Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Nucleic Acids Res ; 47(D1): D529-D541, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30476227

ABSTRACT

The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the curation and archival storage of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2018 (build 3.4.164), BioGRID contains records for 1 598 688 biological interactions manually annotated from 55 809 publications for 71 species, as classified by an updated set of controlled vocabularies for experimental detection methods. BioGRID also houses records for >700 000 post-translational modification sites. BioGRID now captures chemical interaction data, including chemical-protein interactions for human drug targets drawn from the DrugBank database and manually curated bioactive compounds reported in the literature. A new dedicated aspect of BioGRID annotates genome-wide CRISPR/Cas9-based screens that report gene-phenotype and gene-gene relationships. An extension of the BioGRID resource called the Open Repository for CRISPR Screens (ORCS) database (https://orcs.thebiogrid.org) currently contains over 500 genome-wide screens carried out in human or mouse cell lines. All data in BioGRID is made freely available without restriction, is directly downloadable in standard formats and can be readily incorporated into existing applications via our web service platforms. BioGRID data are also freely distributed through partner model organism databases and meta-databases.


Subject(s)
Databases, Factual , Animals , CRISPR-Cas Systems , Data Curation , Drug Discovery , Genes , Humans , Mice , Protein Interaction Mapping
2.
Nucleic Acids Res ; 45(D1): D369-D379, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27980099

ABSTRACT

The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the annotation and archival of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2016 (build 3.4.140), the BioGRID contains 1 072 173 genetic and protein interactions, and 38 559 post-translational modifications, as manually annotated from 48 114 publications. This dataset represents interaction records for 66 model organisms and represents a 30% increase compared to the previous 2015 BioGRID update. BioGRID curates the biomedical literature for major model organism species, including humans, with a recent emphasis on central biological processes and specific human diseases. To facilitate network-based approaches to drug discovery, BioGRID now incorporates 27 501 chemical-protein interactions for human drug targets, as drawn from the DrugBank database. A new dynamic interaction network viewer allows the easy navigation and filtering of all genetic and protein interaction data, as well as for bioactive compounds and their established targets. BioGRID data are directly downloadable without restriction in a variety of standardized formats and are freely distributed through partner model organism databases and meta-databases.


Subject(s)
Computational Biology , Databases, Genetic , Proteins , Animals , Computational Biology/methods , Data Curation , Data Mining , Humans , Protein Interaction Mapping , Protein Interaction Maps , Protein Processing, Post-Translational , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Software
3.
Nucleic Acids Res ; 43(Database issue): D470-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25428363

ABSTRACT

The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein interactions curated from the primary biomedical literature for all major model organism species and humans. As of September 2014, the BioGRID contains 749,912 interactions as drawn from 43,149 publications that represent 30 model organisms. This interaction count represents a 50% increase compared to our previous 2013 BioGRID update. BioGRID data are freely distributed through partner model organism databases and meta-databases and are directly downloadable in a variety of formats. In addition to general curation of the published literature for the major model species, BioGRID undertakes themed curation projects in areas of particular relevance for biomedical sciences, such as the ubiquitin-proteasome system and various human disease-associated interaction networks. BioGRID curation is coordinated through an Interaction Management System (IMS) that facilitates the compilation interaction records through structured evidence codes, phenotype ontologies, and gene annotation. The BioGRID architecture has been improved in order to support a broader range of interaction and post-translational modification types, to allow the representation of more complex multi-gene/protein interactions, to account for cellular phenotypes through structured ontologies, to expedite curation through semi-automated text-mining approaches, and to enhance curation quality control.


Subject(s)
Databases, Genetic , Gene Regulatory Networks , Protein Interaction Mapping , Arachidonic Acid/metabolism , Disease/genetics , Humans , Internet
4.
Nucleic Acids Res ; 41(Database issue): D816-23, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23203989

ABSTRACT

The Biological General Repository for Interaction Datasets (BioGRID: http//thebiogrid.org) is an open access archive of genetic and protein interactions that are curated from the primary biomedical literature for all major model organism species. As of September 2012, BioGRID houses more than 500 000 manually annotated interactions from more than 30 model organisms. BioGRID maintains complete curation coverage of the literature for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the model plant Arabidopsis thaliana. A number of themed curation projects in areas of biomedical importance are also supported. BioGRID has established collaborations and/or shares data records for the annotation of interactions and phenotypes with most major model organism databases, including Saccharomyces Genome Database, PomBase, WormBase, FlyBase and The Arabidopsis Information Resource. BioGRID also actively engages with the text-mining community to benchmark and deploy automated tools to expedite curation workflows. BioGRID data are freely accessible through both a user-defined interactive interface and in batch downloads in a wide variety of formats, including PSI-MI2.5 and tab-delimited files. BioGRID records can also be interrogated and analyzed with a series of new bioinformatics tools, which include a post-translational modification viewer, a graphical viewer, a REST service and a Cytoscape plugin.


Subject(s)
Databases, Genetic , Gene Regulatory Networks , Protein Interaction Mapping , Arabidopsis/genetics , Arabidopsis/metabolism , Humans , Internet , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , User-Computer Interface
5.
Nucleic Acids Res ; 39(Database issue): D698-704, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21071413

ABSTRACT

The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein interaction data from model organisms and humans (http://www.thebiogrid.org). BioGRID currently holds 347,966 interactions (170,162 genetic, 177,804 protein) curated from both high-throughput data sets and individual focused studies, as derived from over 23,000 publications in the primary literature. Complete coverage of the entire literature is maintained for budding yeast (Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe) and thale cress (Arabidopsis thaliana), and efforts to expand curation across multiple metazoan species are underway. The BioGRID houses 48,831 human protein interactions that have been curated from 10,247 publications. Current curation drives are focused on particular areas of biology to enable insights into conserved networks and pathways that are relevant to human health. The BioGRID 3.0 web interface contains new search and display features that enable rapid queries across multiple data types and sources. An automated Interaction Management System (IMS) is used to prioritize, coordinate and track curation across international sites and projects. BioGRID provides interaction data to several model organism databases, resources such as Entrez-Gene and other interaction meta-databases. The entire BioGRID 3.0 data collection may be downloaded in multiple file formats, including PSI MI XML. Source code for BioGRID 3.0 is freely available without any restrictions.


Subject(s)
Databases, Genetic , Gene Regulatory Networks , Protein Interaction Mapping , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , User-Computer Interface
6.
Sci Adv ; 9(21): eadg5702, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37235661

ABSTRACT

Genome-wide phenotypic screens in the budding yeast Saccharomyces cerevisiae, enabled by its knockout collection, have produced the largest, richest, and most systematic phenotypic description of any organism. However, integrative analyses of this rich data source have been virtually impossible because of the lack of a central data repository and consistent metadata annotations. Here, we describe the aggregation, harmonization, and analysis of ~14,500 yeast knockout screens, which we call Yeast Phenome. Using this unique dataset, we characterized two unknown genes (YHR045W and YGL117W) and showed that tryptophan starvation is a by-product of many chemical treatments. Furthermore, we uncovered an exponential relationship between phenotypic similarity and intergenic distance, which suggests that gene positions in both yeast and human genomes are optimized for function.


Subject(s)
Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics
7.
Int Health ; 14(Suppl 2): ii20-ii24, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130249

ABSTRACT

Innovation plays a critical role in progress towards achievement of the World Health Organization's road map for neglected tropical diseases 2021-2030. As disease prevalence decreases, the cost to identify and treat remaining cases goes up. Additionally, as programmes move to the surveillance phase, diagnostic tests need to be highly sensitive and affordable. Until the early end to the Ascend West and Central Africa programme, the Ascend Learning and Innovation Fund supported five projects from 2019 to 2021. Designed for innovation, the fund encompassed a range of activities, including operational research, product development and social behavioural change. This flexibility allowed innovation to bridge the gap between strategic policy and practical implementation, piloting and proving business models to respond to information found through Ascend.


Subject(s)
Neglected Diseases , Policy , Humans , Neglected Diseases/prevention & control
8.
Protein Sci ; 30(1): 187-200, 2021 01.
Article in English | MEDLINE | ID: mdl-33070389

ABSTRACT

The BioGRID (Biological General Repository for Interaction Datasets, thebiogrid.org) is an open-access database resource that houses manually curated protein and genetic interactions from multiple species including yeast, worm, fly, mouse, and human. The ~1.93 million curated interactions in BioGRID can be used to build complex networks to facilitate biomedical discoveries, particularly as related to human health and disease. All BioGRID content is curated from primary experimental evidence in the biomedical literature, and includes both focused low-throughput studies and large high-throughput datasets. BioGRID also captures protein post-translational modifications and protein or gene interactions with bioactive small molecules including many known drugs. A built-in network visualization tool combines all annotations and allows users to generate network graphs of protein, genetic and chemical interactions. In addition to general curation across species, BioGRID undertakes themed curation projects in specific aspects of cellular regulation, for example the ubiquitin-proteasome system, as well as specific disease areas, such as for the SARS-CoV-2 virus that causes COVID-19 severe acute respiratory syndrome. A recent extension of BioGRID, named the Open Repository of CRISPR Screens (ORCS, orcs.thebiogrid.org), captures single mutant phenotypes and genetic interactions from published high throughput genome-wide CRISPR/Cas9-based genetic screens. BioGRID-ORCS contains datasets for over 1,042 CRISPR screens carried out to date in human, mouse and fly cell lines. The biomedical research community can freely access all BioGRID data through the web interface, standardized file downloads, or via model organism databases and partner meta-databases.


Subject(s)
COVID-19/genetics , Databases, Factual , Protein Interaction Mapping , Proteins/genetics , Animals , COVID-19/virology , Humans , Mice , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , User-Computer Interface
9.
Neuron ; 107(5): 821-835.e12, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32603655

ABSTRACT

A major obstacle to treating Alzheimer's disease (AD) is our lack of understanding of the molecular mechanisms underlying selective neuronal vulnerability, a key characteristic of the disease. Here, we present a framework integrating high-quality neuron-type-specific molecular profiles across the lifetime of the healthy mouse, which we generated using bacTRAP, with postmortem human functional genomics and quantitative genetics data. We demonstrate human-mouse conservation of cellular taxonomy at the molecular level for neurons vulnerable and resistant in AD, identify specific genes and pathways associated with AD neuropathology, and pinpoint a specific functional gene module underlying selective vulnerability, enriched in processes associated with axonal remodeling, and affected by amyloid accumulation and aging. We have made all cell-type-specific profiles and functional networks available at http://alz.princeton.edu. Overall, our study provides a molecular framework for understanding the complex interplay between Aß, aging, and neurodegeneration within the most vulnerable neurons in AD.


Subject(s)
Alzheimer Disease/pathology , Gene Expression Profiling/methods , Machine Learning , Neurons/pathology , Transcriptome , Aging/genetics , Aging/pathology , Alzheimer Disease/genetics , Animals , Gene Regulatory Networks/physiology , Humans , Mice
10.
Cell Syst ; 8(2): 152-162.e6, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30685436

ABSTRACT

A key challenge for the diagnosis and treatment of complex human diseases is identifying their molecular basis. Here, we developed a unified computational framework, URSAHD (Unveiling RNA Sample Annotation for Human Diseases), that leverages machine learning and the hierarchy of anatomical relationships present among diseases to integrate thousands of clinical gene expression profiles and identify molecular characteristics specific to each of the hundreds of complex diseases. URSAHD can distinguish between closely related diseases more accurately than literature-validated genes or traditional differential-expression-based computational approaches and is applicable to any disease, including rare and understudied ones. We demonstrate the utility of URSAHD in classifying related nervous system cancers and experimentally verifying novel neuroblastoma-associated genes identified by URSAHD. We highlight the applications for potential targeted drug-repurposing and for quantitatively assessing the molecular response to clinical therapies. URSAHD is freely available for public use, including the use of underlying models, at ursahd.princeton.edu.


Subject(s)
Gene Expression Profiling/methods , Genomics/methods , Machine Learning/standards , Transcriptome/genetics , Humans
11.
Article in English | MEDLINE | ID: mdl-28077563

ABSTRACT

A great deal of information on the molecular genetics and biochemistry of model organisms has been reported in the scientific literature. However, this data is typically described in free text form and is not readily amenable to computational analyses. To this end, the BioGRID database systematically curates the biomedical literature for genetic and protein interaction data. This data is provided in a standardized computationally tractable format and includes structured annotation of experimental evidence. BioGRID curation necessarily involves substantial human effort by expert curators who must read each publication to extract the relevant information. Computational text-mining methods offer the potential to augment and accelerate manual curation. To facilitate the development of practical text-mining strategies, a new challenge was organized in BioCreative V for the BioC task, the collaborative Biocurator Assistant Task. This was a non-competitive, cooperative task in which the participants worked together to build BioC-compatible modules into an integrated pipeline to assist BioGRID curators. As an integral part of this task, a test collection of full text articles was developed that contained both biological entity annotations (gene/protein and organism/species) and molecular interaction annotations (protein-protein and genetic interactions (PPIs and GIs)). This collection, which we call the BioC-BioGRID corpus, was annotated by four BioGRID curators over three rounds of annotation and contains 120 full text articles curated in a dataset representing two major model organisms, namely budding yeast and human. The BioC-BioGRID corpus contains annotations for 6409 mentions of genes and their Entrez Gene IDs, 186 mentions of organism names and their NCBI Taxonomy IDs, 1867 mentions of PPIs and 701 annotations of PPI experimental evidence statements, 856 mentions of GIs and 399 annotations of GI evidence statements. The purpose, characteristics and possible future uses of the BioC-BioGRID corpus are detailed in this report.Database URL: http://bioc.sourceforge.net/BioC-BioGRID.html.


Subject(s)
Data Curation/methods , Data Mining/methods , Databases, Genetic , Proteins/genetics , Proteins/metabolism
12.
Cold Spring Harb Protoc ; 2016(1): pdb.prot088880, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26729909

ABSTRACT

The BioGRID database is an extensive repository of curated genetic and protein interactions for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and the yeast Candida albicans SC5314, as well as for several other model organisms and humans. This protocol describes how to use the BioGRID website to query genetic or protein interactions for any gene of interest, how to visualize the associated interactions using an embedded interactive network viewer, and how to download data files for either selected interactions or the entire BioGRID interaction data set.


Subject(s)
Databases, Genetic , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Regulatory Networks , Animals , Internet , Protein Interaction Mapping , Yeasts/metabolism
13.
Cold Spring Harb Protoc ; 2016(1): pdb.top080754, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26729913

ABSTRACT

The Biological General Repository for Interaction Datasets (BioGRID) is a freely available public database that provides the biological and biomedical research communities with curated protein and genetic interaction data. Structured experimental evidence codes, an intuitive search interface, and visualization tools enable the discovery of individual gene, protein, or biological network function. BioGRID houses interaction data for the major model organism species--including yeast, nematode, fly, zebrafish, mouse, and human--with particular emphasis on the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe as pioneer eukaryotic models for network biology. BioGRID has achieved comprehensive curation coverage of the entire literature for these two major yeast models, which is actively maintained through monthly curation updates. As of September 2015, BioGRID houses approximately 335,400 biological interactions for budding yeast and approximately 67,800 interactions for fission yeast. BioGRID also supports an integrated posttranslational modification (PTM) viewer that incorporates more than 20,100 yeast phosphorylation sites curated through its sister database, the PhosphoGRID.


Subject(s)
Databases, Genetic/statistics & numerical data , Gene Regulatory Networks , Protein Interaction Mapping , Animals , Humans , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins , Yeasts/genetics , Yeasts/metabolism
14.
Article in English | MEDLINE | ID: mdl-27589962

ABSTRACT

BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the collaborative BioC task and discuss our findings based on the user survey. This track consisted of eight subtasks including gene/protein/organism named entity recognition, protein-protein/genetic interaction passage identification and annotation visualization. Using BioC as their data-sharing and communication medium, nine teams, world-wide, participated and contributed either new methods or improvements of existing tools to address different subtasks of the BioC track. Results from different teams were shared in BioC and made available to other teams as they addressed different subtasks of the track. In the end, all submitted runs were merged using a machine learning classifier to produce an optimized output. The biocurator assistant system was evaluated by four BioGRID curators in terms of practical usability. The curators' feedback was overall positive and highlighted the user-friendly design and the convenient gene/protein curation tool based on text mining.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/.


Subject(s)
Data Curation/methods , Data Mining/methods , Electronic Data Processing/methods , Information Dissemination/methods
15.
Anal Sci ; 21(8): 1009-13, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16122178

ABSTRACT

A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.

16.
Mol Cell Biol ; 27(23): 8178-89, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17893326

ABSTRACT

During development, Sonic hedgehog (Shh) regulates the proliferation of cerebellar granule neuron precursors (GNPs) in part via expression of Nmyc. We present evidence supporting a novel role for the Mad family member Mad3 in the Shh pathway to regulate Nmyc expression and GNP proliferation. Mad3 mRNA is transiently expressed in GNPs during proliferation. Cultured GNPs express Mad3 in response to Shh stimulation in a cyclopamine-dependent manner. Mad3 is necessary for Shh-dependent GNP proliferation as measured by bromodeoxyuridine incorporation and Nmyc expression. Furthermore, Mad3 overexpression, but not that of other Mad proteins, is sufficient to induce GNP proliferation in the absence of Shh. Structure-function analysis revealed that Max dimerization and recruitment of the mSin3 corepressor are required for Mad3-mediated GNP proliferation. Surprisingly, basic-domain-dependent DNA binding of Mad3 is not required, suggesting that Mad3 interacts with other DNA binding proteins to repress transcription. Interestingly, cerebellar tumors and pretumor cells derived from patched heterozygous mice express high levels of Mad3 compared with adjacent normal cerebellar tissue. Our studies support a novel role for Mad3 in cerebellar GNP proliferation and possibly tumorigenesis, and they challenge the current paradigm that Mad3 should antagonize Nmyc by competition for direct DNA binding via Max dimerization.


Subject(s)
Cerebellum/cytology , Neurons/cytology , Neurons/metabolism , Repressor Proteins/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Animals , Cell Line , Cell Proliferation , Cerebellum/metabolism , Gene Expression , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/metabolism , Medulloblastoma/pathology , Mice , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Proto-Oncogene Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/genetics , Up-Regulation/genetics
17.
Anal Chem ; 77(4): 1060-7, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15858986

ABSTRACT

The dark lines in the solar spectrum were discovered by Wollaston and cataloged by Fraunhofer in the early days of the 19th century. Some years later, Kirchhoff explained the appearance of the dark lines: the sun was acting as a continuum light source and metals in the ground state in its atmosphere were absorbing characteristic narrow regions of the spectrum. This discovery eventually spawned atomic absorption spectrometry, which became a routine technique for chemical analysis in the mid-20th century. Laboratory-based atomic absorption spectrometers differ from the original observation of the Fraunhofer lines because they have always employed a separate light source and atomizer. This article describes a novel atomic absorption device that employs a single source, the tungsten coil, as both the generator of continuum radiation and the atomizer of the analytes. A 25-microL aliquot of sample is placed on the tungsten filament removed from a commercially available 150-W light bulb. The solution is dried and ashed by applying low currents to the coil in a three-step procedure. Full power is then applied to the coil for a brief period. During this time, the coil produces white light, which may be absorbed by any metals present in the atomization cloud produced by the sample. A high-resolution spectrometer with a charge-coupled device detector monitors the emission spectrum of the coil, which includes the dark lines from the metals. Detection limits are reported for seven elements: 5 pg of Ca (422.7 nm); 2 ng of Co (352.7 nm); 200 pg of Cr (425.4 nm); 7 pg of Sr (460.7 nm); 100 pg of Yb (398.8 nm); 500 pg of Mn (403.1 nm); and 500 pg of K (404.4 nm). Simultaneous multielement analyses are possible within a 4-nm spectral window. The relative standard deviations for the seven metals are below 8% for all metals except for Ca (10.7%), which was present in the blank at measurable levels. Analysis of a standard reference material (drinking water) resulted in a mean percent recovery of 91%. This report attempts to give an historical perspective on the development of a novel atomic spectrometer based on the Fraunhofer effect.

SELECTION OF CITATIONS
SEARCH DETAIL