Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Haematologica ; 107(1): 268-283, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-33241676

ABSTRACT

The gene CXXC5, encoding a Retinoid-Inducible Nuclear Factor (RINF), is located within a region at 5q31.2 commonly deleted in myelodysplastic syndrome (MDS) and adult acute myeloid leukemia (AML). RINF may act as an epigenetic regulator and has been proposed as a tumor suppressor in hematopoietic malignancies. However, functional studies in normal hematopoiesis are lacking, and its mechanism of action is unknow. Here, we evaluated the consequences of RINF silencing on cytokineinduced erythroid differentiation of human primary CD34+ progenitors. We found that RINF is expressed in immature erythroid cells and that RINF-knockdown accelerated erythropoietin-driven maturation, leading to a significant reduction (~45%) in the number of red blood cells (RBCs), without affecting cell viability. The phenotype induced by RINF-silencing was TGFß-dependent and mediated by SMAD7, a TGFß- signaling inhibitor. RINF upregulates SMAD7 expression by direct binding to its promoter and we found a close correlation between RINF and SMAD7 mRNA levels both in CD34+ cells isolated from bone marrow of healthy donors and MDS patients with del(5q). Importantly, RINF knockdown attenuated SMAD7 expression in primary cells and ectopic SMAD7 expression was sufficient to prevent the RINF knockdowndependent erythroid phenotype. Finally, RINF silencing affects 5'-hydroxymethylation of human erythroblasts, in agreement with its recently described role as a Tet2- anchoring platform in mouse. Altogether, our data bring insight into how the epigenetic factor RINF, as a transcriptional regulator of SMAD7, may fine-tune cell sensitivity to TGFß superfamily cytokines and thus play an important role in both normal and pathological erythropoiesis.


Subject(s)
DNA-Binding Proteins , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Smad7 Protein , Transcription Factors , Adult , Animals , Cell Cycle , Epigenesis, Genetic , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Myelodysplastic Syndromes/genetics , RNA, Messenger , Smad7 Protein/genetics
2.
Mol Cancer ; 17(1): 85, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703210

ABSTRACT

BACKGROUND: Since tumor growth requires reactivation of telomerase (hTERT), this enzyme is a challenging target for drug development. Therefore, it is of great interest to identify telomerase expression and activity regulators. Retinoids are well-known inducers of granulocytic maturation associated with hTERT repression in acute promyelocytic leukemia (APL) blasts. In a maturation-resistant APL cell line, we have previously identified a new pathway of retinoid-induced hTERT transcriptional repression independent of differentiation. Furthermore, we reported the isolation of a cell variant resistant to this repression. Those cell lines could serve as unique tools to identify new telomerase regulators. METHODS: Using a microarray approach we identified the long non-coding RNA, H19 as a potential candidate playing a role in telomerase regulation. Expression of H19, hTERT, and hTR were examined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Telomerase activity was quantified by quantitative telomeric repeats amplification protocol (qTRAP). In vitro and in vivo assays were performed to investigate H19 function on telomerase expression and activity. RESULTS: We showed both in retinoid-treated cell lines and in APL patient cells an inverse relationship between the expression of H19 and the expression and activity of hTERT. Exploring the mechanistic link between H19 and hTERT regulation, we showed that H19 is able to impede telomerase function by disruption of the hTERT-hTR interaction. CONCLUSIONS: This study identifies a new way of telomerase regulation through H19's involvement and thereby reveals a new function for this long non-coding RNA that can be targeted for therapeutic purpose.


Subject(s)
Leukemia, Promyelocytic, Acute/genetics , RNA, Long Noncoding/genetics , Telomerase/genetics , Tretinoin/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Down-Regulation , Gene Expression Regulation, Neoplastic/drug effects , Humans , Leukemia, Promyelocytic, Acute/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/metabolism , Telomerase/metabolism
3.
J Immunol ; 197(5): 1597-608, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27481844

ABSTRACT

Telomerase is a prototype-shared tumor Ag and represents an attractive target for anticancer immunotherapy. We have previously described promiscuous and immunogenic HLA-DR-restricted peptides derived from human telomerase reverse transcriptase (hTERT) and referred as universal cancer peptide (UCP). In nonsmall cell lung cancer, the presence of spontaneous UCP-specific CD4 T cell responses increases the survival of chemotherapy-responding patients. However, the precise mechanisms of hTERT's uptake, processing, and presentation on MHC-II molecules to stimulate CD4 T cells are poorly understood. In this work, by using well-characterized UCP-specific CD4 T cell clones, we showed that hTERT processing and presentation on MHC-II involve both classical endolysosomal and nonclassical cytosolic pathways. Furthermore, to our knowledge, we demonstrated for the first time that hTERT's internalization by dendritic cells requires its interaction with surface heparan sulfate proteoglycans. Altogether, our findings provide a novel mechanism of tumor-specific CD4 T cell activation and will be useful for the development of novel cancer immunotherapies that harness CD4 T cells.


Subject(s)
Antigen Presentation , Dendritic Cells/immunology , HLA-DR Antigens/immunology , Heparan Sulfate Proteoglycans/metabolism , Telomerase/metabolism , CD4-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Epitopes, T-Lymphocyte/immunology , Humans , Immunotherapy , Lymphocyte Activation , Monocytes , Peptides/metabolism , Telomerase/immunology
4.
Int J Mol Sci ; 19(7)2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29970863

ABSTRACT

It is suggested that several compounds, including G-quadruplex ligands, can target telomeres, inducing their uncapping and, ultimately, cell death. However, it has never been demonstrated whether such ligands can bind directly and quantitatively to telomeres. Here, we employed the property of platinum and platinum-G-quadruplex complexes to target G-rich sequences to investigate and quantify their covalent binding to telomeres. Using inductively coupled plasma mass spectrometry, surprisingly, we found that, in cellulo, in the presence of cisplatin, a di-functional platinum complex, telomeric DNA was platinated 13-times less than genomic DNA in cellulo, as compared to in vitro data. On the contrary, the amount of mono-functional platinum complexes (Pt-ttpy and Pt-tpy) bound either to telomeric or to genomic DNA was similar and occurred in a G-quadruplex independent-manner. Importantly, the quantification revealed that the low level of cisplatin bound to telomeric DNA could not be the direct physical cause of TRF2 displacement from telomeres. Altogether, our data suggest that platinum complexes can affect telomeres both directly and indirectly.


Subject(s)
Cisplatin/chemistry , G-Quadruplexes , Platinum/chemistry , Molecular Structure , Telomere/chemistry
5.
Chem Res Toxicol ; 30(8): 1629-1640, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28657713

ABSTRACT

Telomeres protect the ends of chromosomes against illegitimate recombination and repair. They can be targets for G-quadruplex ligands and platinum complexes due to their repeated G-rich sequences. Protection of telomeres is ensured by a complex of six proteins, including TRF2, which inhibits the DNA damage response pathway. We analyzed telomere modifications induced in cancer cells by the experimental hybrid platinum complex, Pt-MPQ, comprising both an ethylene diamine monofunctional platinum complex and a G-quadruplex recognition moiety (MPQ). Pt-MPQ promotes the displacement of two telomeric proteins (TRF2 and TRF1) from telomeres, as well as the formation of telomere damage and telomere sister losses, whereas the control compound MPQ does not. This suggests that the platinum moiety potentiates the targeting of the G-quadruplex ligand to telomeres, opening a new perspective for telomere biology and anticancer therapy. Interestingly, the chemotherapy drug cisplatin, which has no specific affinity for G-quadruplex structures, partially induces the TRF2 delocalization from telomeres but produces less telomeric DNA damage, suggesting that this TRF2 displacement could be independent of G-quadruplex recognition.


Subject(s)
Coordination Complexes/toxicity , G-Quadruplexes/drug effects , Platinum/chemistry , Telomere/drug effects , Acridines/toxicity , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Proliferation/drug effects , Cisplatin/toxicity , DNA Damage/drug effects , Humans , Ligands , Microscopy, Fluorescence , Organoplatinum Compounds/toxicity , Telomere/metabolism , Telomere Shortening/drug effects , Telomeric Repeat Binding Protein 2/metabolism
6.
Nucleic Acids Res ; 43(15): e99, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-25958399

ABSTRACT

Telomerase is the enzyme that maintains the length of telomeres. It is minimally constituted of two components: a core reverse transcriptase protein (hTERT) and an RNA (hTR). Despite its significance as an almost universal cancer target, the understanding of the structure of telomerase and the optimization of specific inhibitors have been hampered by the limited amount of enzyme available. Here, we present a breakthrough method to produce unprecedented amounts of recombinant hTERT and to reconstitute human telomerase with purified components. This system provides a decisive tool to identify regulators of the assembly of this ribonucleoprotein complex. It also enables the large-scale screening of small-molecules capable to interfere with telomerase assembly. Indeed, it has allowed us to identify a compound that inhibits telomerase activity when added prior to the assembly of the enzyme, while it has no effect on an already assembled telomerase. Therefore, the novel system presented here may accelerate the understanding of human telomerase assembly and facilitate the discovery of potent and mechanistically unique inhibitors.


Subject(s)
Telomerase/biosynthesis , Acridines/chemistry , Acridines/pharmacology , Genetic Techniques , HEK293 Cells , Humans , Niacinamide/analogs & derivatives , RNA/chemistry , RNA/metabolism , RNA Folding , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Small Molecule Libraries , Structure-Activity Relationship , Telomerase/antagonists & inhibitors , Telomerase/chemistry , Telomerase/genetics , Telomerase/metabolism , Thiazoles , Trisaccharides/chemistry , Trisaccharides/pharmacology
7.
Mol Pharmacol ; 88(3): 469-76, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26104548

ABSTRACT

The transcription factor c-Myc regulates numerous target genes that are important for multiple cellular processes such as cell growth and differentiation. It is commonly deregulated in leukemia. Acute promyelocytic leukemia (APL) is characterized by a blockade of granulocytic differentiation at the promyelocyte stage. Despite the great success of all-trans retinoic acid (ATRA)-based therapy, which results in a clinical remission by inducing promyelocyte maturation, a significant number of patients relapse due to the development of ATRA resistance. A significant role has been ascribed to the cAMP/cAMP-dependent protein kinase A (PKA) signaling pathway in retinoid treatment since PKA activation is able to restore differentiation in some ATRA-resistant cells and eradicate leukemia-initiating cells in vivo. In this study, using NB4 APL cell variants resistant to ATRA-induced differentiation, we reveal distinct functional roles of the two PKA isozymes, PKA type I (PKA-I) and PKA-type II (PKA-II), on the steady-state level of c-Myc protein, providing a likely mechanism by which cAMP-elevating agents can restore differentiation in ATRA maturation-resistant APL cells. Therefore, both the inhibition of c-Myc activity and the PKA-I/PKA-II ratio should be taken into account if cAMP-based therapy is considered in the clinical management of APL.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Cell Line , Humans , Isoenzymes/metabolism , Leukemia, Promyelocytic, Acute/metabolism , Protein Stability
8.
Int J Cancer ; 136(7): 1546-58, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25175359

ABSTRACT

Glioblastoma multiforme is the most aggressive primary tumor of the central nervous system. Glioma stem cells (GSCs), a small population of tumor cells with stem-like properties, are supposedly responsible for glioblastoma multiforme relapse after current therapies. In approximately thirty percent of glioblastoma multiforme tumors, telomeres are not maintained by telomerase but through an alternative mechanism, termed alternative lengthening of telomere (ALT), suggesting potential interest in developing specific therapeutic strategies. However, no preclinical model of ALT glioma was available until the isolation of TG20 cells from a human ALT glioma. Herein, we show that TG20 cells exhibit a high level of telomeric recombination but a stable karyotype, indicating that their telomeres retain their protective function against chromosomal instability. TG20 cells possess all of the characteristic features of GSCs: the expression of neural stem cell markers, the generation of intracerebral tumors in NOD-SCID-IL2Rγ (NSG) mice as well as in nude mice, and the ability to sustain serial intracerebral transplantations without expressing telomerase, demonstrating the stability of the ALT phenotype in vivo. Furthermore, we also demonstrate that 360B, a G-quadruplex ligand of the pyridine derivative series that impairs telomere replication and mitotic progression in cancer cells, prevents the development of TG20 tumors. Together, our results show that intracerebral grafts of TG20 cells in immunodeficient mice constitute an efficient preclinical model of ALT glioblastoma multiforme and that G-quadruplex ligands are a potential therapy for this specific type of tumor.


Subject(s)
Glioma/genetics , Telomere/genetics , Adult , Animals , Cell Line, Tumor , DNA Methylation , Disease Models, Animal , G-Quadruplexes , Gene Expression Regulation , Glioma/metabolism , Heterografts , Humans , Interleukin Receptor Common gamma Subunit/genetics , Ligands , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Phenotype , Sister Chromatid Exchange , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism , Telomere Homeostasis
9.
Mol Pharmacol ; 83(5): 1057-65, 2013 May.
Article in English | MEDLINE | ID: mdl-23455313

ABSTRACT

Acute promyelocytic leukemia (APL) is characterized by granulopoietic differentiation arrest at the promyelocytic stage. In most cases, this defect can be overcome by treatment with all-trans-retinoic acid (ATRA), leading to complete clinical remission. Cyclic AMP signaling has a key role in retinoid treatment efficacy: it enhances ATRA-induced maturation in ATRA-sensitive APL cells (including NB4 cells) and restores it in some ATRA-resistant cells (including NB4-LR1 cells). We show that the two cell types express identical levels of the Cα catalytic subunit and comparable global cAMP-dependent protein kinase A (PKA) enzyme activity. However, the maturation-resistant NB4-LR1 cells have a PKA isozyme switch: compared with the NB4 cells, they have decreased content of the juxtanuclearly located PKA regulatory subunit IIα and PKA regulatory subunit IIß, and a compensatory increase of the generally cytoplasmically distributed PKA-RIα. Furthermore, the PKA regulatory subunit II exists mainly in the less cAMP-responsive nonautophosphorylated state in the NB4-LR1 cells. By the use of isozyme-specific cAMP analog pairs, we show that both PKA-I and PKA-II must be activated to achieve maturation in NB4-LR1 as well as NB4 cells. Therefore, special attention should be paid to activating not only PKA-I but also PKA-II in attempts to enhance ATRA-induced APL maturation in a clinical setting.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclic AMP-Dependent Protein Kinase Type II/metabolism , Cyclic AMP-Dependent Protein Kinase Type I/metabolism , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Tretinoin/pharmacology , Cell Differentiation/drug effects , Cell Line, Tumor , Cyclic AMP/metabolism , Cytoplasm/drug effects , Cytoplasm/metabolism , Humans , Isoenzymes/metabolism , Leukemia, Promyelocytic, Acute/enzymology
10.
Biomedicines ; 10(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35327497

ABSTRACT

Telomerase reactivation is responsible for telomere preservation in about 90% of cancers, providing cancer cells an indefinite proliferating potential. Telomerase consists of at least two main subunits: a catalytic reverse transcriptase protein (hTERT) and an RNA template subunit. Strategies to inhibit hTERT expression seem promising for cancer treatment. Previous works showed that all-trans retinoic acid (ATRA) induces hTERT repression in acute promyelocytic leukemia cells, resulting in their death. Here, we investigated the effects of ATRA in a subset of breast cancer cell lines. The mutational status of hTERT promoter and the methylation patterns at a single CpG resolution were assessed. We observed an inverse relationship between hTERT expression after ATRA treatment and the methylation level of a specific CpG at chr5: 1,300,438 in a region of hTERT gene at -5 kb of the transcription initiation site. This observation highlighted the significance of this region, whose methylation profile could represent a promising biomarker to predict the sensitivity to ATRA-induced hTERT repression in specific breast cancer subtypes. As hTERT repression promotes drug-induced cell death, checking the methylation status of this unique region and the specific CpG included can help in decision-making to include ATRA in combination therapy and contributes to a better clinical outcome.

11.
Mol Oncol ; 16(9): 1931-1946, 2022 05.
Article in English | MEDLINE | ID: mdl-33715271

ABSTRACT

Cutaneous T-cell lymphomas (CTCLs) are telomerase-positive tumors expressing hTERT, although neither gene rearrangement/amplification nor promoter hotspot mutations could explain the hTERT re-expression. As the hTERT promoter is rich in CpG, we investigated the contribution of epigenetic mechanisms in its re-expression. We analyzed hTERT promoter methylation status in CTCL cells compared with healthy cells. Gene-specific methylation analyses revealed a common methylation pattern exclusively in tumor cells. This methylation pattern encompassed a hypermethylated distal region from -650 to -150 bp and a hypomethylated proximal region from -150 to +150 bp. Interestingly, the hypermethylated region matches with the recently named TERT hypermethylated oncogenic region (THOR). THOR has been associated with telomerase reactivation in many cancers, but it has so far not been reported in cutaneous lymphomas. Additionally, we assessed the effect of THOR on two histone deacetylase inhibitors (HDACi), romidepsin and vorinostat, both approved for CTCL treatment and a DNA methyltransferase inhibitor (DNMTi) 5-azacytidine, unapproved for CTCL. Contrary to our expectations, the findings reported herein revealed that THOR methylation is relatively stable under these epigenetic drugs' pressure, whereas these drugs reduced the hTERT gene expression.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Telomerase , DNA Methylation/genetics , Epigenesis, Genetic , Humans , Lymphoma, T-Cell, Cutaneous/genetics , Promoter Regions, Genetic/genetics , Telomerase/genetics , Telomerase/metabolism
12.
Blood ; 113(14): 3172-81, 2009 Apr 02.
Article in English | MEDLINE | ID: mdl-19182210

ABSTRACT

Retinoids triggers differentiation of acute promyelocytic leukemia (APL) blasts by transcriptional regulation of myeloid regulatory genes. Using a microarray approach, we have identified a novel retinoid-responsive gene (CXXC5) encoding a nuclear factor, retinoid-inducible nuclear factor (RINF), that contains a CXXC-type zinc-finger motif. RINF expression correlates with retinoid-induced differentiation of leukemic cells and with cytokine-induced myelopoiesis of normal CD34(+) progenitors. Furthermore, short hairpin RNA (shRNA) interference suggests for this gene a regulatory function in both normal and tumoral myelopoiesis. Interestingly, RINF localizes to 5q31.3, a small region often deleted in myeloid leukemia (acute myeloid leukemia [AML]/myelodysplasia [MDS]) and suspected to harbor one or several tumor suppressor gene.


Subject(s)
Carrier Proteins/physiology , Hematologic Neoplasms/genetics , Intracellular Signaling Peptides and Proteins/physiology , Myelopoiesis/genetics , Amino Acid Sequence , Carrier Proteins/genetics , DNA-Binding Proteins , Gene Expression Profiling , Gene Expression Regulation/drug effects , Granulocyte Precursor Cells/drug effects , Granulocyte Precursor Cells/physiology , HL-60 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , K562 Cells , Models, Biological , Molecular Sequence Data , Myelopoiesis/drug effects , Oligonucleotide Array Sequence Analysis , Sequence Homology, Amino Acid , Transcription Factors , Tretinoin/pharmacology , Tumor Cells, Cultured
13.
Biochim Biophys Acta ; 1792(4): 229-39, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19419697

ABSTRACT

Human telomerase is a nuclear ribonucleoprotein enzyme complex that catalyzes the synthesis and extension of telomeric DNA. This enzyme is highly expressed and active in most malignant tumors while it is usually not or transiently detectable in normal somatic cells, suggesting that it plays an important role in cellular immortalization and tumorigenesis. As most leukemic cells are generally telomerase-positive and have often shortened telomeres, our understanding of how telomerase is deregulated in these diseases could help to define novel therapies targeting the telomere/telomerase complex. Nonetheless, considering that normal hematopoietic stem cells and some of their progeny do express a functional telomerase, it is tempting to consider such an activity in leukemias as a sustained stemness feature and important to understand how telomere length and telomerase activity are regulated in the various forms of leukemias.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Gene Expression Regulation, Leukemic , Gene Expression Regulation, Neoplastic , Hematologic Neoplasms/enzymology , Leukemia/enzymology , Neoplasm Proteins/biosynthesis , Telomerase/biosynthesis , Animals , DNA, Neoplasm/metabolism , Hematologic Neoplasms/drug therapy , Humans , Neoplasm Proteins/antagonists & inhibitors , Telomerase/antagonists & inhibitors , Telomere/metabolism
14.
Sci Rep ; 10(1): 22228, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335214

ABSTRACT

Breast cancer is the most common cancer in women worldwide. Minimally invasive percutaneous image-guided biopsies are the current cornerstone in the diagnosis of breast lesions detected on mammography/ultrasonography/MRI or palpable clinically. However, apparently benign breast disease seen on benign biopsies is a limiting factor for diagnosis and a risk factor of breast cancer especially in the high-risk category patients. Hypothesizing that molecular changes often occur before morphological variations, the levels of the LncRNA H19 were measured in anonymous tissues obtained from 79 women's image guided breast biopsies, and correlated with cancer progression and aggressiveness. Using a double-blinded approach, H19 might be attributed an interesting role of a more sensitive biomarker in core breast biopsies, independently of the radiological/clinical classification and distant from the clinical management. We established different thresholds for H19 levels in normal versus proliferative, versus malignant tissues. Additionnally, H19 could act as an intra-group risk marker categorizing the biopsies in normal versus benign, versus precancerous breast tissue, and as a prognostic factor in cancerous lesions discriminating aggressive versus nonaggressive lesions. Our study suggests that the lncRNA H19 could be a potential marker for breast cancer diagnosis, prognosis and risk management.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , RNA, Long Noncoding , Cell Line, Tumor , Disease Susceptibility , Female , Fibrocystic Breast Disease , Gene Expression Regulation, Neoplastic , Humans , Lebanon , Mammography , Neoplasm Grading , Neoplasm Staging , Prognosis , Risk Factors
15.
Mol Oncol ; 14(6): 1310-1326, 2020 06.
Article in English | MEDLINE | ID: mdl-32239597

ABSTRACT

Telomerase (hTERT) reactivation and sustained expression is a key event in the process of cellular transformation. Therefore, the identification of the mechanisms regulating hTERT expression is of great interest for the development of new anticancer therapies. Although the epigenetic state of hTERT gene promoter is important, we still lack a clear understanding of the mechanisms by which epigenetic changes affect hTERT expression. Retinoids are well-known inducers of granulocytic maturation in acute promyelocytic leukemia (APL). We have previously shown that retinoids repressed hTERT expression in the absence of maturation leading to growth arrest and cell death. Exploring the mechanisms of this repression, we showed that transcription factor binding was dependent on the epigenetic status of hTERT promoter. In the present study, we used APL cells lines and publicly available datasets from APL patients to further investigate the integrated epigenetic events that promote hTERT promoter transition from its silent to its active state, and inversely. We showed, in APL patients, that the methylation of the distal domain of hTERT core promoter was altered and correlated with the outcome of the disease. Further studies combining complementary approaches carried out on APL cell lines highlighted the significance of a domain outside the minimal promoter, localized around 5 kb upstream from the transcription start site, in activating hTERT. This domain is characterized by DNA hypomethylation and H3K4Me3 deposition. Our findings suggest a cooperative interplay between hTERT promoter methylation, chromatin accessibility, and histone modifications that force the revisiting of previously proposed concepts regarding hTERT epigenetic regulation. They represent, therefore, a major advance in predicting sensitivity to retinoid-induced hTERT repression and, more generally, in the potential development of therapies targeting hTERT expression in cancers.


Subject(s)
DNA Methylation/genetics , Gene Expression Regulation, Leukemic , Histone Code/genetics , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Telomerase/genetics , Tretinoin/therapeutic use , Cell Line, Tumor , Chromatin/metabolism , Cluster Analysis , CpG Islands/genetics , Epigenesis, Genetic/drug effects , Genetic Loci , Genome, Human , Humans , Nucleosomes/drug effects , Nucleosomes/metabolism , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Telomerase/metabolism , Tretinoin/pharmacology
16.
Front Cell Dev Biol ; 7: 332, 2019.
Article in English | MEDLINE | ID: mdl-31911897

ABSTRACT

Telomerase plays a critical role in stem cell function and tissue regeneration that depends on its ability to elongate telomeres. For nearly two decades, it turned out that TERT regulates a broad spectrum of functions including signal transduction, gene expression regulation, and protection against oxidative damage that are independent of its telomere elongation activity. These conclusions that were mainly obtained in cell lines overexpressing telomerase were further strengthened by in vivo models of ectopic expression of telomerase or models of G1 TERT knockout mice without detectable telomere dysfunction. However, the later models were questioned due to the presence of aberrantly shortened telomere in the germline of the parents TERT+/- that were used to create the G1 TERT -/- mice. The physiological relevance of the functions associated with overexpressed telomerase raised also some concerns due to artifactual situations and localizations and complications to quantify the level of TERT. Another concern with non-canonical functions of TERT was the difficulty to separate a direct TERT-related function from secondary effects. Despite these concerns, more and more evidence accumulates for non-canonical roles of telomerase that are non-obligatory extra-telomeric. Here, we review these non-canonical roles of the TERT subunit of telomerase. Also, we emphasize recent results that link TERT to mitochondria and protection to reactive oxygen species suggesting a protective role of TERT in neurons. Throughout this review, we dissect some controversies regarding the non-canonical functions of telomerase and provide some insights to explain these discrepancies. Finally, we discuss the importance of understanding these alternative functions of telomerase for the development of anticancer strategies.

17.
Cancer Lett ; 464: 5-14, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31404614

ABSTRACT

The number of clinical protocols testing combined therapies including immune check-point inhibitors and platinum salts is currently increasing in lung cancer treatment, however preclinical studies and rationale are often lacking. Here, we evaluated the impact of cisplatin treatment on PD-L1 expression analyzing the clinicopathological characteristics of patients who received cisplatin-based neoadjuvant chemotherapy followed by surgery and showed that cisplatin-based induction treatment significantly increased PD-L1 staining in both tumor and immune cells from the microenvironment. Twenty-two patients exhibited positive PD-L1 staining variation after neoadjuvant chemotherapy; including 9 (23.1%) patients switching from <50% to ≥50% of stained tumor-cells. We also confirmed the up-regulation of PD-L1 by cisplatin, at both RNA and protein levels, in nude and immunocompetent mice bearing tumors grafted with A549, LNM-R, or LLC1 lung cancer cell lines. The combined administration of anti-PD-L1 antibodies (3 mg/kg) and cisplatin (1 mg/kg) to mice harboring lung carcinoma significantly reduced tumor growth compared to single agent treatments and controls. Overall, these results suggest that cisplatin treatment could synergize with PD-1/PD-L1 blockade to increase the clinical response, in particular through early and sustainable enhancement of PD-L1 expression.


Subject(s)
Antineoplastic Agents, Immunological/administration & dosage , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/administration & dosage , Lung Neoplasms/drug therapy , A549 Cells , Aged , Animals , Antineoplastic Agents, Immunological/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cisplatin/pharmacology , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lymphatic Metastasis , Male , Mice , Middle Aged , Neoadjuvant Therapy , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
18.
Cancer Lett ; 444: 147-161, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30583074

ABSTRACT

Overall survival of patients with metastatic non-small cell lung cancer (NSCLC) has significantly improved with platinum-based salt treatments and recently with targeted therapies and immunotherapies. However, treatment failure occurs due to acquired or emerging tumor resistance. We developed a monoclonal antibody against the proform of neurotensin (LF-NTS mAb) that alters the homeostasis of tumors overexpressing NTSR1. Neurotensin is frequently overexpressed along with its high affinity receptor (NTSR1) in tumors from epithelial origins. This ligand/receptor complex contributes to the progression of many tumor types by activation of the cellular effects involved in tumor progression (proliferation, survival, migration, and invasion). We demonstrate that LF-NTS mAb operates on the plasticity of tumor cells overexpressing NTSR1 and lowers their aggressiveness. The mAb enables the restoration of platinum-based therapies responsiveness, while also decreasing metastatic processes. Efficacy dosage with long-term treatment showed no obvious adverse events, while demonstrating improvement in the performance status. Our data suggests that LF-NTS mAb is an ideal candidate to be safely added to the conventional standard of care in order to improve its efficacy.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Antibodies, Monoclonal/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Neurotensin/antagonists & inhibitors , Receptors, Neurotensin/antagonists & inhibitors , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Female , Follow-Up Studies , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Neurotensin/immunology , Neurotensin/metabolism , Prognosis , Receptors, Neurotensin/immunology , Receptors, Neurotensin/metabolism , Retrospective Studies , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
Cancer Lett ; 388: 73-84, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27914862

ABSTRACT

Hepatocellular carcinoma (HCC) is the third leading cause of death from cancer due to the combination of late diagnosis and a lack of curative treatments. The identification of factors which promote tumor aggressiveness, and those that predict treatment responses, are a means to optimize the management of HCC patients. The complex of Neurotensin (NTS) and its high affinity receptor (NTSR1) has been shown to induce tumor growth and metastasis process in various cancers. In this paper, we propose that NTS and NTSR1 can assist in the management of HCC. Concomitant expression of NTS/NTSR1 was correlated with poor prognosis and found in 50% of HCC patients. We show that NTSR1 expression was positively correlated with the alteration of the Wnt/ß-catenin pathway. Its activation creates EGFR driver activation which consequently enhances tumor progression, and sensitizes HCC tumor cells to TKI, such as sorafenib. The NTS/NTSR1 complex is a potential drug target for HCC, because it is an upstream regulator in the chain of cellular events involved in HCC progression. It could also be used as a theranostic biomarker for sorafenib to improve the HCC patient management.


Subject(s)
Antineoplastic Agents/therapeutic use , ErbB Receptors/genetics , Erlotinib Hydrochloride/therapeutic use , Neurotensin/metabolism , Niacinamide/analogs & derivatives , Phenylurea Compounds/therapeutic use , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/pathology , Disease Progression , Erlotinib Hydrochloride/pharmacology , Humans , Liver Neoplasms/pathology , Niacinamide/pharmacology , Niacinamide/therapeutic use , Phenylurea Compounds/pharmacology , Prognosis , Sorafenib , Transfection
20.
Clin Cancer Res ; 23(21): 6516-6528, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28790113

ABSTRACT

Purpose: The high affinity receptor 1 (NTSR1) and its agonist, neurotensin (NTS), are correlated with tumor cell aggressiveness in most solid tumors. As chemoresistance and tumor aggressiveness are often related, we decided to study the role of the NTSR1 complex within platinum-based chemotherapy responses. In an ovarian model, we studied carboplatin because it is the main standard of care for ovarian cancer.Experimental Design: Experimental tumors and in vitro studies were performed using SKOV3 and A2780 cells treated with carboplatin, with or without a very specific NTSR1 antagonist, SR48692. We measured the effects of these treatments on cell apoptosis and apoptosis-related proteins, platinum accumulation in the cell and nucleus, and the expression and localization of platinum transporters. NTS and NTSR1 labeling was measured in patients with ovarian cancer.Results: SR48692 enhanced the response to carboplatin in ovarian cancer cells and experimental tumors. When SR48692 is combined with carboplatin, we noted a major improvement of platinum-induced DNA damage and cell death, as well as a decrease in tumor growth. The relationship of these results to clinical studies was made by the detection of NTS and NTSR1 in 72% and 74% of ovarian cancer, respectively. Furthermore, in a large series of high-grade ovarian cancer, NTSR1 mRNA was shown to correlate with higher stages and platinum resistance.Conclusions: This study strongly suggests that the addition of NTSR1 inhibitor in combination with platinum salt-based therapy will improve the response to the drug. Clin Cancer Res; 23(21); 6516-28. ©2017 AACR.


Subject(s)
Carboplatin/administration & dosage , Ovarian Neoplasms/drug therapy , Pyrazoles/administration & dosage , Quinolines/administration & dosage , Receptors, Neurotensin/genetics , Adolescent , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , Middle Aged , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Pyrazoles/adverse effects , Quinolines/adverse effects , Receptors, Neurotensin/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL