ABSTRACT
Aminoacyl-tRNA synthetases are fundamental to the translation machinery with emerging roles in transcriptional regulation. Previous cellular studies have demonstrated tyrosyl-tRNA synthetase (YARS1 or TyrRS) as a stress response protein through its cytosol-nucleus translocation to maintain cellular homeostasis. Here, we established a mouse model with a disrupted TyrRS nuclear localization signal, revealing its systemic impact on metabolism. Nuclear TyrRS deficiency (YarsΔNLS) led to reduced lean mass, reflecting a mild developmental defect, and reduced fat mass, possibly due to increased energy expenditure. Consistently, YarsΔNLS mice exhibit improved insulin sensitivity and reduced insulin levels, yet maintain normoglycemia, indicative of enhanced insulin action. Notably, YarsΔNLS mice also develop progressive hearing loss. These findings underscore the crucial function of nuclear TyrRS in the maintenance of fat storage and hearing and suggest that aminoacyl-tRNA synthetases' regulatory roles can affect metabolic pathways and tissue-specific health. This work broadens our understanding of how protein synthesis interconnects metabolic regulation to ensure energy efficiency.
ABSTRACT
OBJECTIVE: Tinnitus has been the No. 1 disability at the Veteran Administration for the last 15 years, yet its interaction with hearing loss secondary to etiologies such as age, noise trauma, and traumatic brain injuries remains poorly characterized. Our objective was to analyze hearing loss and tinnitus, including audiogram data, of the Million Veteran Program within the context of military exposures in an aging population. DESIGN: Health records, questionnaires, audiograms, and military data were aggregated for 758,005 Veteran participants in the Million Veteran Program 2011 to 2020, with relative risks (RR) calculated for ancestries, sex, hearing loss and military exposures such as combat, blast, and military era served. A multivariate model with significant demographic measures and exposures was then analyzed. Next, audiogram data stratified by sex were compared for those with and without tinnitus by two methods: first, mean thresholds at standard frequencies were compared to thresholds adjusted per ISO 7029:2000E age and sex formulae. Second, levels for those ≤40 years of age were compared with those 41 and older. Finally, a proportional hazards model was examined to ascertain the timing between the onset of tinnitus and hearing loss, calculated separately for electronic health record diagnoses (ICD) and self-report. RESULTS: Tinnitus was either self-reported, diagnosed, or both in 37.5% (95% CI, 37.4 to 37.6), mean age 61.5 (95% CI, 61.4 to 61.5), range 18 to 112 years. Those with hearing loss were 4.15 times (95% CI, 4.12 to 4.15) as likely to have tinnitus. Americans of African descent were less likely to manifest tinnitus (RR 0.61, 95% CI, 0.60 to 0.61), as were women (RR 0.65, 95% CI, 0.64 to 0.65). A multivariate model indicated a higher RR of 1.73 for traumatic brain injury (95% CI, 1.71 to 1.73) and daily combat noise exposure (1.17, 95% CI, 1.14 to 1.17) than age (0.998, 95% CI, 0.997 to 0.998). Subjects ≤40 years of age had small but significantly elevated hearing thresholds through all standard frequencies compared to Veterans without tinnitus, and the effect of tinnitus on hearing thresholds diminished with age. In the hazard model, those >40 with new onset of tinnitus were at risk for hearing loss sooner and with greater incidence than those who were younger. The rate of hearing loss following tinnitus approached 100%. In contrast, only approximately 50% of those who self-reported hearing loss initially were at risk for later hearing loss, in contrast to ICD comparison, where those with ICD of hearing loss were more likely to sustain an ICD of tinnitus subsequently. CONCLUSIONS: Evidence suggests that the occurrence of tinnitus in the military is more closely related to environmental exposures than to aging. The finding that tinnitus affects hearing frequencies across the audiogram spectrum suggests an acoustic injury independent of tonotopicity. Particularly for males >40, tinnitus may be a harbinger of audiologic damage predictive of later hearing loss.
Subject(s)
Brain Injuries, Traumatic , Deafness , Hearing Loss, Noise-Induced , Tinnitus , Aged , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/epidemiology , Deafness/complications , Female , Hearing , Hearing Loss, Noise-Induced/diagnosis , Hearing Loss, Noise-Induced/epidemiology , Humans , Male , Middle Aged , Noise/adverse effects , Tinnitus/epidemiology , Tinnitus/etiology , United States/epidemiologyABSTRACT
BACKGROUND: Otitis media (OM) susceptibility has significant heritability; however, the role of rare variants in OM is mostly unknown. Our goal is to identify novel rare variants that confer OM susceptibility. METHODS: We performed exome and Sanger sequencing of >1000 DNA samples from 551 multiethnic families with OM and unrelated individuals, RNA-sequencing and microbiome sequencing and analyses of swabs from the outer ear, middle ear, nasopharynx and oral cavity. We also examined protein localisation and gene expression in infected and healthy middle ear tissues. RESULTS: A large, intermarried pedigree that includes 81 OM-affected and 53 unaffected individuals cosegregates two known rare A2ML1 variants, a common FUT2 variant and a rare, novel pathogenic variant c.1682A>G (p.Glu561Gly) within SPINK5 (LOD=4.09). Carriage of the SPINK5 missense variant resulted in increased relative abundance of Microbacteriaceae in the middle ear, along with occurrence of Microbacteriaceae in the outer ear and oral cavity but not the nasopharynx. Eight additional novel SPINK5 variants were identified in 12 families and individuals with OM. A role for SPINK5 in OM susceptibility is further supported by lower RNA counts in variant carriers, strong SPINK5 localisation in outer ear skin, faint localisation to middle ear mucosa and eardrum and increased SPINK5 expression in human cholesteatoma. CONCLUSION: SPINK5 variants confer susceptibility to non-syndromic OM. These variants potentially contribute to middle ear pathology through breakdown of mucosal and epithelial barriers, immunodeficiency such as poor vaccination response, alteration of head and neck microbiota and facilitation of entry of opportunistic pathogens into the middle ear.
Subject(s)
Microbiota , Otitis Media/genetics , Otitis Media/microbiology , Serine Peptidase Inhibitor Kazal-Type 5/genetics , Adult , Animals , Bacteria/classification , Bacteria/genetics , Child , Disease Susceptibility/microbiology , Ear, External/microbiology , Ear, Middle/microbiology , Exome , Female , Genetic Predisposition to Disease , Humans , Male , Mice , Mouth/microbiology , Nasopharynx/microbiology , Pedigree , Sequence Analysis, DNA , Sequence Analysis, RNAABSTRACT
INTRODUCTION: The etiopathogenesis of chronic otitis media epitympanalis/cholesteatoma and its proliferative destructive course with possible complications such as destruction of bony structures with hearing loss, vestibular dysfunction, facial nerve paralysis and intracranial complications are still unexplained. Surgery is still the way to go. New studies are increasingly looking at the innate immune system. METHODS: Our studies were carried out in a mouse model in WT mice and immundeficient KO-mice, as well as in cholesteatoma and healthy ear canal skin and middle ear tissue, which was removed during ear surgery. The expression analyses were carried out at the gene and protein level using TNF as the major target for therapy evaluation. By means of TUNEL staining and immunohistochemistry the level of apoptosis was evaluated. RESULTS: The uncontrolled undirected cholesteatoma growth shows an immunomodulatory profile with up and down-regulation of various gene networks, especially those involved in TNF downstream and upstream signaling pathways. TNF in cholesteatoma is modulated both inflammatorily and apoptotically and therefore is suitable as a possible therapeutic approach in various models. CONCLUSIONS: Cholesteatoma might be immunomodulatory regulated.
Subject(s)
Cholesteatoma, Middle Ear , Cholesteatoma , Facial Paralysis , Otitis Media , Animals , Cholesteatoma/complications , Ear, Middle , Facial Paralysis/etiology , Humans , Immunomodulation , MiceABSTRACT
BACKGROUND: Otitis media (OM) is a common and potentially serious disease of childhood. Although OM is multifactorial on origin, bacterial infection is a unifying component. Many studies have established a critical role for innate immunity in bacterial clearance and OM resolution. A key component of innate immunity is the recruitment of immune and inflammatory cells, including macrophages. METHODS: To explore the role of macrophages in OM, we evaluated the expression of genes related to macrophage function during a complete episode of acute OM in the mouse caused by middle ear (ME) inoculation with Haemophilus influenzae. We also combined CCR2 deficiency with chlodronate liposome toxicity to deplete macrophages during OM. RESULTS: Macrophage genes were robustly regulated during OM. Moreover, macrophage depletion enhanced and prolonged the infiltration of neutrophils into the infected ME and increased the persistence of bacterial infection. CONCLUSIONS: The results illustrate the critical role played by macrophages in OM resolution.
Subject(s)
Bacterial Infections/etiology , Macrophages/immunology , Macrophages/metabolism , Neutrophil Infiltration/immunology , Otitis Media/etiology , Receptors, CCR2/deficiency , Animals , Bacterial Infections/metabolism , Bacterial Infections/pathology , Biomarkers , Disease Models, Animal , Disease Susceptibility , Gene Expression Profiling , Haemophilus Infections/etiology , Haemophilus Infections/pathology , Haemophilus influenzae/immunology , Mice , Mice, Knockout , Otitis Media/pathologyABSTRACT
Non-secretor status due to homozygosity for the common FUT2 variant c.461G>A (p.Trp154∗) is associated with either risk for autoimmune diseases or protection against viral diarrhea and HIV. We determined the role of FUT2 in otitis media susceptibility by obtaining DNA samples from 609 multi-ethnic families and simplex case subjects with otitis media. Exome and Sanger sequencing, linkage analysis, and Fisher exact and transmission disequilibrium tests (TDT) were performed. The common FUT2 c.604C>T (p.Arg202∗) variant co-segregates with otitis media in a Filipino pedigree (LOD = 4.0). Additionally, a rare variant, c.412C>T (p.Arg138Cys), is associated with recurrent/chronic otitis media in European-American children (p = 1.2 × 10-5) and US trios (TDT p = 0.01). The c.461G>A (p.Trp154∗) variant was also over-transmitted in US trios (TDT p = 0.01) and was associated with shifts in middle ear microbiota composition (PERMANOVA p < 10-7) and increased biodiversity. When all missense and nonsense variants identified in multi-ethnic US trios with CADD > 20 were combined, FUT2 variants were over-transmitted in trios (TDT p = 0.001). Fut2 is transiently upregulated in mouse middle ear after inoculation with non-typeable Haemophilus influenzae. Four FUT2 variants-namely p.Ala104Val, p.Arg138Cys, p.Trp154∗, and p.Arg202∗-reduced A antigen in mutant-transfected COS-7 cells, while the nonsense variants also reduced FUT2 protein levels. Common and rare FUT2 variants confer susceptibility to otitis media, likely by modifying the middle ear microbiome through regulation of A antigen levels in epithelial cells. Our families demonstrate marked intra-familial genetic heterogeneity, suggesting that multiple combinations of common and rare variants plus environmental factors influence the individual otitis media phenotype as a complex trait.
Subject(s)
Fucosyltransferases/genetics , Genetic Variation/genetics , Otitis Media/genetics , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Ear, Middle/microbiology , Exome/genetics , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Microbiota/physiology , Otitis Media/microbiology , Pedigree , Galactoside 2-alpha-L-fucosyltransferaseABSTRACT
Mucosal hyperplasia is common sequela of otitis media (OM), leading to the secretion of mucus and the recruitment of leukocytes. However, the pathogenic mechanisms underlying hyperplasia are not well defined. Here, we investigated the role of the AKT pathway in the development of middle mucosal hyperplasia using in vitro mucosal explants cultures and an in vivo rat model. The Akt inhibitor MK2206 treatment inhibited the growth of middle ear mucosal explants in a dose-dependent manner. In vivo, MK2206 also reduced mucosal hyperplasia. Unexpectedly, while PTEN is generally thought to act in opposition to AKT, the PTEN inhibitor BPV reduced mucosal explant growth in vitro. The results indicate that both AKT and PTEN are mediators of mucosal growth during OM, and could be potential therapeutic targets.
Subject(s)
Otitis Media/metabolism , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Disease Models, Animal , Female , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Hyperplasia/metabolism , Male , Mice , Mice, Inbred C57BL , Mucous Membrane/drug effects , Mucous Membrane/metabolism , Otitis Media/drug therapy , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiologyABSTRACT
BACKGROUND: CD44 is a multifunctional molecule that plays major roles in both leukocyte recruitment and tissue proliferation. Since mucosal hyperplasia and leukocyte infiltration of the middle ear cavity are major features of otitis media, we evaluated the role of CD44 in the pathophysiology and course of this disease in a mouse model of middle ear infection. Expression of genes related to CD44 function were evaluated using gene arrays in wild-type mice. The middle ears of mice deficient in CD44 were inoculated with non-typeable Haemophilus influenzae. Histopathology and bacterial clearance were compared to that seen in wild-type controls. RESULTS: We observed strong up-regulation of CD44 and of genes related to its role in leukocyte extravasation into the middle ear, during the course of acute otitis media. Mice deficient in CD44 exhibited reduced early mucosal hyperplasia and leukocyte recruitment, followed by delayed resolution of infection and persistent inflammation. CONCLUSIONS: CD44 plays an important role in OM pathogenesis by altering the mucosal growth and neutrophil enlistment. Targeted therapies based on CD44 could be useful adjuncts to the treatment of middle ear infections.
Subject(s)
Ear, Middle/immunology , Haemophilus Infections/immunology , Haemophilus influenzae/physiology , Hyaluronan Receptors/metabolism , Mucous Membrane/immunology , Neutrophils/immunology , Otitis Media/immunology , Animals , Cell Movement , Disease Models, Animal , Humans , Hyaluronan Receptors/genetics , Hyaluronic Acid/metabolism , Inflammation , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil InfiltrationABSTRACT
A major component of slowly reversible hearing loss which develops with sustained exposure to noise has been attributed to release of ATP in the cochlea activating P2X2 receptor (P2X2R) type ATP-gated ion channels. This purinergic humoral adaptation is thought to enable the highly sensitive hearing organ to maintain function with loud sound, protecting the ear from acoustic overstimulation. In the study that established this hearing adaptation mechanism as reported by Housley et al. (Proc Natl Acad Sci U S A 110:7494-7499, 2013), the activation kinetics were determined in mice from auditory brainstem response (ABR) threshold shifts with sustained noise presentation at time points beyond 10 min. The present study was designed to achieve finer resolution of the onset kinetics of purinergic hearing adaptation, and included the use of cubic (2f1-f2) distortion product otoacoustic emissions (DPOAEs) to probe whether the active mechanical outer hair cell 'cochlear amplifier' contributed to this process. We show that the ABR and DPOAE threshold shifts were largely complete within the first 7.5 min of moderate broadband noise (85 dB SPL) in wildtype C57Bl/6J mice. The ABR and DPOAE adaptation rates were both best fitted by a single exponential function with ~ 3 min time constants. ABR and DPOAE threshold shifts with this noise were minimal in mice null for the P2rx2 gene encoding the P2X2R. The findings demonstrate a considerably faster purinergic hearing adaptation to noise than previously appreciated. Moreover, they strongly implicate the outer hair cell as the site of action, as the DPOAEs stem from active cochlear electromotility.
Subject(s)
Adaptation, Physiological/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Hair Cells, Auditory, Outer/physiology , Otoacoustic Emissions, Spontaneous/physiology , Acoustic Stimulation , Animals , Mice , Mice, Inbred C57BL , NoiseABSTRACT
Inflammation is a complex biological response to harmful stimuli including infection, tissue damage, and toxins. Thus, it is not surprising that cochlear damage by noise includes an inflammatory component. One mechanism by which inflammation is generated by tissue damage is the activation of damage-associated molecular patterns (DAMPs). Many of the cellular receptors for DAMPS, including Toll-like receptors, NOD-like receptors, and DNA receptors, are also receptors for pathogens, and function in the innate immune system. DAMP receptors are known to be expressed by cochlear cells, and binding of molecules released by damaged cells to these receptors result in the activation of cell stress pathways. This leads to the generation of pro-inflammatory cytokines and chemokines that recruit pro-inflammatory leukocytes. Extensive evidence indicates pro-inflammatory cytokines including TNF alpha and interleukin 1 beta, and chemokines including CCL2, are induced in the cochlea after noise exposure. The recruitment of macrophages into the cochlea has also been demonstrated. These provide substrates for noise damage to be enhanced by inflammation. Evidence is provided by the effectiveness of anti-inflammatory drugs in ameliorating noise-induced hearing loss. Involvement of inflammation provides a wide variety of additional anti-inflammatory and pro-resolution agents as potential pharmacological interventions in noise-induced hearing loss.
Subject(s)
Anti-Inflammatory Agents/therapeutic use , Hearing Loss, Noise-Induced/immunology , Signal Transduction , Animals , Cytokines/genetics , Cytokines/metabolism , Hearing Loss, Noise-Induced/drug therapy , Humans , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolismABSTRACT
The mammalian inner ear (IE) subserves auditory and vestibular sensations via highly specialized cells and proteins. Sensory receptor hair cells (HCs) are necessary for transducing mechanical inputs and stimulating sensory neurons by using a host of known and as yet unknown protein machinery. To understand the protein composition of these unique postmitotic cells, in which irreversible protein degradation or damage can lead to impaired hearing and balance, we analyzed IE samples by tandem mass spectrometry to generate an unbiased, shotgun-proteomics view of protein identities and abundances. By using Pou4f3/eGFP-transgenic mice in which HCs express GFP driven by Pou4f3, we FACS purified a population of HCs to analyze and compare the HC proteome with other IE subproteomes from sensory epithelia and whole IE. We show that the mammalian HC proteome comprises hundreds of uniquely or highly expressed proteins. Our global proteomic analysis of purified HCs extends the existing HC transcriptome, revealing previously undetected gene products and isoform-specific protein expression. Comparison of our proteomic data with mouse and human databases of genetic auditory/vestibular impairments confirms the critical role of the HC proteome for normal IE function, providing a cell-specific pool of candidates for novel, important HC genes. Several proteins identified exclusively in HCs by proteomics and verified by immunohistochemistry map to human genetic deafness loci, potentially representing new deafness genes. SIGNIFICANCE STATEMENT: Hearing and balance rely on specialized sensory hair cells (HCs) in the inner ear (IE) to convey information about sound, acceleration, and orientation to the brain. Genetically and environmentally induced perturbations to HC proteins can result in deafness and severe imbalance. We used transgenic mice with GFP-expressing HCs, coupled with FACS sorting and tandem mass spectrometry, to define the most complete HC and IE proteome to date. We show that hundreds of proteins are uniquely identified or enriched in HCs, extending previous gene expression analyses to reveal novel HC proteins and isoforms. Importantly, deafness-linked proteins were significantly enriched in HCs, suggesting that this in-depth proteomic analysis of IE sensory cells may hold potential for deafness gene discovery.
Subject(s)
Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Hair Cells, Auditory, Inner/metabolism , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Proteomics , Amino Acid Sequence , Animals , Chromosome Mapping , Female , Hair Cells, Auditory, Inner/chemistry , Hearing Disorders/genetics , Hearing Disorders/pathology , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/chemistry , Tandem Mass Spectrometry , Transcription Factor Brn-3C/biosynthesis , Transcription Factor Brn-3C/genetics , Transcriptome , Vestibular Diseases/genetics , Vestibular Diseases/pathologyABSTRACT
We previously found CC chemokine ligand 3 (CCL3) to be a potent effector of inflammation during otitis media (OM): exogenous CCL3 rescues the OM phenotype of tumor necrosis factor-deficient mice and the function of macrophages deficient in several innate immune molecules. To further delineate the role of CCL3 in OM, we evaluated middle ear (ME) responses of ccl3-/-mice to nontypeable Haemophilus influenzae (NTHi). CCL chemokine gene expression was evaluated in wild-type (WT) mice during the complete course of acute OM. OM was induced in ccl3-/- and WT mice, and infection and inflammation were monitored for 21 days. Phagocytosis and killing of NTHi by macrophages were evaluated by an in vitro assay. The nasopharyngeal bacterial load was assessed in naive animals of both strains. Many CCL genes showed increased expression levels during acute OM, with CCL3 being the most upregulated, at levels 600-fold higher than the baseline. ccl3-/- deletion compromised ME bacterial clearance and prolonged mucosal hyperplasia. ME recruitment of leukocytes was delayed but persisted far longer than in WT mice. These events were linked to a decrease in the macrophage capacity for NTHi phagocytosis and increased nasopharyngeal bacterial loads in ccl3-/- mice. The generalized impairment in inflammatory cell recruitment was associated with compensatory changes in the expression profiles of CCL2, CCL7, and CCL12. CCL3 plays a significant role in the clearance of infection and resolution of inflammation and contributes to mucosal host defense of the nasopharyngeal niche, a reservoir for ME and upper respiratory infections. Therapies based on CCL3 could prove useful in treating or preventing persistent disease.
Subject(s)
Chemokine CCL3/immunology , Ear, Middle/immunology , Haemophilus Infections/immunology , Haemophilus influenzae/immunology , Nasopharynx/immunology , Otitis Media/immunology , Animals , Bacterial Load , Cell Movement , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Chemokine CCL3/deficiency , Chemokine CCL3/genetics , Chemokine CCL7/genetics , Chemokine CCL7/immunology , Disease Models, Animal , Ear, Middle/microbiology , Gene Expression Regulation , Haemophilus Infections/genetics , Haemophilus Infections/microbiology , Haemophilus Infections/pathology , Host-Pathogen Interactions , Leukocytes/immunology , Leukocytes/microbiology , Macrophages/immunology , Macrophages/microbiology , Mice , Mice, Knockout , Monocyte Chemoattractant Proteins/genetics , Monocyte Chemoattractant Proteins/immunology , Nasopharynx/microbiology , Otitis Media/genetics , Otitis Media/microbiology , Otitis Media/pathology , Phagocytosis , Signal TransductionABSTRACT
A fundamental requirement of cells is their ability to transduce and interpret their mechanical environment. This ability contributes to regulation of growth, differentiation and adaptation in many cell types. The intermediate filament (IF) system not only provides passive structural support to the cell, but recent evidence points to IF involvement in active biological processes such as signaling, mechanotransduction and gene regulation. However, the mechanisms that underlie these processes are not well known. Skeletal muscle cells provide a convenient system to understand IF function because the major muscle-specific IF, desmin, is expressed in high abundance and is highly organized. Here, we show that desmin plays both structural and regulatory roles in muscle cells by demonstrating that desmin is required for the maintenance of myofibrillar alignment, nuclear deformation, stress production and JNK-mediated stress sensing. Finite element modeling of the muscle IF system suggests that desmin immediately below the sarcolemma is the most functionally significant. This demonstration of biomechanical integration by the desmin IF system suggests that it plays an active biological role in muscle in addition to its accepted structural role.
Subject(s)
Desmin/metabolism , Intermediate Filaments/metabolism , Muscle, Skeletal/metabolism , Myofibrils/metabolism , Animals , Desmin/genetics , Humans , Intermediate Filaments/ultrastructure , Mechanotransduction, Cellular/genetics , Mice, Knockout , Muscle, Skeletal/ultrastructure , Myofibrils/ultrastructure , Sarcolemma/genetics , Sarcolemma/metabolism , Stress, MechanicalABSTRACT
Otitis media (OM) is a common disease in young children, accounting for more office visits and surgeries than any other pediatric condition. It is associated with an estimated cost of five billion dollars annually in the USA. Moreover, chronic and recurrent middle ear (ME) disease leads to hearing loss during critical periods of language acquisition and learning leading to delays in reaching developmental milestones and risking permanent damage to the ME and inner ear in severe cases. Therefore, research to understand the disease pathogenesis and identify new therapeutics is important. Although OM is a multifactorial disease, targeting the molecular mechanisms that drive inflammation and OM resolution is critical. In this review, we discuss the current evidence suggesting that innate immune receptors and effectors play key roles in OM by mediating both the ME inflammatory responses and recovery.
Subject(s)
Immunity, Innate/immunology , Inflammation/immunology , Otitis Media/immunology , Child , HumansABSTRACT
The otoprotective effects of OTO-104 were investigated both prior to and following acute acoustic trauma. Guinea pigs received a single intratympanic injection of OTO-104 and were assessed in a model of acute acoustic trauma. Doses of at least 2.0% OTO-104 offered significant protection against hearing loss induced by noise exposure when administered 1 day prior to trauma and up to 3 days thereafter. Otoprotection remained effective even with higher degrees of trauma. In contrast, the administration of a dexamethasone sodium phosphate solution did not protect against noise-induced hearing loss. Activation of the classical nuclear glucocorticoid and mineralocorticoid receptor pathways was required for otoprotection by OTO-104. The sustained exposure properties of OTO-104 were also superior to a steroid solution.
Subject(s)
Dexamethasone/pharmacology , Evoked Potentials, Auditory, Brain Stem/drug effects , Glucocorticoids/pharmacology , Hearing Loss, Noise-Induced/prevention & control , Hearing/drug effects , Animals , Dexamethasone/administration & dosage , Dexamethasone/analogs & derivatives , Disease Models, Animal , Female , Glucocorticoids/administration & dosage , Guinea Pigs , Hydrogel, Polyethylene Glycol Dimethacrylate , Injection, Intratympanic , PoloxamerABSTRACT
The sense of hearing is remarkable for its auditory dynamic range, which spans more than 10(12) in acoustic intensity. The mechanisms that enable the cochlea to transduce high sound levels without damage are of key interest, particularly with regard to the broad impact of industrial, military, and recreational auditory overstimulation on hearing disability. We show that ATP-gated ion channels assembled from P2X2 receptor subunits in the cochlea are necessary for the development of temporary threshold shift (TTS), evident in auditory brainstem response recordings as sound levels rise. In mice null for the P2RX2 gene (encoding the P2X2 receptor subunit), sustained 85-dB noise failed to elicit the TTS that wild-type (WT) mice developed. ATP released from the tissues of the cochlear partition with elevation of sound levels likely activates the broadly distributed P2X2 receptors on epithelial cells lining the endolymphatic compartment. This purinergic signaling is supported by significantly greater noise-induced suppression of distortion product otoacoustic emissions derived from outer hair cell transduction and decreased suprathreshold auditory brainstem response input/output gain in WT mice compared with P2RX2-null mice. At higher sound levels (≥95 dB), additional processes dominated TTS, and P2RX2-null mice were more vulnerable than WT mice to permanent hearing loss due to hair cell synapse disruption. P2RX2-null mice lacked ATP-gated conductance across the cochlear partition, including loss of ATP-gated inward current in hair cells. These data indicate that a significant component of TTS represents P2X2 receptor-dependent purinergic hearing adaptation that underpins the upper physiological range of hearing.
Subject(s)
Adaptation, Physiological/drug effects , Adenosine Triphosphate/pharmacology , Ion Channel Gating/drug effects , Ion Channels/metabolism , Sound , Animals , Auditory Threshold/drug effects , Cochlea/drug effects , Cochlea/metabolism , Cochlea/physiopathology , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Noise , Receptors, Purinergic P2X2/deficiencyABSTRACT
Age-related hearing loss and noise-induced hearing loss are major causes of human morbidity. Here we used genetics and functional studies to show that a shared cause of these disorders may be loss of function of the ATP-gated P2X(2) receptor (ligand-gated ion channel, purinergic receptor 2) that is expressed in sensory and supporting cells of the cochlea. Genomic analysis of dominantly inherited, progressive sensorineural hearing loss DFNA41 in a six-generation kindred revealed a rare heterozygous allele, P2RX2 c.178G > T (p.V60L), at chr12:133,196,029, which cosegregated with fully penetrant hearing loss in the index family, and also appeared in a second family with the same phenotype. The mutation was absent from more than 7,000 controls. P2RX2 p.V60L abolishes two hallmark features of P2X(2) receptors: ATP-evoked inward current response and ATP-stimulated macropore permeability, measured as loss of ATP-activated FM1-43 fluorescence labeling. Coexpression of mutant and WT P2X(2) receptor subunits significantly reduced ATP-activated membrane permeability. P2RX2-null mice developed severe progressive hearing loss, and their early exposure to continuous moderate noise led to high-frequency hearing loss as young adults. Similarly, among family members heterozygous for P2RX2 p.V60L, noise exposure exacerbated high-frequency hearing loss in young adulthood. Our results suggest that P2X(2) function is required for life-long normal hearing and for protection from exposure to noise.
Subject(s)
Hearing Loss, Noise-Induced/genetics , Hearing Loss, Sensorineural/genetics , Mutation, Missense , Receptors, Purinergic P2X2/genetics , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Disease Models, Animal , Evoked Potentials, Auditory , Female , Genes, Dominant , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/physiopathology , Hearing Loss, Sensorineural/etiology , Hearing Loss, Sensorineural/physiopathology , Heterozygote , Humans , Ion Channel Gating , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Pedigree , Penetrance , Receptors, Purinergic P2X2/deficiency , Receptors, Purinergic P2X2/physiology , Sequence Homology, Amino Acid , Young AdultABSTRACT
BACKGROUND: Otitis media is the most common disease of childhood, and represents an important health challenge to the 10-15% of children who experience chronic/recurrent middle ear infections. The middle ear undergoes extensive modifications during otitis media, potentially involving changes in the expression of many genes. Expression profiling offers an opportunity to discover novel genes and pathways involved in this common childhood disease. The middle ears of 320 WBxB6 F1 hybrid mice were inoculated with non-typeable Haemophilus influenzae (NTHi) or PBS (sham control). Two independent samples were generated for each time point and condition, from initiation of infection to resolution. RNA was profiled on Affymetrix mouse 430 2.0 whole-genome microarrays. RESULTS: Approximately 8% of the sampled transcripts defined the signature of acute NTHi-induced otitis media across time. Hierarchical clustering of signal intensities revealed several temporal gene clusters. Network and pathway enrichment analysis of these clusters identified sets of genes involved in activation of the innate immune response, negative regulation of immune response, changes in epithelial and stromal cell markers, and the recruitment/function of neutrophils and macrophages. We also identified key transcriptional regulators related to events in otitis media, which likely determine the expression of these gene clusters. A list of otitis media susceptibility genes, derived from genome-wide association and candidate gene studies, was significantly enriched during the early induction phase and the middle re-modeling phase of otitis but not in the resolution phase. Our results further indicate that positive versus negative regulation of inflammatory processes occur with highly similar kinetics during otitis media, underscoring the importance of anti-inflammatory responses in controlling pathogenesis. CONCLUSIONS: The results characterize the global gene response during otitis media and identify key signaling and transcription factor networks that control the defense of the middle ear against infection. These networks deserve further attention, as dysregulated immune defense and inflammatory responses may contribute to recurrent or chronic otitis in children.
Subject(s)
Ear, Middle/metabolism , Haemophilus Infections/genetics , Otitis Media/genetics , Transcriptome , Acute Disease , Animals , Disease Models, Animal , Haemophilus Infections/immunology , Haemophilus influenzae , Humans , Immunity, Innate , Inflammation/metabolism , Mice , Otitis Media/immunology , Signal TransductionABSTRACT
In the cochlea, Reissner's membrane separates the scala media endolymphatic compartment that sustains the positive endocochlear potential and ion composition necessary for sound transduction, from the scala vestibuli perilymphatic compartment. It is known that with sustained elevated sound levels, adenosine 5'-triphosphate (ATP) is released into the endolymph and ATP-gated ion channels on the epithelial cells lining the endolymphatic compartment shunt the electrochemical driving force, contributing to protective purinergic hearing adaptation. This study characterises the properties of epithelial cell P2X(2)-type ATP-activated membrane conductance in the mouse Reissner's membrane, which forms a substantial fraction of the scale media surface. The cells were found to express two isoforms (a and b) of the P2X(2) subunit arising from alternative splicing of the messenger RNA (mRNA) transcript that could contribute to the trimeric subunit assembly. The ATP-activated conductance demonstrated both immediate and delayed desensitisation consistent with incorporation of the combination of P2X(2) subunit isoforms. Activation by the ATP analogue 2meSATP had equipotency to ATP, whereas α,ß-meATP and adenosine 5'-diphosphate (ADP) were ineffective. Positive allosteric modulation of the P2X(2) channels by protons was profound. This native conductance was blocked by the P2X(2)-selective blocker pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) and the conductance was absent in these cells isolated from mice null for the P2rX2 gene encoding the P2X(2) receptor subunit. The activation and desensitisation properties of the Reissner's membrane epithelial cell ATP-gated P2X(2) channels likely contribute to the sensitivity and kinetics of purinergic control of the electrochemical driving force for sound transduction invoked by noise exposure.
Subject(s)
Adenosine Triphosphate/physiology , Cochlea/metabolism , Epithelial Cells/metabolism , Ion Channels/metabolism , Receptors, Purinergic P2X2/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Hearing , Ion Channels/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Purinergic P2X Receptor Antagonists/pharmacology , Pyridoxal Phosphate/analogs & derivatives , Pyridoxal Phosphate/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Purinergic P2X2/drug effects , Receptors, Purinergic P2X2/genetics , Thionucleotides/pharmacologyABSTRACT
BACKGROUND: Innate immunity and tissue proliferation play important roles in otitis media (OM), the most common disease of childhood. CJUN terminal kinase (JNK) is potentially involved in both processes. RESULTS: Genes involved in both innate immune and growth factor activation of JNK are upregulated during OM, while expression of both positive and negative JNK regulatory genes is altered. When compared to wildtypes (WTs), C57BL/6 mice deficient in JNK1 exhibit enhanced mucosal thickening, with delayed recovery, enhanced neutrophil recruitment early in OM, and delayed bacterial clearance. In contrast, JNK2-/- mice exhibit delayed mucosal hyperplasia that eventually exceeds that of WTs and is slow to recover, delayed recruitment of neutrophils, and failure of bacterial clearance. CONCLUSIONS: The results suggest that JNK1 and JNK2 play primarily opposing roles in mucosal hyperplasia and neutrophil recruitment early in OM. However, both isoforms are required for the normal resolution of middle ear infection.