Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Microb Pathog ; 189: 106567, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364877

ABSTRACT

Human ascariasis is the most prevalent helminth infection, affecting 445 million people worldwide. To better understand the impact of the immune system on the pathophysiology of individuals infected with Ascaris suum, mice have been used as experimental models. The RT-qPCR technique is a critical auxiliary tool of investigation used to quantify mRNA levels. However, proper normalization using reference genes is essential to ensure reliable outcomes to avoid analytical errors and false results. Despite the importance of reference genes for experimental A. suum infection studies, no specific reference genes have been identified yet. Therefore, we conducted a study to assess five potential reference genes (GAPDH, 18s, ACTB, B2M, and HPRT1) in different tissues (liver, lungs, small and large intestines) affected by A. suum larval migration in C57BL/6j mice. Tissue collection was carried out to analyze parasite burden and confirm the presence of larvae during the peak of migration in each tissue. Upon confirmation, we analyzed different genes in the tissues and found no common gene with stable expression. Our results highlight the importance of analyzing different genes and using different software programs to ensure reliable relative expression results. Based on our findings, B2M was ranked as the ideal reference gene for the liver, while 18S was the most stable gene in the lung and small intestine. ACTB, or a combination of ACTB with GAPDH, was deemed suitable as reference genes for the large intestine due to their stable expression and less variation between the control and infected groups. To further demonstrate the impact of using different reference genes, we normalized the expression of a chemokine gene (CXCL9) in all tissues. Significant differences in CXCL9 expression levels were observed between different groups in all tissues except for the large intestine. This underscores the importance of selecting appropriate reference genes to avoid overestimating target gene expression levels and encountering normalization-related issues that can lead to false results. In conclusion, our study highlights the significance of using reliable reference genes for accurate RT-qPCR analysis, especially in the context of A. suum infection studies in different tissues. Proper normalization is crucial to ensure the validity of gene expression data and avoid potential pitfalls in interpreting results.


Subject(s)
Ascaris suum , Humans , Mice , Animals , Ascaris suum/genetics , Mice, Inbred C57BL , Gene Expression Profiling , Software , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Real-Time Polymerase Chain Reaction
2.
PLoS Pathog ; 17(11): e1010067, 2021 11.
Article in English | MEDLINE | ID: mdl-34784389

ABSTRACT

Human ascariasis is the most prevalent but neglected tropical disease in the world, affecting approximately 450 million people. The initial phase of Ascaris infection is marked by larval migration from the host's organs, causing mechanical injuries followed by an intense local inflammatory response, which is characterized mainly by neutrophil and eosinophil infiltration, especially in the lungs. During the pulmonary phase, the lesions induced by larval migration and excessive immune responses contribute to tissue remodeling marked by fibrosis and lung dysfunction. In this study, we investigated the relationship between SIgA levels and eosinophils. We found that TLR2 and TLR4 signaling induces eosinophils and promotes SIgA production during Ascaris suum infection. Therefore, control of parasite burden during the pulmonary phase of ascariasis involves eosinophil influx and subsequent promotion of SIgA levels. In addition, we also demonstrate that eosinophils also participate in the process of tissue remodeling after lung injury caused by larval migration, contributing to pulmonary fibrosis and dysfunction in re-infected mice. In conclusion, we postulate that eosinophils play a central role in mediating host innate and humoral immune responses by controlling parasite burden, tissue inflammation, and remodeling during Ascaris suum infection. Furthermore, we suggest that the use of probiotics can induce eosinophilia and SIgA production and contribute to controlling parasite burden and morbidity of helminthic diseases with pulmonary cycles.


Subject(s)
Ascariasis/immunology , Ascaris suum/immunology , Eosinophils/physiology , Immunoglobulin A, Secretory/metabolism , Pneumonia/prevention & control , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Animals , Ascariasis/metabolism , Ascariasis/parasitology , Female , Immunoglobulin A, Secretory/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pneumonia/immunology , Pneumonia/parasitology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics
3.
Mem Inst Oswaldo Cruz ; 118: e220144, 2023.
Article in English | MEDLINE | ID: mdl-37018795

ABSTRACT

BACKGROUND: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can infect common mice inducing significant pathological lung lesions and inflammatory responses. This substantially mimics coronavirus disease 19 (COVID-19) infection and pathogenesis in humans. OBJECTIVES: To characterise the effects of recombinant SARS-CoV-2 S1 receptor-binding domain (RBD) peptide in murine macrophage and microglial cells' immune activation compared with classical PAMPs in vitro. METHODS: Murine RAW 264.7 macrophages and BV2 microglial cells were exposed to increasing concentrations of the RBD peptide (0.01, 0.05, and 0.1 µg/mL), Lipopolysaccharide (LPS) and Poly(I:C) and evaluated after two and 24 h for significant markers of macrophage activation. We determined the effects of RBD peptide on cell viability, cleaved caspase 3 expressions, and nuclear morphometry analysis. FINDINGS: In RAW cells, RBD peptide was cytotoxic, but not for BV2 cells. RAW cells presented increased arginase activity and IL-10 production; however, BV2 cells expressed iNOS and IL-6 after RBD peptide exposure. In addition, RAW cells increased cleaved-caspase-3, apoptosis, and mitotic catastrophe after RBD peptide stimulation but not BV2 cells. CONCLUSION: RBD peptide exposure has different effects depending on the cell line, exposure time, and concentration. This study brings new evidence about the immunogenic profile of RBD in macrophage and microglial cells, advancing the understanding of SARS-Cov2 immuno- and neuropathology.


Subject(s)
COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , RNA, Viral , Microglia/metabolism , Antibodies, Viral , Recombinant Proteins , Macrophages/metabolism
4.
Infect Immun ; 90(2): e0059521, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34807734

ABSTRACT

Ascariasis is a neglected tropical disease that is widespread in the world and has important socioeconomic impacts. The presence of various stages of worm development in the pulmonary and intestinal mucosae induces a humoral and cellular immune response. However, although there is much evidence of the protective role of mucosal immunity against various pathogens, including helminths, there is still a gap in the knowledge about the immune response and the mechanisms of action that are involved in protection against diseases, especially in the initial phase of ascariasis. Thus, the aim of this study was to evaluate the kinetic aspects of the immune parasitological parameters in intestinal and pulmonary mucosae in male mice with early ascariasis. Therefore, two mouse strains that showed different susceptibilities to ascariasis (BALB/c and C57BL/6J) when experimentally infected with 2,500 infective eggs of Ascaris suum from time point 0 were examined: the immune parasitological parameters were evaluated each 2 days after infection over a period of 12 days. The results were suggestive of a synergetic action of intestinal and pulmonary secretory IgA (S-IgA) contributing to protection against early ascariasis by reducing the amount of migrating larvae as well as the influx of leukocytes in the lung and the consequent impairment of pulmonary capacity.


Subject(s)
Ascariasis , Ascaris suum , Parasites , Pneumonia , Swine Diseases , Animals , Ascaris suum/genetics , Genetic Background , Immunoglobulin A, Secretory , Male , Mice , Mice, Inbred C57BL , Swine
5.
Nat Immunol ; 11(4): 328-34, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20208538

ABSTRACT

Pentraxins are a superfamily of conserved proteins involved in the acute-phase response and innate immunity. Pentraxin 3 (PTX3), a prototypical member of the long pentraxin subfamily, is a key component of the humoral arm of innate immunity that is essential for resistance to certain pathogens. A regulatory role for pentraxins in inflammation has long been recognized, but the underlying mechanisms remain unclear. Here we report that PTX3 bound P-selectin and attenuated neutrophil recruitment at sites of inflammation. PTX3 released from activated leukocytes functioned locally to dampen neutrophil recruitment and regulate inflammation. Antibodies have glycosylation-dependent regulatory effect on inflammation. Therefore, PTX3, which is an essential component of humoral innate immunity, and immunoglobulins share functional outputs, including complement activation, opsonization and, as shown here, glycosylation-dependent regulation of inflammation.


Subject(s)
C-Reactive Protein/immunology , Inflammation/immunology , Leukocyte Rolling/immunology , Neutrophil Infiltration/immunology , Serum Amyloid P-Component/immunology , Acute Lung Injury/immunology , Animals , CHO Cells , Cell Separation , Cricetinae , Cricetulus , Electrophoresis, Polyacrylamide Gel , Flow Cytometry , Humans , Immunity, Humoral/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Proteins/immunology
6.
Clin Sci (Lond) ; 136(1): 81-101, 2022 01 14.
Article in English | MEDLINE | ID: mdl-34904644

ABSTRACT

RATIONALE: The FDA-approved Dimethyl Fumarate (DMF) as an oral drug for Multiple Sclerosis (MS) treatment based on its immunomodulatory activities. However, it also caused severe adverse effects mainly related to the gastrointestinal system. OBJECTIVE: Investigated the potential effects of solid lipid nanoparticles (SLNs) containing DMF, administered by inhalation on the clinical signs, central nervous system (CNS) inflammatory response, and lung function changes in mice with experimental autoimmune encephalomyelitis (EAE). MATERIALS AND METHODS: EAE was induced using MOG35-55 peptide in female C57BL/6J mice and the mice were treated via inhalation with DMF-encapsulated SLN (CTRL/SLN/DMF and EAE/SLN/DMF), empty SLN (CTRL/SLN and EAE/SLN), or saline solution (CTRL/saline and EAE/saline), every 72 h during 21 days. RESULTS: After 21 days post-induction, EAE mice treated with DMF-loaded SLN, when compared with EAE/saline and EAE/SLN, showed decreased clinical score and weight loss, reduction in brain and spinal cord injury and inflammation, also related to the increased influx of Foxp3+ cells into the spinal cord and lung tissues. Moreover, our data revealed that EAE mice showed signs of respiratory disease, marked by increased vascular permeability, leukocyte influx, production of TNF-α and IL-17, perivascular and peribronchial inflammation, with pulmonary mechanical dysfunction associated with loss of respiratory volumes and elasticity, which DMF-encapsulated reverted in SLN nebulization. CONCLUSION: Our study suggests that inhalation of DMF-encapsulated SLN is an effective therapeutic protocol that reduces not only the CNS inflammatory process and disability progression, characteristic of EAE disease, but also protects mice from lung inflammation and pulmonary dysfunction.


Subject(s)
Dimethyl Fumarate/administration & dosage , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Liposomes/administration & dosage , Nanoparticles/administration & dosage , Pneumonia/drug therapy , Administration, Inhalation , Animals , Disease Models, Animal , Female , Immunosuppressive Agents/administration & dosage , Mice, Inbred C57BL , Multiple Sclerosis
7.
Int J Mol Sci ; 23(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35682923

ABSTRACT

Klebsiella pneumoniae is an important pathogen associated with hospital-acquired pneumonia (HAP). Bacterial pneumonia is characterized by a harmful inflammatory response with a massive influx of neutrophils, production of cytokines and chemokines, and consequent tissue damage and dysfunction. Targeted therapies to block neutrophil migration to avoid tissue damage while keeping the antimicrobial properties of tissue remains a challenge in the field. Here we tested the effect of the anti-inflammatory properties of the chemokine fragment CXCL9(74-103) in pneumonia induced by Klebsiella pneumoniae in mice. Mice were infected by intratracheal injection of Klebsiella pneumoniae and 6 h after infection were treated systemically with CXCL9(74-103). The recruitment of leukocytes, levels of cytokines and chemokines, colony-forming units (CFU), and lung function were evaluated. The treatment with CXCL9(74-103) decreased neutrophil migration to the airways and the production of the cytokine interleukin-1ß (IL-1ß) without affecting bacterial control. In addition, the therapeutic treatment improved lung function in infected mice. Our results indicated that the treatment with CXCL9(74-103) reduced inflammation and improved lung function in Klebsiella pneumoniae-induced pneumonia.


Subject(s)
Klebsiella Infections , Pneumonia, Bacterial , Animals , Chemokine CXCL2 , Chemokines , Cytokines , Inflammation/drug therapy , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/physiology , Lung/microbiology , Mice , Neutrophils/microbiology , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology
8.
FASEB J ; 34(2): 2749-2764, 2020 02.
Article in English | MEDLINE | ID: mdl-31908042

ABSTRACT

Streptococcus pneumoniae is a major cause of community-acquired pneumonia leading to high mortality rates. Inflammation triggered by pneumococcal infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Annexin A1 (AnxA1) mainly acts through Formyl Peptide Receptor 2 (FPR2) inducing the resolution of inflammation. Here, we have evaluated the role of AnxA1 and FPR2 during pneumococcal pneumonia in mice. For that, AnxA1, Fpr2/3 knockout (KO) mice and wild-type (WT) controls were infected intranasally with S pneumoniae. AnxA1 and Fpr2/3 KO mice were highly susceptible to infection, displaying uncontrolled inflammation, increased bacterial dissemination, and pulmonary dysfunction compared to WT animals. Mechanistically, the absence of AnxA1 resulted in the loss of lung barrier integrity and increased neutrophil activation upon S pneumoniae stimulation. Importantly, treatment of WT or AnxA1 KO-infected mice with Ac2-26 decreased inflammation, lung damage, and bacterial burden in the airways by increasing macrophage phagocytosis. Conversely, Ac2-26 peptide was ineffective to afford protection in Fpr2/3 KO mice during infection. Altogether, these findings show that AnxA1, via FPR2, controls inflammation and bacterial dissemination during pneumococcal pneumonia by promoting host defenses, suggesting AnxA1-based peptides as a novel therapeutic strategy to control pneumococcal pneumonia.


Subject(s)
Annexin A1/metabolism , Inflammation/metabolism , Macrophages/metabolism , Neutrophils/metabolism , Pneumonia, Pneumococcal/metabolism , Receptors, Formyl Peptide/metabolism , Animals , Disease Models, Animal , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Phagocytosis/drug effects , Receptors, Lipoxin/metabolism , Streptococcus pneumoniae/metabolism
9.
Malar J ; 20(1): 296, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34210332

ABSTRACT

BACKGROUND: Ascariasis and malaria are highly prevalent parasitic diseases in tropical regions and often have overlapping endemic areas, contributing to high morbidity and mortality rates in areas with poor sanitary conditions. Several studies have previously aimed to correlate the effects of Ascaris-Plasmodium coinfections but have obtained contradictory and inconclusive results. Therefore, the present study aimed to investigate parasitological and immunopathological aspects of the lung during murine experimental concomitant coinfection by Plasmodium berghei and Ascaris suum during larvae ascariasis. METHODS: C57BL/6J mice were inoculated with 1 × 104 P. berghei strain NK65-NY-infected red blood cells (iRBCs) intraperitoneally and/or 2500 embryonated eggs of A. suum by oral gavage. P. berghei parasitaemia, morbidity and the survival rate were assessed. On the seventh day postinfection (dpi), A. suum lung burden analysis; bronchoalveolar lavage (BAL); histopathology; NAG, MPO and EPO activity measurements; haematological analysis; and respiratory mechanics analysis were performed. The concentrations of interleukin (IL)-1ß, IL-12/IL-23p40, IL-6, IL-4, IL-33, IL-13, IL-5, IL-10, IL-17A, IFN-γ, TNF and TGF-ß were assayed by sandwich ELISA. RESULTS: Animals coinfected with P. berghei and A. suum show decreased production of type 1, 2, and 17 and regulatory cytokines; low leukocyte recruitment in the tissue; increased cellularity in the circulation; and low levels of NAG, MPO and EPO activity that lead to an increase in larvae migration, as shown by the decrease in larvae recovered in the lung parenchyma and increase in larvae recovered in the airway. This situation leads to severe airway haemorrhage and, consequently, an impairment respiratory function that leads to high morbidity and early mortality. CONCLUSIONS: This study demonstrates that the Ascaris-Plasmodium interaction is harmful to the host and suggests that this coinfection may potentiate Ascaris-associated pathology by dampening the Ascaris-specific immune response, resulting in the early death of affected animals.


Subject(s)
Ascariasis , Coinfection , Down-Regulation/immunology , Immunity, Innate/genetics , Malaria , Animals , Ascariasis/immunology , Ascariasis/parasitology , Ascariasis/pathology , Ascaris suum/genetics , Ascaris suum/physiology , Coinfection/immunology , Coinfection/parasitology , Coinfection/pathology , Gene Expression Regulation , Lung/pathology , Malaria/immunology , Malaria/parasitology , Malaria/pathology , Male , Mice , Mice, Inbred C57BL , Plasmodium berghei/physiology
10.
Cytokine ; 118: 160-167, 2019 06.
Article in English | MEDLINE | ID: mdl-29550065

ABSTRACT

BACKGROUND: Chemokines and chemokine receptors are critical in oral tumourigenesis. The atypical chemokine receptor ACKR2 is a scavenger of CC chemokines controlling the availability of these molecules at tumour sites, but the role of ACKR2 in the context of oral carcinogenesis is unexplored. METHODS: In this study, wild-type (WT) and ACKR2 deficient mice (ACKR2-/-) were treated with chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) for induction of oral carcinogenesis. Tongues were collected for macro and microscopic analysis and to evaluate the expression of ACKRs, CC chemokines and its receptors, inflammatory cytokines, angiogenic factors, adhesion molecules and extracellular matrix components. RESULTS: An increased expression of ACKR2 in squamous cell carcinoma (SCC) lesions of 4NQO-treated WT mice was observed. No significant differences were seen in the ACKR1, ACKR3 and ACKR4 mRNA expression comparing SCC lesions from WT and ACKR2-/- treated mice. Significantly higher expression of CCL2, IL-6 and IL-17 was detected in ACKR2-/- treated mice. In contrast, the expression of other CC-chemokines, and receptors, angiogenic factors, adhesion molecules and extracellular matrix components were similarly increased in SCC lesions of both groups. Clinical and histopathological analysis revealed no differences in inflammatory cell recruitment and in the SCC incidence comparing WT and ACKR2-/- treated mice. CONCLUSION: The results suggest that ACKR2 expression regulates inflammation in tumour-microenvironment but the absence of ACKR2 does not impact chemically-induced oral carcinogenesis.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Receptors, Chemokine/metabolism , Animals , Chemokines, CC/metabolism , Cytokines/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Tumor Microenvironment/physiology
12.
Mediators Inflamm ; 2015: 138461, 2015.
Article in English | MEDLINE | ID: mdl-26106257

ABSTRACT

There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS(-/-)) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS(-/-) mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS(-/-) mice. In contrast, the iNOS(-/-) implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS(-/-) mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice.


Subject(s)
Neovascularization, Pathologic , Nitric Oxide Synthase Type II/physiology , Prostheses and Implants , Animals , Collagen/metabolism , Fibrosis , Inflammation/etiology , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration , Polyurethanes
13.
Fish Shellfish Immunol ; 39(1): 108-17, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24795082

ABSTRACT

The fish gill is in direct and standing contact with the immediate external environment and, therefore, is highly vulnerable to aquatic pollutants. In this study, Prochilodus argenteus were caught at two different points in São Francisco river. The first point is located near Três Marias dam, while the second is placed downstream the Abaeté river. Chemical approaches showed the presence of metals contamination in the first point. Thus, the main goal of this study was to investigate the possible toxic effects of these contaminants and the likely use of biomarkers on fish gills. Biometric data of length and weight of fish were obtained in order to calculate the condition factor as an organismal biomarker. The histological changes in gills and alterations in mucous and rodlet cells occurrence were detected microscopically and evaluated with quantitative analyses. Myeloperoxidase (MPO) and Eosinophil Peroxidase (EPO) were also assessed in fish gill. The analysis of the water and sediment samples revealed the presence of metals at the two points. As and Cd were detected at higher concentrations at point 1. The presence of lamellar cell hyperplasia, lamellar fusion, lamellar edema and inflammatory foci varied according to the point. Additionally, mucous and rodlet cells and MPO and EPO activities showed variability according to the environmental conditions. Furthermore, with exception of lamellar hyperplasia and eosinophil peroxidase activity, all others parameters showed sex-variation responses. At the first point, male fish showed a chronical inflammation in gills due to the lowest activity of MPO and EPO, as well as low occurrence of inflammatory foci and glycoprotein secretion by mucous cells, while female fish presented an opposite pattern of response to the same environmental conditions. Therefore, we suggest the use of such biomarkers in future monitoring of aquatic systems, taking into account the sex-variation responses.


Subject(s)
Characiformes/immunology , Characiformes/metabolism , Gills/drug effects , Metals/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Brazil , Characiformes/anatomy & histology , Environmental Monitoring , Eosinophil Peroxidase/metabolism , Female , Gills/enzymology , Gills/immunology , Gills/pathology , Male , Peroxidase/metabolism , Rivers/chemistry , Sex Factors , Spectrophotometry, Atomic
14.
Dis Mon ; 69(1): 101353, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35311656

ABSTRACT

In recent decades, understanding tumorigenesis and the complex interaction between the host and the immune system has been the pillar for significant advances in anticancer therapy. Conventional anticancer therapy (e.g., cut, burn, and cytotoxic drugs) involves multiple targeting of tumor cells. However, the tumor tissue microenvironment can present a dysregulated, stimulating, or subverted immune response which, in turn, reveals pro-tumor activities favoring tumor expansion and progression. Recently, new potential targets have been identified based on immunomodulatory therapies, which are crafted to re-establish the host anti-tumoral immune response. Clinicians should fully understand the intricate interactions between carcinogens, the tumor milieu, the immune system, and traditional anticancer therapies in order to progress and to overcome the refractory/recurrent challenges and morbidity of the disease. Thus, in this article, we highlight the complex milieu of the oral cancer immune response, pointing out potential therapeutic immunotargets for oral squamous cell carcinomas. The impact of traditional anticancer therapy on the immune system is also outlined.


Subject(s)
Antineoplastic Agents , Carcinoma , Mouth Neoplasms , Neoplasms , Humans , Immunotherapy , Neoplasms/drug therapy , Immune System , Mouth Neoplasms/therapy , Antineoplastic Agents/therapeutic use , Carcinoma/drug therapy , Tumor Microenvironment
15.
Cytokine Growth Factor Rev ; 66: 38-52, 2022 08.
Article in English | MEDLINE | ID: mdl-35623962

ABSTRACT

Infection with helminth parasites affects more than 1.5 billion people and is concentrated in global areas of extreme poverty, having a significant impact on public health, social life and the economy. Upon entry into the host, helminth parasites often migrate through specific tissues triggering host immunity. The immune response triggered by helminth infections is complex and depends on parasite load, site of infection, acuteness/chronicity of the infection and is species-dependent. In general, susceptibility or resistance to the infection involves the participation of the innate immune response and then the balance between several effector CD4+ T cells subsets, such as Th1, Th2, Th9, Th17, Tfh and Treg, coordinated by immune mediators such as cytokines and chemokines. Chemokines guide the recruitment and activation of leukocytes under inflammatory and homeostatic states. The chemokine system has been associated with several diseases and experimental models with a significant inflammatory component, including infection with helminth parasites. Therefore, this critical review will highlight the main findings concerning chemokine responses elicited by the interaction between helminth parasites and the hosts' immune system, hence contributing to the understanding of the relevance of chemokine synthesis and biology in the immunological response to infection by parasitic helminths.


Subject(s)
Helminthiasis , Helminths , Animals , Chemokines , Helminths/physiology , Host-Parasite Interactions , Humans , Models, Theoretical , Receptors, Chemokine
16.
J Immunol Res ; 2022: 1466011, 2022.
Article in English | MEDLINE | ID: mdl-35785028

ABSTRACT

Background: Asthma is a chronic pulmonary disease that affects about 300 million people worldwide. Previous studies have associated antimicrobial use with allergies, but the real impact of antibiotics on asthma is still elusive. We investigated the potential impact of amoxicillin (Amox), trimethoprim/sulfamethoxazole (TMP/SMX), and metronidazole (Metro) in a murine model of OVA-induced allergic airway inflammation. Methods: BALB/c mice received three cycles of 7 days of antibiotics in drinking water followed by 7 days washout and were sensitized i.p. with OVA/Alum at days 0 and 14. After the end of the last antibiotic washout, the mice were challenged with aerosolized OVA. Pulmonary parameters were evaluated, and serum, BAL, and feces were collected for analysis. Results: Amox- and TMP/SMX-treated animals displayed more severe allergic airway inflammation parameters with increased airway hyperresponsiveness, reduced lung alveolar volume, and increased levels in BAL of IL-4 and IL-6. In contrast, Metro-treated mice showed preserved FEV-50, decreased lung inflammation, and higher levels of butyrate and propionate in their feces. Metro treatment was associated with increased OVA-specific IgA in serum. BAL microbiota was abundant in allergic groups but not in nonallergic controls with the Amox-treated group displaying the increased frequency of Proteobacteria, while Metro and TMP/SMX showed increased levels of Firmicutes. In the gut, we observed the enrichment of Akkermansia muciniphila associated with reduced airway inflammation phenotype in the Metro group, even after the recovery period. Conclusion: Our data suggest that different antibiotic treatments may impact the course of experimental allergic airway inflammation in diverse ways by several mechanisms, including modulation of short-chain fat acids production by intestinal microbiota.


Subject(s)
Asthma , Hypersensitivity , Microbiota , Animals , Anti-Bacterial Agents/therapeutic use , Asthma/drug therapy , Humans , Hypersensitivity/drug therapy , Inflammation/drug therapy , Lung , Mice , Trimethoprim, Sulfamethoxazole Drug Combination
17.
Front Immunol ; 13: 864632, 2022.
Article in English | MEDLINE | ID: mdl-35844540

ABSTRACT

IL-17 is a cytokine produced by innate and acquired immunity cells that have an action against fungi and bacteria. However, its action in helminth infections is unclear, including in Toxocara canis infection. Toxocariasis is a neglected zoonosis representing a significant public health problem with an estimated seroprevalence of 19% worldwide. In the present study, we describe the immunopathological action of IL-17RA in acute T. canis infection. C57BL/6j (WT) and IL-17RA receptor knockout (IL-17RA-/-) mice were infected with 1000 T. canis eggs. Mice were evaluated 3 days post-infection for parasite load and white blood cell count. Lung tissue was harvested for histopathology and cytokine expression. In addition, we performed multiparametric flow cytometry in the BAL and peripheral blood, evaluating phenotypic and functional changes in myeloid and lymphoid populations. We showed that IL-17RA is essential to control larvae load in the lung; however, IL-17RA contributed to pulmonary inflammation, inducing inflammatory nodular aggregates formation and presented higher pulmonary IL-6 levels. The absence of IL-17RA was associated with a higher frequency of neutrophils as a source of IL-4 in BAL, while in the presence of IL-17RA, mice display a higher frequency of alveolar macrophages expressing the same cytokine. Taken together, this study indicates that neutrophils may be an important source of IL-4 in the lungs during T. canis infection. Furthermore, IL-17/IL-17RA axis is important to control parasite load, however, its presence triggers lung inflammation that can lead to tissue damage.


Subject(s)
Pneumonia , Receptors, Interleukin-17 , Toxocara canis , Toxocariasis , Animals , Cytokines/immunology , Interleukin-17/immunology , Interleukin-4/immunology , Mice , Mice, Inbred C57BL , Pneumonia/immunology , Pneumonia/parasitology , Receptors, Interleukin-17/immunology , Toxocara canis/immunology , Toxocariasis/immunology , Toxocariasis/parasitology
18.
Front Immunol ; 12: 676702, 2021.
Article in English | MEDLINE | ID: mdl-34276664

ABSTRACT

PTX3 is a soluble pattern recognition molecule (PRM) belonging to the humoral innate immune system, rapidly produced at inflammatory sites by phagocytes and stromal cells in response to infection or tissue injury. PTX3 interacts with microbial moieties and selected pathogens, with molecules of the complement and hemostatic systems, and with extracellular matrix (ECM) components. In wound sites, PTX3 interacts with fibrin and plasminogen and favors a timely removal of fibrin-rich ECM for an efficient tissue repair. Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown origin, associated with excessive ECM deposition affecting tissue architecture, with irreversible loss of lung function and impact on the patient's life quality. Maccarinelli et al. recently demonstrated a protective role of PTX3 using the bleomycin (BLM)-induced experimental model of lung fibrosis, in line with the reported role of PTX3 in tissue repair. However, the mechanisms and therapeutic potential of PTX3 in IPF remained to be investigated. Herein, we provide new insights on the possible role of PTX3 in the development of IPF and BLM-induced lung fibrosis. In mice, PTX3-deficiency was associated with worsening of the disease and with impaired fibrin removal and subsequently increased collagen deposition. In IPF patients, microarray data indicated a down-regulation of PTX3 expression, thus suggesting a potential rational underlying the development of disease. Therefore, we provide new insights for considering PTX3 as a possible target molecule underlying therapeutic intervention in IPF.


Subject(s)
C-Reactive Protein/immunology , Hemostasis/immunology , Idiopathic Pulmonary Fibrosis/immunology , Immunity, Humoral , Immunity, Innate , Nerve Tissue Proteins/immunology , Serum Amyloid P-Component/immunology , Wound Healing/immunology , Animals , Bleomycin/adverse effects , C-Reactive Protein/metabolism , Disease Models, Animal , Extracellular Matrix/immunology , Extracellular Matrix/metabolism , Fibrin/metabolism , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Inflammation/immunology , Inflammation/metabolism , Mice , Nerve Tissue Proteins/metabolism , Plasminogen/metabolism , Serum Amyloid P-Component/metabolism
19.
Front Cell Dev Biol ; 9: 625680, 2021.
Article in English | MEDLINE | ID: mdl-33614655

ABSTRACT

Acute exercise increases the amount of circulating inflammatory cells and cytokines to maintain physiological homeostasis. However, it remains unclear how physical training regulates exercise-induced inflammation and performance. Here, we demonstrate that acute high intensity exercise promotes an inflammatory profile characterized by increased blood IL-6 levels, neutrophil migratory capacity, and leukocyte recruitment to skeletal muscle vessels. Moreover, we found that physical training amplified leukocyte-endothelial cell interaction induced by acute exercise in skeletal muscle vessels and diminished exercise-induced inflammation in skeletal muscle tissue. Furthermore, we verified that disruption of the gp-91 subunit of NADPH-oxidase inhibited exercise-induced leukocyte recruitment on skeletal muscle after training with enhanced exercise time until fatigue. In conclusion, the training was related to physical improvement and immune adaptations. Moreover, reactive oxygen species (ROS) could be related to mechanisms to limit aerobic performance and its absence decreases the inflammatory response elicited by exercise after training.

20.
Front Immunol ; 12: 788185, 2021.
Article in English | MEDLINE | ID: mdl-34992603

ABSTRACT

Control of human ascariasis, the most prevalent neglected tropical disease globally affecting 450 million people, mostly relies on mass drug administration of anthelmintics. However, chemotherapy alone is not efficient due to the high re-infection rate for people who live in the endemic area. The development of a vaccine that reduces the intensity of infection and maintains lower morbidity should be the primary target for infection control. Previously, our group demonstrated that immunization with crude Ascaris antigens in mice induced an IgG-mediated protective response with significant worm reduction. Here, we aimed to develop a multipeptide chimera vaccine based on conserved B-cell epitopes predicted from 17 common helminth proteomes using a bioinformatics algorithm. More than 480 B-cell epitopes were identified that are conserved in all 17 helminths. The Ascaris-specific epitopes were selected based on their reactivity to the pooled sera of mice immunized with Ascaris crude antigens or infected three times with A. suum infective eggs. The top 35 peptides with the strongest reactivity to Ascaris immune serum were selected to construct a chimeric antigen connected in sequence based on conformation. This chimera, called ASCVac-1, was produced as a soluble recombinant protein in an Escherichia coli expression system and, formulated with MPLA, was used to immunize mice. Mice immunized with ASCVac-1/MPLA showed around 50% reduced larvae production in the lungs after being challenged with A. suum infective eggs, along with significantly reduced inflammation and lung tissue/function damage. The reduced parasite count and pathology in infected lungs were associated with strong Th2 immune responses characterized by the high titers of antigen-specific IgG and its subclasses (IgG1, IgG2a, and IgG3) in the sera and significantly increased IL-4, IL-5, IL-13 levels in lung tissues. The reduced IL-33 titers and stimulated eosinophils were also observed in lung tissues and may also contribute to the ASCVac-1-induced protection. Taken together, the preclinical trial with ASCVac-1 chimera in a mouse model demonstrated its significant vaccine efficacy associated with strong IgG-based Th2 responses, without IgE induction, thus reducing the risk of an allergic response. All results suggest that the multiepitope-based ASCVac-1 chimera is a promising vaccine candidate against Ascaris sp. infections.


Subject(s)
Antigens, Helminth/administration & dosage , Ascariasis/prevention & control , Ascaris suum/immunology , Neglected Diseases/prevention & control , Protozoan Vaccines/administration & dosage , Animals , Antigens, Helminth/immunology , Ascariasis/immunology , Ascariasis/parasitology , Ascariasis/pathology , Ascaris suum/isolation & purification , Female , Humans , Lung/immunology , Lung/parasitology , Lung/pathology , Mice , Neglected Diseases/immunology , Neglected Diseases/parasitology , Neglected Diseases/pathology , Protozoan Vaccines/immunology , Th2 Cells/immunology , Vaccine Efficacy , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
SELECTION OF CITATIONS
SEARCH DETAIL