Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem Lett ; 21(12): 3743-8, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21561767

ABSTRACT

Ponatinib (AP24534) was previously identified as a pan-BCR-ABL inhibitor that potently inhibits the T315I gatekeeper mutant, and has advanced into clinical development for the treatment of refractory or resistant CML. In this study, we explored a novel series of five and six membered monocycles as alternate hinge-binding templates to replace the 6,5-fused imidazopyridazine core of ponatinib. Like ponatinib, these monocycles are tethered to pendant toluanilides via an ethynyl linker. Several compounds in this series displayed excellent in vitro potency against both native BCR-ABL and the T315I mutant. Notably, a subset of inhibitors exhibited desirable PK and were orally active in a mouse model of T315I-driven CML.


Subject(s)
Alkynes/chemical synthesis , Alkynes/pharmacology , Aniline Compounds/chemical synthesis , Fusion Proteins, bcr-abl/antagonists & inhibitors , Toluene/chemical synthesis , Administration, Oral , Alkynes/chemistry , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Animals , Cyclization , Disease Models, Animal , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mice , Models, Molecular , Molecular Structure , Mutation , Rats , Structure-Activity Relationship , Toluene/chemistry , Toluene/pharmacology
2.
Bioorg Med Chem Lett ; 18(17): 4907-12, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18691885

ABSTRACT

Novel N(9)-arenethenyl purines, optimized potent dual Src/Abl tyrosine kinase inhibitors, are described. The key structural feature is a trans vinyl linkage at N(9) on the purine core which projects hydrophobic substituents into the selectivity pocket at the rear of the ATP site. Their synthesis was achieved through a Horner-Wadsworth-Emmons reaction of N(9)-phosphorylmethylpurines and substituted benzaldehydes or Heck reactions between 9-vinyl purines and aryl halides. Most compounds are potent inhibitors of both Src and Abl kinase, and several possess good oral bioavailability.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Purines/chemistry , Purines/pharmacology , src-Family Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Growth Inhibitors/chemistry , Growth Inhibitors/pharmacology , Humans , K562 Cells , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-abl/physiology , Rats
3.
J Med Chem ; 53(12): 4701-19, 2010 Jun 24.
Article in English | MEDLINE | ID: mdl-20513156

ABSTRACT

In the treatment of chronic myeloid leukemia (CML) with BCR-ABL kinase inhibitors, the T315I gatekeeper mutant has emerged as resistant to all currently approved agents. This report describes the structure-guided design of a novel series of potent pan-inhibitors of BCR-ABL, including the T315I mutation. A key structural feature is the carbon-carbon triple bond linker which skirts the increased bulk of Ile315 side chain. Extensive SAR studies led to the discovery of development candidate 20g (AP24534), which inhibited the kinase activity of both native BCR-ABL and the T315I mutant with low nM IC(50)s, and potently inhibited proliferation of corresponding Ba/F3-derived cell lines. Daily oral administration of 20g significantly prolonged survival of mice injected intravenously with BCR-ABL(T315I) expressing Ba/F3 cells. These data, coupled with a favorable ADME profile, support the potential of 20g to be an effective treatment for CML, including patients refractory to all currently approved therapies.


Subject(s)
Antineoplastic Agents/chemical synthesis , Fusion Proteins, bcr-abl/antagonists & inhibitors , Imidazoles/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Pyridazines/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Blood-Brain Barrier/metabolism , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Fusion Proteins, bcr-abl/genetics , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality , Mice , Mice, SCID , Models, Molecular , Mutation , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Rats
4.
J Med Chem ; 52(15): 4743-56, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19572547

ABSTRACT

A novel series of potent dual Src/Abl kinase inhibitors based on a 9-(arenethenyl)purine core has been identified. Unlike traditional dual Src/Abl inhibitors targeting the active enzyme conformation, these inhibitors bind to the inactive, DFG-out conformation of both kinases. Extensive SAR studies led to the discovery of potent and orally bioavailable inhibitors, some of which demonstrated in vivo efficacy. Once-daily oral administration of inhibitor 9i (AP24226) significantly prolonged the survival of mice injected intravenously with wild type Bcr-Abl expressing Ba/F3 cells at a dose of 10 mg/kg. In a separate model, oral administration of 9i to mice bearing subcutaneous xenografts of Src Y527F expressing NIH 3T3 cells elicited dose-dependent tumor shrinkage with complete tumor regression observed at the highest dose. Notably, several inhibitors (e.g., 14a, AP24163) exhibited modest cellular potency (IC50 = 300-400 nM) against the Bcr-Abl mutant T315I, a variant resistant to all currently marketed therapies for chronic myeloid leukemia.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Purines/chemical synthesis , src-Family Kinases/antagonists & inhibitors , Animals , Female , Humans , K562 Cells , Mice , NIH 3T3 Cells , Protein Conformation , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/chemistry , Purines/pharmacology , Rats , Structure-Activity Relationship , src-Family Kinases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL