Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Hum Brain Mapp ; 44(4): 1445-1455, 2023 03.
Article in English | MEDLINE | ID: mdl-36399515

ABSTRACT

Individual differences in the ability to process language have long been discussed. Much of the neural basis of these, however, is yet unknown. Here we investigated the relationship between long-range white matter connectivity of the brain, as revealed by diffusion tractography, and the ability to process syntactically complex sentences in the participants' native language as well as the improvement thereof by multiday training. We identified specific network motifs by singular value decomposition that indeed related white matter structural connectivity to individual language processing performance. First, for two such motifs, one in the left and one in the right hemisphere, their individual prevalence significantly predicted the individual language performance, suggesting an anatomical predisposition for the individual ability to process syntactically complex sentences. Both motifs comprise a number of cortical regions, but seem to be dominated by areas known for the involvement in working memory rather than the classical language network itself. Second, we identified another left hemispheric network motif, whose change of prevalence over the training period significantly correlated with the individual change in performance, thus reflecting training induced white matter plasticity. This motif comprises diverse cortical areas including regions known for their involvement in language processing, working memory and motor functions. The present findings suggest that individual differences in language processing and learning can be explained, in part, by individual differences in the brain's white matter structure. Brain structure may be a crucial factor to be considered when discussing variations in human cognitive performance, more generally.


Subject(s)
White Matter , Humans , White Matter/diagnostic imaging , Brain/diagnostic imaging , Learning , Language , Diffusion Tensor Imaging
2.
Psychol Med ; 53(12): 5488-5499, 2023 09.
Article in English | MEDLINE | ID: mdl-36043367

ABSTRACT

BACKGROUND: Repetitive negative thinking (RNT), a cognitive process that encompasses past (rumination) and future (worry) directed thoughts focusing on negative experiences and the self, is a transdiagnostic construct that is especially relevant for major depressive disorder (MDD). Severe RNT often occurs in individuals with severe levels of MDD, which makes it challenging to disambiguate the neural circuitry underlying RNT from depression severity. METHODS: We used a propensity score, i.e., a conditional probability of having high RNT given observed covariates to match high and low RNT individuals who are similar in the severity of depression, anxiety, and demographic characteristics. Of 148 MDD individuals, we matched high and low RNT groups (n = 50/group) and used a data-driven whole-brain voxel-to-voxel connectivity pattern analysis to investigate the resting-state functional connectivity differences between the groups. RESULTS: There was an association between RNT and connectivity in the bilateral superior temporal sulcus (STS), an important region for speech processing including inner speech. High relative to low RNT individuals showed greater connectivity between right STS and bilateral anterior insular cortex (AI), and between bilateral STS and left dorsolateral prefrontal cortex (DLPFC). Greater connectivity in those regions was specifically related to RNT but not to depression severity. CONCLUSIONS: RNT intensity is directly related to connectivity between STS and AI/DLPFC. This might be a mechanism underlying the role of RNT in perceptive, cognitive, speech, and emotional processing. Future investigations will need to determine whether modifying these connectivities could be a treatment target to reduce RNT.


Subject(s)
Depressive Disorder, Major , Emotional Regulation , Pessimism , Humans , Depressive Disorder, Major/psychology , Depression/psychology , Pessimism/psychology , Semantics , Surveys and Questionnaires , Anxiety/psychology
3.
Psychother Psychosom ; 92(2): 87-100, 2023.
Article in English | MEDLINE | ID: mdl-36630946

ABSTRACT

INTRODUCTION: Repetitive negative thinking (RNT) is a cognitive process focusing on self-relevant and negative experiences, leading to a poor prognosis of major depressive disorder (MDD). We previously identified that connectivity between the precuneus/posterior cingulate cortex (PCC) and right temporoparietal junction (rTPJ) was positively correlated with levels of RNT. OBJECTIVE: In this double-blind, randomized, sham-controlled, proof-of-concept trial, we employed real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) to delineate the neural processes that may be causally linked to RNT and could potentially become treatment targets for MDD. METHODS: MDD-affected individuals were assigned to either active (n = 20) or sham feedback group (n = 19). RNT was measured by the Ruminative Response Scale-brooding subscale (RRS-B) before and 1 week after the intervention. RESULTS: Individuals in the active but not in the sham group showed a significant reduction in the RRS-B; however, a greater reduction in the PCC-rTPJ connectivity was unrelated to a greater reduction in the RRS-B. Exploratory analyses revealed that a greater reduction in the retrosplenial cortex (RSC)-rTPJ connectivity yielded a more pronounced reduction in the RRS-B in the active but not in the sham group. CONCLUSIONS: RtfMRI-nf was effective in reducing RNT. Considering the underlying mechanism of rtfMIR-nf, the RSC and rTPJ could be part of a network (i.e., default mode network) that might collectively affect the intensity of RNT. Understanding the relationship between the functional organization of targeted neural changes and clinical metrics, such as RNT, has the potential to guide the development of mechanism-based treatment of MDD.


Subject(s)
Depressive Disorder, Major , Neurofeedback , Pessimism , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Neurofeedback/methods , Depression , Magnetic Resonance Imaging/methods
4.
J Neuropsychiatry Clin Neurosci ; 31(1): 25-36, 2019.
Article in English | MEDLINE | ID: mdl-30305005

ABSTRACT

Failure to recover from proactive semantic interference (frPSI) has been shown to be more sensitive than traditional cognitive measures in different populations with preclinical Alzheimer's disease. The authors sought to characterize the structural and amyloid in vivo correlates of frPSI in cognitively normal offspring of patients with late-onset Alzheimer's disease (O-LOAD), compared with individuals without a family history of neurodegenerative disorders (CS). The authors evaluated the LASSI-L, a test tapping frPSI and other types of semantic interference and delayed recall on the RAVLT, along with 3-T MRI volumetry and positron emission tomography Pittsburgh compound B, in 27 O-LOAD and 18 CS with equivalent age, sex, years of education, ethnicity, premorbid intelligence, and mood symptoms. Recovery from proactive semantic interference (frPSI) and RAVLT delayed recall were lower in O-LOAD cases. Structural correlates of both cognitive dimensions were different in CS and O-LOAD, involving brain regions concerned with autonomic, motor, and motivational control in the former, and regions traditionally implicated in Alzheimer's disease in the latter. Better recovery from retroactive semantic interference was associated with less amyloid load in the left temporal lobe in O-LOAD but not CS. In middle-aged cognitively normal individuals with one parent affected with LOAD, frPSI was impaired compared with persons without a family history of LOAD. The neuroimaging correlates of such cognitive measure in those with one parent with LOAD involve Alzheimer's-relevant brain regions even at a relatively young age.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/metabolism , Brain , Cognitive Dysfunction , Genetic Predisposition to Disease , Mental Recall/physiology , Adult , Age of Onset , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Aniline Compounds , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Male , Positron-Emission Tomography , Thiazoles , Young Adult
5.
Viruses ; 16(2)2024 02 09.
Article in English | MEDLINE | ID: mdl-38400050

ABSTRACT

The aim of this study was to identify the association between four selected inflammatory polymorphisms with the development of long-term post-COVID symptoms in subjects who had been hospitalized due to SARS-CoV-2 infection during the first wave of the pandemic. These polymorphisms were selected as they are associated with severe COVID-19 disease and cytokine storm, so they could be important to prognoses post-COVID. A total of 408 (48.5% female, age: 58.5 ± 14.0 years) previously hospitalized COVID-19 survivors participated. The three potential genotypes of the following four single-nucleotide polymorphisms, IL-6 rs1800796, IL-10 rs1800896, TNF-α rs1800629, and IFITM3 rs12252, were obtained from non-stimulated saliva samples of the participants. The participants were asked to self-report the presence of any post-COVID symptoms (defined as symptoms that had started no later than one month after SARS-CoV-2 acute infection) and whether the symptoms persisted at the time of the study. At the time of the study (mean: 15.6, SD: 5.6 months after discharge), 89.4% of patients reported at least one post-COVID symptom (mean number of symptoms: 3.0; SD: 1.7). Fatigue (69.3%), pain (40.9%), and memory loss (27.2%) were the most prevalent post-COVID symptoms in the total sample. Overall, no differences in the post-COVID symptoms depending on the IL-6 rs1800796, IL-10 rs1800896, TNF-α rs1800629, and IFITM3 rs12252 genotypes were seen. The four SNPs assessed, albeit having been previously associated with inflammation and COVID-19 severity, did not cause a predisposition to the development of post-COVID symptoms in the previously hospitalized COVID-19 survivors.


Subject(s)
COVID-19 , Tumor Necrosis Factor-alpha , Adult , Aged , Female , Humans , Male , Middle Aged , COVID-19/genetics , Interleukin-10/genetics , Interleukin-6/genetics , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Tumor Necrosis Factor-alpha/genetics
6.
Biol Psychiatry ; 94(8): 661-671, 2023 10 15.
Article in English | MEDLINE | ID: mdl-36965550

ABSTRACT

BACKGROUND: Repetitive negative thinking (RNT) is a frequent symptom of major depressive disorder (MDD) that is associated with poor outcomes and treatment resistance. While most studies on RNT have focused on structural and functional characteristics of gray matter, this study aimed to examine the association between white matter (WM) tracts and interindividual variability in RNT. METHODS: A probabilistic tractography approach was used to characterize differences in the size and anatomical trajectory of WM fibers traversing psychosurgery targets historically useful in the treatment of MDD (anterior capsulotomy, anterior cingulotomy, and subcaudate tractotomy) in patients with MDD and low (n = 53) or high (n = 52) RNT, and healthy control subjects (n = 54). MDD samples were propensity matched on depression and anxiety severity and demographics. RESULTS: WM tracts traversing left hemisphere targets and reaching the ventral anterior body of the corpus callosum (thus extending to contralateral regions) were larger in the high-RNT MDD group compared with low-RNT (effect size D = 0.27, p = .042) and healthy control (D = 0.23, p = .02) groups. MDD was associated with greater size of tracts that converge onto the right medial orbitofrontal cortex regardless of RNT intensity. Other RNT-nonspecific findings in MDD involved tracts reaching the left primary motor and right primary somatosensory cortices. CONCLUSIONS: This study provides the first evidence to our knowledge that WM connectivity patterns, which could become targets of intervention, differ between high- and low-RNT participants with MDD. These WM differences extend to circuits that are not specific to RNT, possibly subserving reward mechanisms and psychomotor activity.


Subject(s)
Depressive Disorder, Major , Pessimism , White Matter , Humans , White Matter/diagnostic imaging , Depressive Disorder, Major/surgery , Depression , Anxiety
7.
Schizophr Res ; 254: 42-53, 2023 04.
Article in English | MEDLINE | ID: mdl-36801513

ABSTRACT

Recent functional imaging studies in schizophrenia consistently report a disruption of brain connectivity. However, most of these studies analyze the brain connectivity during resting state. Since psychological stress is a major factor for the emergence of psychotic symptoms, we sought to characterize the brain connectivity reconfiguration induced by stress in schizophrenia. We tested the hypothesis that an alteration of the brain's integration-segregation dynamic could be the result of patients with schizophrenia facing psychological stress. To this end, we studied the modular organization and the reconfiguration of networks induced by a stress paradigm in forty subjects (twenty patients and twenty controls), thus analyzing the dynamics of the brain in terms of integration and segregation processes by using 3T-fMRI. Patients with schizophrenia did not show statistically significant differences during the control task compared with controls, but they showed an abnormal community structure during stress condition and an under-connected reconfiguration network with a reduction of hub nodes, suggesting a deficit of integration dynamic with a greater compromise of the right hemisphere. These results provide evidence that schizophrenia has a normal response to undemanding stimuli but shows a disruption of brain functional connectivity between key regions involved in stress response, potentially leading to altered functional brain dynamics by reducing integration capacity and showing deficits recruiting right hemisphere regions. This could in turn underlie the hyper-sensitivity to stress characteristic of schizophrenia.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Nerve Net , Brain , Brain Mapping , Magnetic Resonance Imaging/methods , Stress, Psychological/diagnostic imaging , Neural Pathways/diagnostic imaging
8.
Genes (Basel) ; 14(7)2023 07 10.
Article in English | MEDLINE | ID: mdl-37510324

ABSTRACT

The role of genetics as a predisposing factor related to an increased risk of developing long COVID symptomatology is under debate. The aim of the current secondary analysis was to identify the association between the Apolipoprotein E (ApoE) gene, a gene affecting cholesterol metabolism and previously associated with a higher risk of SARS-CoV-2 infection and COVID-19 severity, and the development of long COVID in a cohort of individuals who had been hospitalized by SARS-CoV-2 infection. Unstimulated whole saliva samples were collected from 287 previously hospitalized COVID-19 survivors. Three genotypes of the ApoE gene (ApoE ε2, ε3, ε4) were obtained based on the combination of ApoE rs429358 and ApoE rs7412 polymorphisms. Participants were asked to self-report the presence of any post-COVID symptom in a face-to-face interview at 17.8 ± 5.2 months after hospital discharge and medical records were obtained. Each participant reported 3.0 (1.9) post-COVID symptoms. Overall, no significant differences in long COVID symptoms were observed depending on the ApoE genotype (ApoE ε2, ApoE ε3, ApoE ε4). The presence of the ApoE ε4 genotype, albeit associated with a higher risk of SARS-CoV-2 infection and COVID-19 severity, did not appear to predispose for the presence of long COVID in our cohort of previously hospitalized COVID-19 survivors.


Subject(s)
Apolipoproteins E , COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , COVID-19/genetics , Genotype , Post-Acute COVID-19 Syndrome/genetics , SARS-CoV-2
9.
J Psychiatr Res ; 156: 237-244, 2022 12.
Article in English | MEDLINE | ID: mdl-36270063

ABSTRACT

Repetitive negative thinking (RNT) is a transdiagnostic symptom associated with poor outcomes in major depressive disorder (MDD). MDD is characterized by altered interoception, which has also been associated with poor outcomes. The present study investigated whether RNT is directly associated with altered interoceptive processing. Interoceptive awareness toward the heart and stomach was probed on the Visceral Interoceptive Attention (VIA) task with fMRI in MDD individuals who were propensity-matched on the severity of depression and anxiety symptoms and relevant demographics but different in RNT intensity (High RNT [H-RNT, n = 48] & Low RNT [L-RNT, n = 49]), and in matched healthy volunteers (HC, n = 27). Both H-RNT and L-RNT MDD individuals revealed reduced stomach interoceptive processing compared to HC in the left medial frontal region and insular cortex (H-RNT: ß = -1.04, L-RNT: ß = -0.97), perirhinal cortex (H-RNT: ß = -0.99, L-RNT: ß = -1.03), and caudate nucleus (H-RNT: ß = -1.06, L-RNT: ß = -0.89). However, H-RNT was associated with decreased right medial temporal lobe activity including the hippocampus and amygdala during stomach interoceptive trials (ß = -0.61) compared to L-RNT. Insular interoceptive processing was similar in H-RNT and L-RNT participants (ß = -0.07, p = 0.92). MDD individuals with high RNT exhibited altered gastric interoceptive responses in brain areas that are important for associating the information with specific contexts and emotions. Attenuated interoceptive processing may contribute to RNT generation, non-adaptive information processing, action selection, and thus poor treatment outcome.


Subject(s)
Depressive Disorder, Major , Pessimism , Humans , Depressive Disorder, Major/diagnostic imaging
10.
Genes (Basel) ; 13(8)2022 07 26.
Article in English | MEDLINE | ID: mdl-35893072

ABSTRACT

Objective: To investigate the association of different, selected pain polymorphisms with the presence of de novo long-COVID pain symptoms and to analyze the association between these polymorphisms with clinical, sensory-related, cognitive and psychological variables in COVID-19 survivors. Methods: Two hundred and ninety-three (n = 293, 49.5% female, mean age: 55.6 ± 12.9 years) previously hospitalized COVID-19 survivors participated. Three genotypes of the following single nucleotide polymorphisms (SNPs) were obtained from non-stimulated saliva: OPRM1 (rs1799971), COMT (rs4680), BDNF (rs6265), and HTR1B (rs6296) by polymerase chain reactions in all participants. Further, clinical (intensity/duration of pain), sensory-related (sensitization-associated symptoms, neuropathic pain features), psychological (anxiety or depressive levels, sleep quality), and cognitive (catastrophizing, kinesiophobia) variables were collected in those COVID-19 survivors suffering from post-COVID pain. Analyses were carried out to associate clinical features with genotype. Results: Participants were assessed 17.8 ± 5.2 months after hospitalization. One hundred and seventeen (39.9%) experienced post-COVID pain (particularly of musculoskeletal origin). The distributions of the genotype variants of any SNP were not significantly different between COVID-19 survivors with and without long-term post-COVID pain (all, p > 0.178). No differences in sensitization-associated symptoms, neuropathic pain features, catastrophizing, kinesiophobia levels, anxiety and depressive levels or sleep quality according to the genotype variant in any SNPs were found. No effect of gender was identified. Conclusion: The four SNPs generally associated with pain did not appear to predispose to the development of de novo long-COVID pain symptoms in previously hospitalized COVID-19 survivors. The SNPs were not involved in the phenotypic features of post-COVID pain either.


Subject(s)
COVID-19 , Neuralgia , Adult , Aged , COVID-19/complications , COVID-19/genetics , Female , Hospitalization , Humans , Male , Middle Aged , Neuralgia/genetics , Neuralgia/virology , Phenotype , Polymorphism, Single Nucleotide , Survivors , Post-Acute COVID-19 Syndrome
11.
Genes (Basel) ; 13(11)2022 10 24.
Article in English | MEDLINE | ID: mdl-36360172

ABSTRACT

The aim of the study was to identify the association between four selected COVID-19 polymorphisms of ACE2 and TMPRSS2 receptors genes with the presence of long-COVID symptomatology in COVID-19 survivors. These genes were selected as they associate with the entry of the SARS-CoV-2 virus into the cells, so polymorphisms could be important for the prognoses of long-COVID symptoms. Two hundred and ninety-three (n = 293, 49.5% female, mean age: 55.6 ± 12.9 years) individuals who had been previously hospitalized due to COVID-19 were included. Three potential genotypes of the following single nucleotide polymorphisms (SNPs) were obtained from non-stimulated saliva samples of participants: ACE2 (rs2285666), ACE2 (rs2074192), TMPRSS2 (rs12329760), TMPRSS2 (rs2070788). Participants were asked to self-report the presence of any post-COVID defined as a symptom that started no later than one month after SARS-CoV-2 acute infection and whether the symptom persisted at the time of the study. At the time of the study (mean: 17.8, SD: 5.2 months after hospital discharge), 87.7% patients reported at least one symptom. Fatigue (62.8%), pain (39.9%) or memory loss (32.1%) were the most prevalent post-COVID symptoms. Overall, no differences in long-COVID symptoms were dependent on ACE2 rs2285666, ACE2 rs2074192, TMPRSS2 rs12329760, or TMPRSS2 rs2070788 genotypes. The four SNPs assessed, albeit previously associated with COVID-19 severity, do not predispose for developing long-COVID symptoms in people who were previously hospitalized due to COVID-19 during the first wave of the pandemic.


Subject(s)
COVID-19 , Adult , Aged , Female , Humans , Male , Middle Aged , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Peptidyl-Dipeptidase A/genetics , Polymorphism, Single Nucleotide , SARS-CoV-2 , Serine Endopeptidases/genetics , Survivors , Post-Acute COVID-19 Syndrome
12.
J Psychiatr Res ; 123: 81-88, 2020 04.
Article in English | MEDLINE | ID: mdl-32044590

ABSTRACT

Prevention and early treatment strategies for Alzheimer's disease (AD) are hampered by the lack of research biomarkers. Neuropathological changes in the Locus Coeruleus (LC) are detected early in AD, and noradrenaline plays a neuroprotective role in LC projecting areas. We assessed functional connectivity (FC) of the brainstem in asymptomatic individuals at familial risk for AD hypothesizing that FC of the LC will be decreased in relation to not-at-risk individuals. Thirty-one offspring of patients with late-onset AD (O-LOAD) (22 females; mean age ± SD = 50.36 ± 8.32) and 28 healthy controls (HC) (20 females; mean age ± SD = 53.90 ± 8.44) underwent a neurocognitive evaluation and a resting-state functional magnetic resonance imaging acquisition. In FC analyses we evaluated whole-brain global connectivity of the brainstem area, and subsequently assessed seed-to-voxel FC patterns from regions showing between-group differences. O-LOAD individuals scored worse in neurocognitive measures of memory and overall functioning (pFDR<0.05). In imaging analyses, we observed that O-LOAD individuals showed decreased global connectivity in a cluster encompassing the left LC (peak = -4, -34, -32, pTFCE<0.05). Seed-to-voxel analyses revealed that this finding was largely explained by decreased connectivity between the LC and the cerebellar cortex. Moreover, FC between the LC and the left cerebellum correlated positively with delayed recall scores. FC between the LC and the cerebellar cortex is decreased in the healthy offspring of patients with LOAD, such connectivity measurements being associated with delayed memory scores. The assessment of FC between the LC and the cerebellum may serve as a biomarker of AD vulnerability.


Subject(s)
Alzheimer Disease , Adult , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Brain , Female , Humans , Locus Coeruleus , Magnetic Resonance Imaging , Parents
13.
J Psychiatr Res ; 122: 79-87, 2020 03.
Article in English | MEDLINE | ID: mdl-31931231

ABSTRACT

Tau accumulation affecting white matter tracts is an early neuropathological feature of late-onset Alzheimer's disease (LOAD). There is a need to ascertain methods for the detection of early LOAD features to help with disease prevention efforts. The microstructure of these tracts and anatomical brain connectivity can be assessed by analyzing diffusion MRI (dMRI) data. Considering that family history increases the risk of developing LOAD, we explored the microstructure of white matter through dMRI in 23 cognitively normal adults who are offspring of patients with Late-Onset Alzheimer's Disease (O-LOAD) and 22 control subjects (CS) without family history of AD. We also evaluated the relation of white matter microstructure metrics with cortical thickness, volumetry, in vivo amyloid deposition (with the help of PiB positron emission tomography -PiB-PET) and regional brain metabolism (as FDG-PET) measures. Finally we studied the association between cognitive performance and white matter microstructure metrics. O-LOAD exhibited lower fiber density and fractional anisotropy in the posterior portion of the corpus callosum and right fornix when compared to CS. Among O-LOAD, reduced fiber density was associated with lower amyloid deposition in the right hippocampus, and greater cortical thickness in the left precuneus, while higher mean diffusivity was related with greater cortical thickness of the right superior temporal gyrus. Additionally, compromised white matter microstructure was associated with poorer semantic fluency. In conclusion, white matter microstructure metrics may reveal early differences in O-LOAD by virtue of parental history of the disorder, when compared to CS without a family history of LOAD. We demonstrate that these differences are associated with lower fiber density in the posterior portion of the corpus callosum and the right fornix.


Subject(s)
Alzheimer Disease , White Matter , Adult , Alzheimer Disease/diagnostic imaging , Anisotropy , Brain/diagnostic imaging , Humans , Positron-Emission Tomography , White Matter/diagnostic imaging
15.
J Alzheimers Dis ; 60(3): 1183-1193, 2017.
Article in English | MEDLINE | ID: mdl-28984601

ABSTRACT

BACKGROUND: We have obtained previous evidence of limbic dysfunction in middle-aged, asymptomatic offspring of late-onset Alzheimer's disease (LOAD) patients, and failure to recover from proactive semantic interference has been shown to be a sensitive cognitive test in other groups at risk for LOAD. OBJECTIVE: To assess the effects of specific proactive semantic interference deficits as they relate to functional magnetic resonance imaging (fMRI) neocortical and limbic functional connectivity in middle aged offspring of individuals with LOAD (O-LOAD) and age-equivalent controls. METHODS: We examined 21 O-LOAD and 20 controls without family history of neurodegenerative disorders (CS) on traditional measures of cognitive functioning and the LASSI-L, a novel semantic interference test uniquely sensitive to the failure to recover from proactive interference (frPSI). Cognitive tests then were correlated to fMRI connectivity of seeds located in entorhinal cortex and anterodorsal thalamic nuclei among O-LOAD and CS participants. RESULTS: Relative to CS, O-LOAD participants evidenced lower connectivity between entorhinal cortex and orbitofrontal, anterior cingulate, and anterior temporal cortex. In the offspring of LOAD patients, LASSI-L measures of frPSI were inversely associated with connectivity between anterodorsal thalamus and contralateral posterior cingulate. Intrusions on the task related to frPSI were inversely correlated with a widespread connectivity network involving hippocampal, insular, posterior cingulate, and dorsolateral prefrontal cortices, along with precunei and anterior thalamus in this group. Different patterns of connectivity associated with frPSI were observed among controls. CONCLUSION: The present results suggest that both semantic interference deficits and connectivity abnormalities might reflect limbic circuit dysfunction as a very early clinical signature of LOAD pathology, as previously demonstrated for other limbic phenotypes, such as sleep and circadian alterations.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Cognition , Genetic Predisposition to Disease , Limbic System/physiopathology , Adult Children , Age of Onset , Alzheimer Disease/genetics , Alzheimer Disease/psychology , Brain Mapping , Cross-Sectional Studies , Female , Humans , Limbic System/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Neuropsychological Tests , Prodromal Symptoms , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL