Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Transl Psychiatry ; 13(1): 63, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36804922

ABSTRACT

Female, but not male, mice with haploinsufficiency for the proautophagic Ambra1 gene show an autistic-like phenotype associated with hippocampal circuits dysfunctions which include loss of parvalbuminergic interneurons (PV-IN), decrease in the inhibition/excitation ratio, and abundance of immature dendritic spines on CA1 pyramidal neurons. Given the paucity of data relating to female autism, we exploit the Ambra1+/- female model to investigate whether rectifying the inhibitory input onto hippocampal principal neurons (PN) rescues their ASD-like phenotype at both the systems and circuits level. Moreover, being the autistic phenotype exclusively observed in the female mice, we control the effect of the mutation and treatment on hippocampal expression of estrogen receptors (ER). Here we show that excitatory DREADDs injected in PV_Cre Ambra1+/- females augment the inhibitory input onto CA1 principal neurons (PN), rescue their social and attentional impairments, and normalize dendritic spine abnormalities and ER expression in the hippocampus. By providing the first evidence that hippocampal excitability jointly controls autistic-like traits and ER in a model of female autism, our findings identify an autophagy deficiency-related mechanism of hippocampal neural and hormonal dysregulation which opens novel perspectives for treatments specifically designed for autistic females.


Subject(s)
Autistic Disorder , CA1 Region, Hippocampal , Female , Mice , Animals , Autistic Disorder/genetics , Autistic Disorder/metabolism , Receptors, Estrogen/metabolism , Hippocampus/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Interneurons/metabolism , Phenotype , Adaptor Proteins, Signal Transducing/metabolism
2.
J Thromb Haemost ; 21(6): 1636-1649, 2023 06.
Article in English | MEDLINE | ID: mdl-36918114

ABSTRACT

BACKGROUND: Genetic-based COVID-19 vaccines have proved to be highly effective in reducing the risk of hospitalization and death. Because they were first distributed in a large-scale population, the adenoviral-based vaccines were linked to a very rare thrombosis with thrombocytopenia syndrome, and the interplay between platelets and vaccinations increasingly gained attention. OBJECTIVES: The objective of this article was to study the crosstalk between platelets and the vaccine-induced immune response. METHODS: We prospectively enrolled young healthy volunteers who received the mRNA-based vaccine, BNT162b2 (n = 15), or the adenovirus-based vaccine, AZD1222 (n = 25) and studied their short-term platelet and immune response before and after vaccine injections. In a separate cohort, we retrospectively analyzed the effect of aspirin on the antibody response 1 and 5 months after BNT162b2 vaccination. RESULTS: Here, we show that a faster antibody response to either vaccine is associated with the formation of platelet aggregates with marginal zone-like B cells, a subset geared to bridge the temporal gap between innate and adaptive immunities. However, although the mRNA-based vaccine is associated with a more gradual and tolerogenic response that fosters the crosstalk between platelets and adaptive immunity, the adenovirus-based vaccine, the less immunogenic of the 2, evokes an antiviral-like response during which the platelets are cleared and less likely to cooperate with B cells. Moreover, subjects taking aspirin (n = 56) display lower antibody levels after BNT162b2 vaccination compared with matched individuals. CONCLUSION: Platelets are a component of the innate immune pathways that promote the B-cell response after vaccination. Future studies on the platelet-immune crosstalk post-immunization will improve the safety, efficacy, and strategic administration of next-generation vaccines.


Subject(s)
Blood Platelets , COVID-19 , Humans , SARS-CoV-2 , BNT162 Vaccine , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Retrospective Studies , COVID-19/prevention & control , Vaccination , Adenoviridae/genetics , Aspirin , Immunity, Innate
3.
Res Pract Thromb Haemost ; 7(8): 102262, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38193050

ABSTRACT

Background: Severe COVID-19 is associated with an excessive immunothrombotic response and thromboinflammatory complications. Vaccinations effectively reduce the risk of severe clinical outcomes in patients with COVID-19, but their impact on platelet activation and immunothrombosis during breakthrough infections is not known. Objectives: To investigate how preemptive vaccinations modify the platelet-immune crosstalk during COVID-19 infections. Methods: Cross-sectional flow cytometry study of the phenotype and interactions of platelets circulating in vaccinated (n = 21) and unvaccinated patients with COVID-19, either admitted to the intensive care unit (ICU, n = 36) or not (non-ICU, n = 38), in comparison to matched SARS-CoV-2-negative patients (n = 48), was performed. Results: In the circulation of unvaccinated non-ICU patients with COVID-19, we detected hyperactive and hyperresponsive platelets and platelet aggregates with adaptive and innate immune cells. In unvaccinated ICU patients with COVID-19, most of whom had severe acute respiratory distress syndrome, platelets had high P-selectin and phosphatidylserine exposure but low capacity to activate integrin αIIbß3, dysfunctional mitochondria, and reduced surface glycoproteins. In addition, in the circulation of ICU patients, we detected microthrombi and platelet aggregates with innate, but not with adaptive, immune cells. In vaccinated patients with COVID-19, who had no acute respiratory distress syndrome, platelets had surface receptor levels comparable to those in controls and did not form microthrombi or platelet-granulocyte aggregates but aggregated avidly with adaptive immune cells. Conclusion: Our study provides evidence that vaccinated patients with COVID-19 are not associated with platelet hyperactivation and are characterized by platelet-leukocyte aggregates that foster immune protection but not excessive immunothrombosis. These findings advocate for the importance of vaccination in preventing severe COVID-19.

4.
Intern Emerg Med ; 17(5): 1267-1276, 2022 08.
Article in English | MEDLINE | ID: mdl-35576047

ABSTRACT

Platelets are multifunctional cells that ensure the integrity of the vascular wall and modulate the immune response at the blood/vascular interface. Their pathological activation results in both thrombosis and inflammation and implicates them in the pathogenesis of vascular disease. Vascular diseases are sexually dimorphic in terms of incidence, clinical presentation, outcome, and efficacy of anti-platelet therapy. We here provide an overview of what is known about the role of platelets in the initiation and progression of vascular diseases and summarize what is known about the sex differences in platelet reactivity and in the thromboinflammatory mechanisms that drive these diseases, with a particular focus on atherosclerosis, obstructive and non-obstructive coronary artery disease, and ischemic stroke. Understanding the sex differences at the platelet-vascular interface is clinically relevant as it will enable: (1) to design new therapeutic strategies that prevent the detrimental effects of the immune-modulatory function of platelets taking sex into account, and (2) to evaluate if sex-specific anti-platelet drug regimens should be used to reduce the risk not only of thrombosis but also of vascular disease progression.


Subject(s)
Atherosclerosis , Thrombosis , Blood Platelets , Female , Humans , Inflammation , Male , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL