluorescence-based thermostability assay that monitors protein unfolding with a thiol-reactive dye. We find that mitochondrial carriers from both mesophilic and thermophilic organisms exhibit poor stability in mild detergents, indicating that instability is inherent to the protein family. Trends in the thermostability of yeast ADP/ATP carrier AAC2 and ovine uncoupling protein UCP1 allow optimal conditions for stability in detergents to be established but also provide mechanistic insights into the interactions of lipids, substrates, and inhibitors with these proteins. Both proteins exhibit similar stability profiles across various detergents, where stability increases with the size of the associated detergent micelle. Detailed analysis shows that lipids stabilize carriers indirectly by increasing the associated detergent micelle size, but cardiolipin stabilizes by direct interactions as well. Cardiolipin reverses destabilizing effects of ADP and bongkrekic acid on AAC2 and enhances large stabilizing effects of carboxyatractyloside, revealing that this lipid interacts in the m-state and possibly other states of the transport cycle, despite being in a dynamic interface. Fatty acid activators destabilize UCP1 in a similar way, which can also be prevented by cardiolipin, indicating that they interact like transport substrates. Our controls show that carriers can be soluble but unfolded in some commonly used detergents, such as the zwitterionic Fos-choline-12, which emphasizes the need for simple validation assays like the one used here.


Subject(s)
Lipids/chemistry , Mitochondrial ADP, ATP Translocases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Cardiolipins/chemistry , Detergents/chemistry , Enzyme Inhibitors/chemistry , Humans , Ion Channels/chemistry , Micelles , Mitochondrial ADP, ATP Translocases/antagonists & inhibitors , Mitochondrial Proteins/chemistry , Protein Binding , Protein Denaturation , Protein Stability , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Solubility , Transition Temperature , Uncoupling Protein 1
11.
Biochim Biophys Acta ; 1847(10): 1245-53, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26164100

ABSTRACT

The mitochondrial ATP-Mg/Pi carrier imports adenine nucleotides from the cytosol into the mitochondrial matrix and exports phosphate. The carrier is regulated by the concentration of cytosolic calcium, altering the size of the adenine nucleotide pool in the mitochondrial matrix in response to energetic demands. The protein consists of three domains; (i) the N-terminal regulatory domain, which is formed of two pairs of fused calcium-binding EF-hands, (ii) the C-terminal mitochondrial carrier domain, which is involved in transport, and (iii) a linker region with an amphipathic α-helix of unknown function. The mechanism by which calcium binding to the regulatory domain modulates substrate transport in the carrier domain has not been resolved. Here, we present two new crystal structures of the regulatory domain of the human isoform 1. Careful analysis by SEC confirmed that although the regulatory domain crystallised as dimers, full-length ATP-Mg/Pi carrier is monomeric. Therefore, the ATP-Mg/Pi carrier must have a different mechanism of calcium regulation than the architecturally related aspartate/glutamate carrier, which is dimeric. The structure showed that an amphipathic α-helix is bound to the regulatory domain in a hydrophobic cleft of EF-hand 3/4. Detailed bioinformatics analyses of different EF-hand states indicate that upon release of calcium, EF-hands close, meaning that the regulatory domain would release the amphipathic α-helix. We propose a mechanism for ATP-Mg/Pi carriers in which the amphipathic α-helix becomes mobile upon release of calcium and could block the transport of substrates across the mitochondrial inner membrane.

12.
J Biol Chem ; 288(30): 22163-73, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-23744064

ABSTRACT

Blue native gel electrophoresis is a popular method for the determination of the oligomeric state of membrane proteins. Studies using this technique have reported that mitochondrial carriers are dimeric (composed of two Ć¢ĀˆĀ¼32-kDa monomers) and, in some cases, can form physiologically relevant associations with other proteins. Here, we have scrutinized the behavior of the yeast mitochondrial ADP/ATP carrier AAC3 in blue native gels. We find that the apparent mass of AAC3 varies in a detergent- and lipid-dependent manner (from Ć¢ĀˆĀ¼60 to Ć¢ĀˆĀ¼130 kDa) that is not related to changes in the oligomeric state of the protein, but reflects differences in the associated detergent-lipid micelle and Coomassie Blue G-250 used in this technique. Higher oligomeric state species are only observed under less favorable solubilization conditions, consistent with aggregation of the protein. Calibration with an artificial covalent AAC3 dimer indicates that the mass observed for solubilized AAC3 and other mitochondrial carriers corresponds to a monomer. Size exclusion chromatography of purified AAC3 in dodecyl maltoside under blue native gel-like conditions shows that the mass of the monomer is Ć¢ĀˆĀ¼120 kDa, but appears smaller on gels (Ć¢ĀˆĀ¼60 kDa) due to the unusually high amount of bound negatively charged dye, which increases the electrophoretic mobility of the protein-detergent-dye micelle complex. Our results show that bound lipid, detergent, and Coomassie stain alter the behavior of mitochondrial carriers on gels, which is likely to be true for other small membrane proteins where the associated lipid-detergent micelle is large when compared with the mass of the protein.


Subject(s)
Detergents/chemistry , Electrophoresis, Polyacrylamide Gel/methods , Lipids/chemistry , Mitochondrial ADP, ATP Translocases/chemistry , Rosaniline Dyes/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Blotting, Western , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial ADP, ATP Translocases/metabolism , Molecular Weight , Protein Multimerization , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
13.
Sci Adv ; 9(22): eadh4251, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37256948

ABSTRACT

Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.


Subject(s)
Ion Channels , Protons , Humans , Cryoelectron Microscopy , Ion Channels/chemistry , Mitochondrial Proteins/metabolism , Purine Nucleotides , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
15.
Nat Commun ; 13(1): 3585, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739110

ABSTRACT

Mitochondrial ADP/ATP carriers import ADP into the mitochondrial matrix and export ATP to the cytosol to fuel cellular processes. Structures of the inhibited cytoplasmic- and matrix-open states have confirmed an alternating access transport mechanism, but the molecular details of substrate binding remain unresolved. Here, we evaluate the role of the solvent-exposed residues of the translocation pathway in the process of substrate binding. We identify the main binding site, comprising three positively charged and a set of aliphatic and aromatic residues, which bind ADP and ATP in both states. Additionally, there are two pairs of asparagine/arginine residues on opposite sides of this site that are involved in substrate binding in a state-dependent manner. Thus, the substrates are directed through a series of binding poses, inducing the conformational changes of the carrier that lead to their translocation. The properties of this site explain the electrogenic and reversible nature of adenine nucleotide transport.


Subject(s)
Mitochondria , Mitochondrial ADP, ATP Translocases , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Cytoplasm/metabolism , Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/chemistry , Mitochondrial ADP, ATP Translocases/metabolism
16.
Curr Opin Struct Biol ; 57: 135-144, 2019 08.
Article in English | MEDLINE | ID: mdl-31039524

ABSTRACT

The mitochondrial ADP/ATP carrier, also called adenine nucleotide translocase, accomplishes one of the most important transport activities in eukaryotic cells, importing ADP into the mitochondrial matrix for ATP synthesis, and exporting ATP to fuel cellular activities. In the transport cycle, the carrier changes between a cytoplasmic and matrix state, in which the central substrate binding site is alternately accessible to these compartments. A structure of a cytoplasmic state was known, but recently, a structure of a matrix-state in complex with bongkrekic acid was solved. Comparison of the two states explains the function of highly conserved sequence features and reveals that the transport mechanism is unique, involving the coordinated movement of six dynamic elements around a central translocation pathway.


Subject(s)
Mitochondrial ADP, ATP Translocases/chemistry , Mitochondrial ADP, ATP Translocases/metabolism , Biological Transport , Crystallography, X-Ray , Humans , Hydrogen Bonding
17.
Nat Struct Mol Biol ; 25(10): 988, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30218104

ABSTRACT

In the version of this article originally published, references 6 and 7 were interchanged in the reference list. The error has been corrected in the HTML and PDF versions of the article.

18.
Nat Commun ; 5: 5491, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25410934

ABSTRACT

The transport activity of human mitochondrial aspartate/glutamate carriers is central to the malate-aspartate shuttle, urea cycle, gluconeogenesis and myelin synthesis. They have a unique three-domain structure, comprising a calcium-regulated N-terminal domain with eight EF-hands, a mitochondrial carrier domain, and a C-terminal domain. Here we present the calcium-bound and calcium-free structures of the N- and C-terminal domains, elucidating the mechanism of calcium regulation. Unexpectedly, EF-hands 4-8 are involved in dimerization of the carrier and form a static unit, whereas EF-hands 1-3 form a calcium-responsive mobile unit. On calcium binding, an amphipathic helix of the C-terminal domain binds to the N-terminal domain, opening a vestibule. In the absence of calcium, the mobile unit closes the vestibule. Opening and closing of the vestibule might regulate access of substrates to the carrier domain, which is involved in their transport. These structures provide a framework for understanding cases of the mitochondrial disease citrin deficiency.


Subject(s)
Aspartic Acid/metabolism , Calcium/metabolism , Glutamic Acid/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Crystallography, X-Ray , Humans , Protein Conformation , Protein Structure, Tertiary
20.
Biochemistry ; 45(15): 4974-82, 2006 Apr 18.
Article in English | MEDLINE | ID: mdl-16605265

ABSTRACT

Bovine rhodopsin photointermediates formed in two-dimensional (2D) rhodopsin crystal suspensions were studied by measuring the time-dependent absorbance changes produced after excitation with 7 ns laser pulses at 15, 25, and 35 degrees C. The crystalline environment favored the Meta I(480) photointermediate, with its formation from Lumi beginning faster than it does in rhodopsin membrane suspensions at 35 degrees C and its decay to a 380 nm absorbing species being less complete than it is in the native membrane at all temperatures. Measurements performed at pH 5.5 in 2D crystals showed that the 380 nm absorbing product of Meta I(480) decay did not display the anomalous pH dependence characteristic of classical Meta II in the native disk membrane. Crystal suspensions bleached at 35 degrees C and quenched to 19 degrees C showed that a rapid equilibrium existed on the approximately 1 s time scale, which suggests that the unprotonated predecessor of Meta II in the native membrane environment (sometimes called MII(a)) forms in 2D rhodopsin crystals but that the non-Schiff base proton uptake completing classical Meta II formation is blocked there. Thus, the 380 nm absorbance arises from an on-pathway intermediate in GPCR activation and does not result from early Schiff base hydrolysis. Kinetic modeling of the time-resolved absorbance data of the 2D crystals was generally consistent with such a mechanism, but details of kinetic spectral changes and the fact that the residuals of exponential fits were not as good as are obtained for rhodopsin in the native membrane suggested the photoexcited samples were heterogeneous. Variable fractional bleach due to the random orientation of linearly dichroic crystals relative to the linearly polarized laser was explored as a cause of heterogeneity but was found unlikely to fully account for it. The fact that the 380 nm product of photoexcitation of rhodopsin 2D crystals is on the physiological pathway of receptor activation suggests that determination of its structure would be of interest.


Subject(s)
Crystallization , Rhodopsin/chemistry , Animals , Cattle , Kinetics , Spectrophotometry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL