Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Anal Chem ; 90(8): 5162-5170, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29605994

ABSTRACT

Accurate quantification of soluble glypican-3 in clinical samples using immunoassays is challenging, because of the lack of appropriate antibody reagents to provide a full spectrum measurement of all potential soluble glypican-3 fragments in vivo. Glypican-3 SOMAmer (slow off-rate modified aptamer) is a novel reagent that binds, with high affinity, to a far distinct epitope of glypican-3, when compared to all available antibody reagents generated in-house. This paper describes an integrated analytical approach to rational selection of key reagents based on molecular characterization by epitope mapping, with the focus on our work using a SOMAmer as a new reagent to address development challenges with traditional antibody reagents for the soluble glypican-3 immunoassay. A qualified SOMAmer-based assay was developed and used for soluble glypican-3 quantification in hepatocellular carcinoma (HCC) patient samples. The assay demonstrated good sensitivity, accuracy, and precision. Data correlated with those obtained using the traditional antibody-based assay were used to confirm the clinically relevant soluble glypican-3 forms in vivo. This result was reinforced by a liquid chromatography tandem mass spectrometry (LC-MS/MS) assay quantifying signature peptides generated from trypsin digestion. The work presented here offers an integrated strategy for qualifying aptamers as an alternative affinity platform for immunoassay reagents that can enable speedy assay development, especially when traditional antibody reagents cannot meet assay requirements.


Subject(s)
Aptamers, Nucleotide/chemistry , Carcinoma, Hepatocellular/diagnosis , Glypicans/analysis , Immunoassay , Liver Neoplasms/diagnosis , Chromatography, Liquid , Humans , Recombinant Proteins/analysis , Solubility , Tandem Mass Spectrometry
2.
Clin Cancer Res ; 15(9): 3058-67, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19383820

ABSTRACT

PURPOSE: Dysregulation of the insulin-like growth factor-I receptor (IGF-IR) signaling pathway has been implicated in the development of many types of tumors, including prostate, colon, breast, pancreatic, ovarian, and sarcomas. Agents that inhibit IGF-IR activity may be useful in treatment of patients with various cancers. EXPERIMENTAL DESIGN: Kinase assays were used to identify a selective small-molecule inhibitor of IGF-IR activity. The effects of this compound on IGF-IR signaling, cell proliferation, and the cell cycle were determined using a panel of cell lines. Antitumor activity was evaluated in human tumor xenografts growing in athymic mice. Inhibition of IGF-IR and the closely related insulin receptor (IR) was measured in vivo, and the effect on glucose metabolism was evaluated. RESULTS: GSK1904529A selectively inhibits IGF-IR and IR with IC(50)s of 27 and 25 nmol/L, respectively. GSK1904529A blocks receptor autophosphorylation and downstream signaling, leading to cell cycle arrest. It inhibits the proliferation of cell lines derived from solid and hematologic malignancies, with multiple myeloma and Ewing's sarcoma cell lines being most sensitive. Oral administration of GSK1904529A decreases the growth of human tumor xenografts in mice, consistent with a reduction of IGF-IR phosphorylation in tumors. Despite the potent inhibitory activity of GSK1904529A on IR in vitro and in vivo, minimal effects on blood glucose levels are observed in animals at doses that show significant antitumor activity. CONCLUSION: GSK1904529A is a promising candidate for therapeutic use in IGF-IR-dependent tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Receptor, IGF Type 1/antagonists & inhibitors , 3-Hydroxybutyric Acid/metabolism , Animals , Apoptosis/drug effects , Blood Glucose/metabolism , Blotting, Western , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Imidazoles/metabolism , Male , Mice , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation/drug effects , Pyridines/metabolism , Receptor, IGF Type 1/metabolism , Receptor, Insulin/antagonists & inhibitors , Receptor, Insulin/metabolism , Xenograft Model Antitumor Assays
3.
Clin Cancer Res ; 26(2): 344-353, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31672767

ABSTRACT

PURPOSE: Ulocuplumab (BMS-936564) is a first-in-class fully human IgG4 monoclonal anti-CXCR4 antibody that inhibits the binding of CXCR4 to CXCL12. PATIENTS AND METHODS: This phase Ib/II study aimed to determine the safety and tolerability of ulocuplumab alone and in combination with lenalidomide and dexamethasone (Arm A), or bortezomib and dexamethasone (Arm B), in patients with relapsed/refractory multiple myeloma. RESULTS: Forty-six patients were evaluated (median age, 60 years; range, 53-67). The median number of prior therapies was 3 (range, 1-11), with 70% of subjects having received ≥3. This trial had a dose-escalation and a dose-expansion part. Using a 3+3 design on both arms of the trial, ulocuplumab's dose was escalated to a maximum of 10 mg/kg without reaching MTD. The most common treatment-related adverse events (AE) were neutropenia (13 patients, 43.3%) in Arm A and thrombocytopenia (6 patients, 37.5%) in Arm B. No deaths related to study drugs occurred. The combination of ulocuplumab with lenalidomide and dexamethasone showed a high response rate (PR or better) of 55.2% and a clinical benefit rate of 72.4%, even in patients who had been previously treated with immunomodulatory agents (IMiD). CONCLUSIONS: This study showed that blockade of the CXCR4-CXCL12 axis by ulocuplumab is safe with acceptable AEs and leads to a high response rate in combination with lenalidomide and dexamethasone in patients with relapsed/refractory myeloma, making CXCR4 inhibitors a promising class of antimyeloma drugs that should be further explored in clinical trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Multiple Myeloma/drug therapy , Receptors, CXCR4/antagonists & inhibitors , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Bortezomib/administration & dosage , Dexamethasone/administration & dosage , Humans , Lenalidomide/administration & dosage , Maximum Tolerated Dose , Middle Aged , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Patient Safety , Receptors, CXCR4/immunology , Survival Rate , Treatment Outcome
4.
Bioorg Med Chem Lett ; 19(2): 469-73, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19056263

ABSTRACT

The evaluation of a series of 4,6-bis-anilino-1H-pyrrolo[2,3-d]pyrimidines as inhibitors of the IGF-1R (IGF-IR) receptor tyrosine kinase is reported. Examples demonstrate nanomolar potencies in in vitro enzyme and mechanistic cellular assays as well as promising in vivo pharmacokinetics in rat.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Receptor, IGF Type 1/antagonists & inhibitors , Animals , Drug Discovery , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Pyrimidines/chemistry , Rats
7.
Oncotarget ; 7(3): 2809-22, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26646452

ABSTRACT

The CXCR4 receptor (Chemokine C-X-C motif receptor 4) is highly expressed in different hematological malignancies including chronic lymphocytic leukemia (CLL). The CXCR4 ligand (CXCL12) stimulates CXCR4 promoting cell survival and proliferation, and may contribute to the tropism of leukemia cells towards lymphoid tissues. Therefore, strategies targeting CXCR4 may constitute an effective therapeutic approach for CLL. To address that question, we studied the effect of Ulocuplumab (BMS-936564), a fully human IgG4 anti-CXCR4 antibody, using a stroma--CLL cells co-culture model. We found that Ulocuplumab (BMS-936564) inhibited CXCL12 mediated CXCR4 activation-migration of CLL cells at nanomolar concentrations. This effect was comparable to AMD3100 (Plerixafor--Mozobil), a small molecule CXCR4 inhibitor. However, Ulocuplumab (BMS-936564) but not AMD3100 induced apoptosis in CLL at nanomolar concentrations in the presence or absence of stromal cell support. This pro-apoptotic effect was independent of CLL high-risk prognostic markers, was associated with production of reactive oxygen species and did not require caspase activation. Overall, these findings are evidence that Ulocuplumab (BMS-936564) has biological activity in CLL, highlight the relevance of the CXCR4-CXCL12 pathway as a therapeutic target in CLL, and provide biological rationale for ongoing clinical trials in CLL and other hematological malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Chemokine CXCL12/biosynthesis , Imino Furanoses/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Pyrimidinones/pharmacology , Reactive Oxygen Species/metabolism , Receptors, CXCR4/antagonists & inhibitors , Actins/metabolism , Benzylamines , Cell Movement/drug effects , Cell Proliferation , Cell Survival , Chemokine CXCL12/metabolism , Cyclams , Enzyme Activation/drug effects , Heterocyclic Compounds/pharmacology , Humans , Jurkat Cells , Leukocytes, Mononuclear , Receptors, CXCR4/biosynthesis , Tumor Cells, Cultured , Tumor Suppressor Protein p53/metabolism
8.
DNA Cell Biol ; 21(7): 519-25, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12162806

ABSTRACT

The p300/CBP-mediated acetylation of p53 significantly potentiates p53-mediated transactivation and growth inhibition. MDM2 inhibits the acetylation of p53 by p300/CBP through a mechanism that requires a stable p53-MDM2 interaction and that is sensitive to the deacetylase inhibitor, TSA. MDMX is an MDM2-like protein that shares with MDM2 the ability to interact with p53 and, in turn, inhibit p53-mediated transcription. It was therefore of interest to determine if MDMX could also inhibit the acetylation of p53 by p300/CBP. We demonstrate that MDMX dramatically inhibits the acetylation of p53 induced by both endogenous and ectopically expressed p300/CBP. We also demonstrate that the p53-binding domain of MDMX is required for the MDMX-mediated inhibition of p53 acetylation. Our results indicate that MDMX shares with MDM2 the ability to regulate a potentially important post-translational modification of p53. These results may have important biologic implications with respect to the MDMX-mediated regulation of p53 activity during development.


Subject(s)
DNA-Binding Proteins , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylation , Animals , Binding Sites , Cell Line , DNA-Activated Protein Kinase , E1A-Associated p300 Protein , Humans , Mice , Mice, Knockout , Models, Biological , Nuclear Proteins/genetics , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-mdm2 , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Trans-Activators/genetics , Transfection , Tumor Suppressor Protein p53/chemistry
9.
Mol Cancer Ther ; 8(10): 2811-20, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19825801

ABSTRACT

The insulin-like growth factor-I receptor (IGF-IR) signaling pathway is activated in various tumors, and inhibition of IGF-IR kinase provides a therapeutic opportunity in these patients. GSK1838705A is a small-molecule kinase inhibitor that inhibits IGF-IR and the insulin receptor with IC(50)s of 2.0 and 1.6 nmol/L, respectively. GSK1838705A blocks the in vitro proliferation of cell lines derived from solid and hematologic malignancies, including multiple myeloma and Ewing's sarcoma, and retards the growth of human tumor xenografts in vivo. Despite the inhibitory effect of GSK1838705A on insulin receptor, minimal effects on glucose homeostasis were observed at efficacious doses. GSK1838705A also inhibits the anaplastic lymphoma kinase (ALK), which drives the aberrant growth of anaplastic large-cell lymphomas, some neuroblastomas, and a subset of non-small cell lung cancers. GSK1838705A inhibits ALK, with an IC(50) of 0.5 nmol/L, and causes complete regression of ALK-dependent tumors in vivo at well-tolerated doses. GSK1838705A is therefore a promising antitumor agent for therapeutic use in human cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrroles/pharmacology , Receptor, IGF Type 1/antagonists & inhibitors , Xenograft Model Antitumor Assays , Anaplastic Lymphoma Kinase , Animals , Blood Glucose/metabolism , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Humans , Mice , Phosphorylation/drug effects , Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases , Receptor, IGF Type 1/metabolism , Receptor, Insulin/metabolism , Signal Transduction/drug effects
10.
Bioorg Med Chem Lett ; 16(18): 4884-8, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16870445

ABSTRACT

Novel analogs of (-)-saframycin A are described. The analogs are shown to be potent inhibitors of the in vitro growth of several tumor cells in a broad panel and promising as leads for further optimization. The first in vivo studies in a solid tumor model (HCT-116) reveal potent antitumor activity with associated toxicity of daily administration.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Mice , Mice, Inbred BALB C , Molecular Structure , Structure-Activity Relationship , Xenograft Model Antitumor Assays
11.
Bioorg Med Chem Lett ; 16(17): 4554-8, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16784854

ABSTRACT

As a continuation of our efforts to discover novel apoptosis inducers as anticancer agents using a cell-based caspase HTS assay, 2-phenyl-oxazole-4-carboxamide derivatives were identified. The structure-activity relationships of this class of molecules were explored. Compound 1k, with EC(50) of 270 nM and GI(50) of 229 nM in human colorectal DLD-1 cells, was selected and demonstrated the ability to cleave PARP and displayed DNA laddering, the hallmarks of apoptosis. Compound 1k showed 63% tumor growth inhibition in human colorectal DLD-1 xenograft mouse model at 50 mpk, bid.


Subject(s)
Amides/chemistry , Amides/pharmacology , Apoptosis/drug effects , Oxazoles/chemistry , Oxazoles/pharmacology , Amides/chemical synthesis , Animals , Cell Line, Tumor , Female , Humans , Mice , Molecular Structure , Oxazoles/chemical synthesis , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL