ABSTRACT
The Wnt/ß-catenin signaling governs anterior-posterior neural patterning during development. Current human pluripotent stem cell (hPSC) differentiation protocols use a GSK3 inhibitor to activate Wnt signaling to promote posterior neural fate specification. However, GSK3 is a pleiotropic kinase involved in multiple signaling pathways and, as GSK3 inhibition occurs downstream in the signaling cascade, it bypasses potential opportunities for achieving specificity or regulation at the receptor level. Additionally, the specific roles of individual FZD receptors in anterior-posterior patterning are poorly understood. Here, we have characterized the cell surface expression of FZD receptors in neural progenitor cells with different regional identity. Our data reveal unique upregulation of FZD5 expression in anterior neural progenitors, and this expression is downregulated as cells adopt a posterior fate. This spatial regulation of FZD expression constitutes a previously unreported regulatory mechanism that adjusts the levels of ß-catenin signaling along the anterior-posterior axis and possibly contributes to midbrain-hindbrain boundary formation. Stimulation of Wnt/ß-catenin signaling in hPSCs, using a tetravalent antibody that selectively triggers FZD5 and LRP6 clustering, leads to midbrain progenitor differentiation and gives rise to functional dopaminergic neurons in vitro and in vivo.
Subject(s)
Frizzled Receptors , Glycogen Synthase Kinase 3 , beta Catenin , Humans , beta Catenin/metabolism , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Glycogen Synthase Kinase 3/metabolism , Mesencephalon , Nervous System/metabolism , Wnt Signaling Pathway , Animals , RatsABSTRACT
Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disease that leads to substantial loss of quality of life. Therapies currently available for AD do not modify the disease course and have limited efficacy in symptom control. As such, novel and precise therapies tailored to individual patients' neurophysiologic profiles are needed. Functional neuroimaging tools have demonstrated substantial potential to provide quantifiable insight into brain function in various neurologic disorders, particularly AD. Entropy, a novel analysis for better understanding the nonlinear nature of neurophysiological data, has demonstrated consistent accuracy in disease detection. This literature review characterizes the use of entropy-based analyses from functional neuroimaging tools, including electroencephalography (EEG) and magnetoencephalography (MEG), in patients with AD for disease detection, therapeutic response measurement, and providing clinical insights.
Subject(s)
Alzheimer Disease , Biomarkers , Entropy , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnosis , Humans , Brain/physiopathology , Electroencephalography/methods , Magnetoencephalography/methodsABSTRACT
Major depressive disorder (MDD) is a prevalent and debilitating psychiatric disease that leads to substantial loss of quality of life. There has been little progress in developing new MDD therapeutics due to a poor understanding of disease heterogeneity and individuals' responses to treatments. Electroencephalography (EEG) is poised to improve this, owing to the ease of large-scale data collection and the advancement of computational methods to address artifacts. This review summarizes the viability of EEG for developing brain-based biomarkers in MDD. We examine the properties of well-established EEG preprocessing pipelines and consider factors leading to the discovery of sensitive and reliable biomarkers.
ABSTRACT
With a wide variety of dopamine transporter (DAT) antibodies available commercially, it is important to validate which antibodies provide sufficient immunodetection for reproducibility purpose and for accurate analysis of DAT levels and/or location. Commercially available DAT antibodies that are commonly used were tested in western blotting (WB) on wild-type (WT) and DAT-knock-out (DAT-KO) brain tissue and with immunohistology (IH) techniques against coronal slices of unilaterally lesioned 6-OHDA rats, in addition to wild-type and DAT-knock-out mice. DAT-KO mice and unilateral 6-OHDA lesions in rats were used as a negative control for DAT antibody specificity. Antibodies were tested at various concentrations and rated based on signal detection varying from no signal to optimal signal detection. Commonly used antibodies, including AB2231 and PT-22 524-1-AP, did not provide specific DAT signals in WB and IH. Although certain antibodies provided a good DAT signal, such as SC-32258, D6944, and MA5-24796, they also presented nonspecific bands in WB. Many DAT antibodies did not detect the DAT as advertised, and this characterization of DAT antibodies may provide a guide for immunodetection of DAT for molecular studies.