Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 157(3): 565-79, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24766806

ABSTRACT

The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arrest of cardiomyocytes. Here, we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, whereas hyperoxemia and ROS generators shorten it. These findings uncover a protective mechanism that mediates cardiomyocyte cell-cycle arrest in exchange for utilization of oxygen-dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be an important component of cardiomyocyte proliferation-based therapeutic approaches.


Subject(s)
Cell Cycle Checkpoints , Myocytes, Cardiac/cytology , Reactive Oxygen Species/metabolism , Acetylcysteine/pharmacology , Animals , Cell Proliferation/drug effects , DNA Damage , Free Radical Scavengers/pharmacology , Mice , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Zebrafish
2.
Nature ; 604(7905): 349-353, 2022 04.
Article in English | MEDLINE | ID: mdl-35388219

ABSTRACT

Mammalian embryogenesis requires rapid growth and proper metabolic regulation1. Midgestation features increasing oxygen and nutrient availability concomitant with fetal organ development2,3. Understanding how metabolism supports development requires approaches to observe metabolism directly in model organisms in utero. Here we used isotope tracing and metabolomics to identify evolving metabolic programmes in the placenta and embryo during midgestation in mice. These tissues differ metabolically throughout midgestation, but we pinpointed gestational days (GD) 10.5-11.5 as a transition period for both placenta and embryo. Isotope tracing revealed differences in carbohydrate metabolism between the tissues and rapid glucose-dependent purine synthesis, especially in the embryo. Glucose's contribution to the tricarboxylic acid (TCA) cycle rises throughout midgestation in the embryo but not in the placenta. By GD12.5, compartmentalized metabolic programmes are apparent within the embryo, including different nutrient contributions to the TCA cycle in different organs. To contextualize developmental anomalies associated with Mendelian metabolic defects, we analysed mice deficient in LIPT1, the enzyme that activates 2-ketoacid dehydrogenases related to the TCA cycle4,5. LIPT1 deficiency suppresses TCA cycle metabolism during the GD10.5-GD11.5 transition, perturbs brain, heart and erythrocyte development and leads to embryonic demise by GD11.5. These data document individualized metabolic programmes in developing organs in utero.


Subject(s)
Citric Acid Cycle , Fetal Development , Metabolomics , Placenta , Animals , Embryo, Mammalian/metabolism , Female , Glucose/metabolism , Mammals/metabolism , Mice , Placenta/metabolism , Pregnancy
3.
Nature ; 582(7811): 271-276, 2020 06.
Article in English | MEDLINE | ID: mdl-32499640

ABSTRACT

A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes1,2 and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest3. Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.


Subject(s)
Calcineurin/metabolism , Cell Proliferation , Homeodomain Proteins/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Myocytes, Cardiac/cytology , Animals , Animals, Newborn , Female , Gene Deletion , Gene Expression Regulation , Heart/physiology , Homeodomain Proteins/genetics , Male , Mice , Myocardium/cytology , Protein Binding , Regeneration
4.
Circulation ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708635

ABSTRACT

BACKGROUND: Recent interest in understanding cardiomyocyte cell cycle has been driven by potential therapeutic applications in cardiomyopathy. However, despite recent advances, cardiomyocyte mitosis remains a poorly understood process. For example, it is unclear how sarcomeres are disassembled during mitosis to allow the abscission of daughter cardiomyocytes. METHODS: Here, we use a proteomics screen to identify adducin, an actin capping protein previously not studied in cardiomyocytes, as a regulator of sarcomere disassembly. We generated many adeno-associated viruses and cardiomyocyte-specific genetic gain-of-function models to examine the role of adducin in neonatal and adult cardiomyocytes in vitro and in vivo. RESULTS: We identify adducin as a regulator of sarcomere disassembly during mammalian cardiomyocyte mitosis. α/γ-adducins are selectively expressed in neonatal mitotic cardiomyocytes, and their levels decline precipitously thereafter. Cardiomyocyte-specific overexpression of various splice isoforms and phospho-isoforms of α-adducin in identified Thr445/Thr480 phosphorylation of a short isoform of α-adducin as a potent inducer of neonatal cardiomyocyte sarcomere disassembly. Concomitant overexpression of this α-adducin variant along with γ-adducin resulted in stabilization of the adducin complex and persistent sarcomere disassembly in adult mice, which is mediated by interaction with α-actinin. CONCLUSIONS: These results highlight an important mechanism for coordinating cytoskeletal morphological changes during cardiomyocyte mitosis.

5.
Nucleic Acids Res ; 50(5): 2681-2699, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35189637

ABSTRACT

Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is activated in cells with defective DNA damage repair and signaling (DDR) factors, but a direct role for DDR factors in regulating cGAS activation in response to micronuclear DNA is still poorly understood. Here, we provide novel evidence that Nijmegen breakage syndrome 1 (NBS1) protein, a well-studied DNA double-strand break (DSB) sensor-in coordination with Ataxia Telangiectasia Mutated (ATM), a protein kinase, and Carboxy-terminal binding protein 1 interacting protein (CtIP), a DNA end resection factor-functions as an upstream regulator that prevents cGAS from binding micronuclear DNA. When NBS1 binds to micronuclear DNA via its fork-head-associated domain, it recruits CtIP and ATM via its N- and C-terminal domains, respectively. Subsequently, ATM stabilizes NBS1's interaction with micronuclear DNA, and CtIP converts DSB ends into single-strand DNA ends; these two key events prevent cGAS from binding micronuclear DNA. Additionally, by using a cGAS tripartite system, we show that cells lacking NBS1 not only recruit cGAS to a major fraction of micronuclear DNA but also activate cGAS in response to these micronuclear DNA. Collectively, our results underscore how NBS1 and its binding partners prevent cGAS from binding micronuclear DNA, in addition to their classical functions in DDR signaling.


Subject(s)
Cell Cycle Proteins , Tumor Suppressor Proteins , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA/genetics , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Protein Serine-Threonine Kinases , Tumor Suppressor Proteins/genetics
6.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34417314

ABSTRACT

The inability of adult mammalian cardiomyocytes to proliferate underpins the development of heart failure following myocardial injury. Although the newborn mammalian heart can spontaneously regenerate for a short period of time after birth, this ability is lost within the first week after birth in mice, partly due to increased mitochondrial reactive oxygen species (ROS) production which results in oxidative DNA damage and activation of DNA damage response. This increase in ROS levels coincides with a postnatal switch from anaerobic glycolysis to fatty acid (FA) oxidation by cardiac mitochondria. However, to date, a direct link between mitochondrial substrate utilization and oxidative DNA damage is lacking. Here, we generated ROS-sensitive fluorescent sensors targeted to different subnuclear compartments (chromatin, heterochromatin, telomeres, and nuclear lamin) in neonatal rat ventricular cardiomyocytes, which allowed us to determine the spatial localization of ROS in cardiomyocyte nuclei upon manipulation of mitochondrial respiration. Our results demonstrate that FA utilization by the mitochondria induces a significant increase in ROS detection at the chromatin level compared to other nuclear compartments. These results indicate that mitochondrial metabolic perturbations directly alter the nuclear redox status and that the chromatin appears to be particularly sensitive to the prooxidant effect of FA utilization by the mitochondria.


Subject(s)
Fatty Acids/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Animals , Cell Line , Cell Proliferation , DNA Damage , Mice , Oxidative Stress , Reactive Oxygen Species/metabolism
7.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33627480

ABSTRACT

Previous studies have demonstrated that the synaptic EphB1 receptor tyrosine kinase is a major mediator of neuropathic pain, suggesting that targeting the activity of this receptor might be a viable therapeutic option. Therefore, we set out to determine if any FDA-approved drugs can act as inhibitors of the EphB1 intracellular catalytic domain. An in silico screen was first used to identify a number of tetracycline antibiotics which demonstrated potential docking to the ATP-binding catalytic domain of EphB1. Kinase assays showed that demeclocycline, chlortetracycline, and minocycline inhibit EphB1 kinase activity at low micromolar concentrations. In addition, we cocrystallized chlortetracycline and EphB1 receptor, which confirmed its binding to the ATP-binding domain. Finally, in vivo administration of the three-tetracycline combination inhibited the phosphorylation of EphB1 in the brain, spinal cord, and dorsal root ganglion (DRG) and effectively blocked neuropathic pain in mice. These results indicate that demeclocycline, chlortetracycline, and minocycline can be repurposed for treatment of neuropathic pain and potentially for other indications that would benefit from inhibition of EphB1 receptor kinase activity.


Subject(s)
Central Nervous System/enzymology , Chlortetracycline , Neuralgia , Protein Kinase Inhibitors , Receptor, EphB1 , Animals , Chlortetracycline/chemistry , Chlortetracycline/pharmacology , Crystallography, X-Ray , Humans , Male , Mice , Neuralgia/drug therapy , Neuralgia/enzymology , Protein Domains , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, EphB1/antagonists & inhibitors , Receptor, EphB1/chemistry , Receptor, EphB1/metabolism
8.
Nature ; 541(7636): 222-227, 2017 01 12.
Article in English | MEDLINE | ID: mdl-27798600

ABSTRACT

The adult mammalian heart is incapable of regeneration following cardiomyocyte loss, which underpins the lasting and severe effects of cardiomyopathy. Recently, it has become clear that the mammalian heart is not a post-mitotic organ. For example, the neonatal heart is capable of regenerating lost myocardium, and the adult heart is capable of modest self-renewal. In both of these scenarios, cardiomyocyte renewal occurs via the proliferation of pre-existing cardiomyocytes, and is regulated by aerobic-respiration-mediated oxidative DNA damage. Therefore, we reasoned that inhibiting aerobic respiration by inducing systemic hypoxaemia would alleviate oxidative DNA damage, thereby inducing cardiomyocyte proliferation in adult mammals. Here we report that, in mice, gradual exposure to severe systemic hypoxaemia, in which inspired oxygen is gradually decreased by 1% and maintained at 7% for 2 weeks, results in inhibition of oxidative metabolism, decreased reactive oxygen species production and oxidative DNA damage, and reactivation of cardiomyocyte mitosis. Notably, we find that exposure to hypoxaemia 1 week after induction of myocardial infarction induces a robust regenerative response with decreased myocardial fibrosis and improvement of left ventricular systolic function. Genetic fate-mapping analysis confirms that the newly formed myocardium is derived from pre-existing cardiomyocytes. These results demonstrate that the endogenous regenerative properties of the adult mammalian heart can be reactivated by exposure to gradual systemic hypoxaemia, and highlight the potential therapeutic role of hypoxia in regenerative medicine.


Subject(s)
Heart/growth & development , Hypoxia/metabolism , Myocardium/cytology , Myocardium/metabolism , Regeneration , Regenerative Medicine/methods , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cell Proliferation , Cell Respiration , DNA Damage , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitosis , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Ventricular Function, Left
9.
J Biol Chem ; 295(32): 11144-11160, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32540968

ABSTRACT

Defective DNA damage response (DDR) signaling is a common mechanism that initiates and maintains the cellular senescence phenotype. Dysfunctional telomeres activate DDR signaling, genomic instability, and cellular senescence, but the links among these events remains unclear. Here, using an array of biochemical and imaging techniques, including a highly regulatable CRISPR/Cas9 strategy to induce DNA double strand breaks specifically in the telomeres, ChIP, telomere immunofluorescence, fluorescence in situ hybridization (FISH), micronuclei imaging, and the telomere shortest length assay (TeSLA), we show that chromosome mis-segregation due to imperfect DDR signaling in response to dysfunctional telomeres creates a preponderance of chromatin fragments in the cytosol, which leads to a premature senescence phenotype. We found that this phenomenon is caused not by telomere shortening, but by cyclic GMP-AMP synthase (cGAS) recognizing cytosolic chromatin fragments and then activating the stimulator of interferon genes (STING) cytosolic DNA-sensing pathway and downstream interferon signaling. Significantly, genetic and pharmacological manipulation of cGAS not only attenuated immune signaling, but also prevented premature cellular senescence in response to dysfunctional telomeres. The findings of our study uncover a cellular intrinsic mechanism involving the cGAS-mediated cytosolic self-DNA-sensing pathway that initiates premature senescence independently of telomere shortening.


Subject(s)
Cellular Senescence/genetics , Ligases/metabolism , Nucleotides, Cyclic/metabolism , Telomere , Cell Cycle , DNA Breaks, Double-Stranded , Humans , Signal Transduction
10.
Circulation ; 141(22): 1787-1799, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32272846

ABSTRACT

BACKGROUND: Primary valvular heart disease is a prevalent cause of morbidity and mortality in both industrialized and developing countries. Although the primary consequence of valvular heart disease is myocardial dysfunction, treatment of valvular heart diseases centers around valve repair or replacement rather than prevention or reversal of myocardial dysfunction. This is particularly evident in primary mitral regurgitation (MR), which invariably results in eccentric hypertrophy and left ventricular (LV) failure in the absence of timely valve repair or replacement. The mechanism of LV dysfunction in primary severe MR is entirely unknown. METHODS: Here, we developed the first mouse model of severe MR. Valvular damage was achieved by severing the mitral valve leaflets and chords with iridectomy scissors, and MR was confirmed by echocardiography. Serial echocardiography was performed to follow up LV morphology and systolic function. Analysis of cardiac tissues was subsequently performed to evaluate valve deformation, cardiomyocyte morphology, LV fibrosis, and cell death. Finally, dysregulated pathways were assessed by RNA-sequencing analysis and immunofluorescence. RESULTS: In the ensuing 15 weeks after the induction of MR, gradual LV dilatation and dysfunction occurred, resulting in severe systolic dysfunction. Further analysis revealed that severe MR resulted in a marked increase in cardiac mass and increased cardiomyocyte length but not width, with electron microscopic evidence of sarcomere disarray and the development of sarcomere disruption. From a mechanistic standpoint, severe MR resulted in activation of multiple components of both the mammalian target of rapamycin and calcineurin pathways. Inhibition of mammalian target of rapamycin signaling preserved sarcomeric structure and prevented LV remodeling and systolic dysfunction. Immunohistochemical analysis uncovered a differential pattern of expression of the cell polarity regulator Crb2 (crumbs homolog 2) along the longitudinal axis of cardiomyocytes and close to the intercalated disks in the MR hearts. Electron microscopy images demonstrated a significant increase in polysome localization in close proximity to the intercalated disks and some areas along the longitudinal axis in the MR hearts. CONCLUSIONS: These results indicate that LV dysfunction in response to severe MR is a form of maladaptive eccentric cardiomyocyte hypertrophy and outline the link between cell polarity regulation and spatial localization protein synthesis as a pathway for directional cardiomyocyte growth.


Subject(s)
Disease Models, Animal , Mitral Valve Insufficiency/pathology , Myocytes, Cardiac/pathology , Animals , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/genetics , Cell Shape , Cell Size , Echocardiography , Fibrosis , Gene Expression Profiling , Hypertrophy , Infusion Pumps, Implantable , Magnetic Resonance Imaging , Male , Mice , Mitral Valve/injuries , Mitral Valve Insufficiency/complications , Mitral Valve Insufficiency/diagnostic imaging , Myocytes, Cardiac/metabolism , Polyribosomes/ultrastructure , RNA, Messenger/biosynthesis , Sirolimus/pharmacology , Sirolimus/therapeutic use , Systole , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/physiology , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/pathology
11.
Nature ; 523(7559): 226-30, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26098368

ABSTRACT

Although the adult mammalian heart is incapable of meaningful functional recovery following substantial cardiomyocyte loss, it is now clear that modest cardiomyocyte turnover occurs in adult mouse and human hearts, mediated primarily by proliferation of pre-existing cardiomyocytes. However, fate mapping of these cycling cardiomyocytes has not been possible thus far owing to the lack of identifiable genetic markers. In several organs, stem or progenitor cells reside in relatively hypoxic microenvironments where the stabilization of the hypoxia-inducible factor 1 alpha (Hif-1α) subunit is critical for their maintenance and function. Here we report fate mapping of hypoxic cells and their progenies by generating a transgenic mouse expressing a chimaeric protein in which the oxygen-dependent degradation (ODD) domain of Hif-1α is fused to the tamoxifen-inducible CreERT2 recombinase. In mice bearing the creERT2-ODD transgene driven by either the ubiquitous CAG promoter or the cardiomyocyte-specific α myosin heavy chain promoter, we identify a rare population of hypoxic cardiomyocytes that display characteristics of proliferative neonatal cardiomyocytes, such as smaller size, mononucleation and lower oxidative DNA damage. Notably, these hypoxic cardiomyocytes contributed widely to new cardiomyocyte formation in the adult heart. These results indicate that hypoxia signalling is an important hallmark of cycling cardiomyocytes, and suggest that hypoxia fate mapping can be a powerful tool for identifying cycling cells in adult mammals.


Subject(s)
Myocardium/cytology , Myocytes, Cardiac/cytology , Recombinant Fusion Proteins/metabolism , Animals , Cell Hypoxia , Cell Proliferation/genetics , Female , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice , Mice, Transgenic , Myocytes, Cardiac/metabolism , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinases/genetics , Recombinases/metabolism , Signal Transduction , Stem Cells/cytology , Stem Cells/metabolism
12.
Circulation ; 139(20): 2342-2357, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30818997

ABSTRACT

BACKGROUND: The primary cilium is a singular cellular structure that extends from the surface of many cell types and plays crucial roles in vertebrate development, including that of the heart. Whereas ciliated cells have been described in developing heart, a role for primary cilia in adult heart has not been reported. This, coupled with the fact that mutations in genes coding for multiple ciliary proteins underlie polycystic kidney disease, a disorder with numerous cardiovascular manifestations, prompted us to identify cells in adult heart harboring a primary cilium and to determine whether primary cilia play a role in disease-related remodeling. METHODS: Histological analysis of cardiac tissues from C57BL/6 mouse embryos, neonatal mice, and adult mice was performed to evaluate for primary cilia. Three injury models (apical resection, ischemia/reperfusion, and myocardial infarction) were used to identify the location and cell type of ciliated cells with the use of antibodies specific for cilia (acetylated tubulin, γ-tubulin, polycystin [PC] 1, PC2, and KIF3A), fibroblasts (vimentin, α-smooth muscle actin, and fibroblast-specific protein-1), and cardiomyocytes (α-actinin and troponin I). A similar approach was used to assess for primary cilia in infarcted human myocardial tissue. We studied mice silenced exclusively in myofibroblasts for PC1 and evaluated the role of PC1 in fibrogenesis in adult rat fibroblasts and myofibroblasts. RESULTS: We identified primary cilia in mouse, rat, and human heart, specifically and exclusively in cardiac fibroblasts. Ciliated fibroblasts are enriched in areas of myocardial injury. Transforming growth factor ß-1 signaling and SMAD3 activation were impaired in fibroblasts depleted of the primary cilium. Extracellular matrix protein levels and contractile function were also impaired. In vivo, depletion of PC1 in activated fibroblasts after myocardial infarction impaired the remodeling response. CONCLUSIONS: Fibroblasts in the neonatal and adult heart harbor a primary cilium. This organelle and its requisite signaling protein, PC1, are required for critical elements of fibrogenesis, including transforming growth factor ß-1-SMAD3 activation, production of extracellular matrix proteins, and cell contractility. Together, these findings point to a pivotal role of this organelle, and PC1, in disease-related pathological cardiac remodeling and suggest that some of the cardiovascular manifestations of autosomal dominant polycystic kidney disease derive directly from myocardium-autonomous abnormalities.


Subject(s)
Fibroblasts/ultrastructure , Myocardium/pathology , Polycystic Kidney, Autosomal Dominant/pathology , 3T3 Cells/ultrastructure , Animals , Animals, Newborn , Atrial Remodeling , Cilia , Fetal Heart/cytology , Fibrosis , Heart Injuries/pathology , Humans , Kinesins/deficiency , Kinesins/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/pathology , Polycystic Kidney, Autosomal Dominant/genetics , Rats , Signal Transduction , Smad3 Protein/physiology , TRPP Cation Channels/deficiency , TRPP Cation Channels/physiology , Transforming Growth Factor beta1/physiology , Ventricular Remodeling
14.
EMBO Rep ; 19(12)2018 12.
Article in English | MEDLINE | ID: mdl-30389725

ABSTRACT

Increasing non-shivering thermogenesis (NST), which expends calories as heat rather than storing them as fat, is championed as an effective way to combat obesity and metabolic disease. Innate mechanisms constraining the capacity for NST present a fundamental limitation to this approach, yet are not well understood. Here, we provide evidence that Regulator of Calcineurin 1 (RCAN1), a feedback inhibitor of the calcium-activated protein phosphatase calcineurin (CN), acts to suppress two distinctly different mechanisms of non-shivering thermogenesis (NST): one involving the activation of UCP1 expression in white adipose tissue, the other mediated by sarcolipin (SLN) in skeletal muscle. UCP1 generates heat at the expense of reducing ATP production, whereas SLN increases ATP consumption to generate heat. Gene expression profiles demonstrate a high correlation between Rcan1 expression and metabolic syndrome. On an evolutionary timescale, in the context of limited food resources, systemic suppression of prolonged NST by RCAN1 might have been beneficial; however, in the face of caloric abundance, RCAN1-mediated suppression of these adaptive avenues of energy expenditure may now contribute to the growing epidemic of obesity.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Metabolism , Muscle Proteins/metabolism , Thermogenesis , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/metabolism , Adipose Tissue, Beige/drug effects , Adipose Tissue, Beige/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Adrenergic Agents/pharmacology , Animals , Calcineurin/metabolism , Calcium-Binding Proteins , Cell Differentiation/drug effects , Cold Temperature , Female , Insulin Resistance , Intracellular Signaling Peptides and Proteins/deficiency , Lipid Metabolism/drug effects , Liver/metabolism , Male , Metabolic Syndrome/metabolism , Metabolism/drug effects , Mice , Mice, Knockout , Muscle Proteins/deficiency , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Muscle, Striated/metabolism , Obesity/metabolism , Obesity/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Promoter Regions, Genetic/genetics , Proteolipids/genetics , Proteolipids/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thermogenesis/drug effects , Uncoupling Protein 1/metabolism
15.
Curr Cardiol Rep ; 22(5): 33, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32333123

ABSTRACT

PURPOSE OF REVIEW: This review provides an overview of the molecular mechanisms underpinning the cardiac regenerative capacity during the neonatal period and the potential targets for developing novel therapies to restore myocardial loss. RECENT FINDINGS: We present recent advances in the understanding of the molecular mechanisms of neonatal cardiac regeneration and the implications for the development of new cardiac regenerative therapies. During the early postnatal period, several cell types and pathways are involved in cardiomyocyte proliferation including immune response, nerve signaling, extracellular matrix, mitochondria substrate utilization, gene expression, miRNAs, and cell cycle progression. The early neonatal mammalian heart has remarkable regenerative capacity, which is mediated by proliferation of endogenous cardiomyocytes, and is lost when cardiomyocytes stop dividing shortly after birth. A wide array of mechanisms that regulate this regenerative process have been proposed.


Subject(s)
Cell Proliferation/physiology , Heart , Myocytes, Cardiac/physiology , Regeneration/physiology , Regenerative Medicine/trends , Humans , Infant, Newborn , Myocardium , Regenerative Medicine/methods , Signal Transduction
16.
Circulation ; 138(4): 412-423, 2018 07 24.
Article in English | MEDLINE | ID: mdl-30571359

ABSTRACT

BACKGROUND: The adult mammalian heart is incapable of meaningful functional recovery after injury, and thus promoting heart regeneration is 1 of the most important therapeutic targets in cardiovascular medicine. In contrast to the adult mammalian heart, the neonatal mammalian heart is capable of regeneration after various types of injury. Since the first report in 2011, a number of groups have reported their findings on neonatal heart regeneration. The current review provides a comprehensive analysis of heart regeneration studies in neonatal mammals conducted to date, outlines lessons learned, and poses unanswered questions. METHODS: We performed a PubMed search using the keywords "neonatal" and "heart" and "regeneration." In addition, we assessed all publications that cited the first neonatal heart regeneration reports: Porrello et al, Science, Feb 2011 for apical resection injury; Porrello et al, PNAS, Dec 2012 for coronary ligation injury; and Mahmoud et al, Nature Methods, Jan 2014 for surgical methodology. Publications were examined for surgical models used, timing of surgery, and postinjury assessment including anatomic, histological, and functional assessment, as well as conclusions drawn. RESULTS: We found 30 publications that performed neonatal apical resection, 19 publications that performed neonatal myocardial infarction by coronary artery ligation, and 6 publications that performed cryoinjury using liquid nitrogen-cooled metal probes. Both apical resection and ischemic infarction injury in neonatal mice result in a robust regenerative response, mediated by cardiomyocyte proliferation. On the other hand, several reports have demonstrated that cryoinjury is associated with incomplete heart regeneration in neonatal mice. Not surprisingly, several studies suggest that injury size, as well as surgical and histological techniques, can strongly influence the observed regenerative response and final conclusions. Studies have utilized these neonatal cardiac injury models to identify factors that either inhibit or stimulate heart regeneration. CONCLUSIONS: Overall, there is consensus that both apical resection and coronary ligation injuries during the first 2 days of life result in heart regeneration in neonatal mammals, whereas cryoinjury was not associated with a similar regenerative response. This regenerative response is mediated by proliferation of preexisting cardiomyocytes, and is modifiable by injury size and surgical technique, as well as metabolic, immunologic, genetic, and environmental factors.


Subject(s)
Cell Proliferation , Heart Injuries/pathology , Heart Injuries/physiopathology , Heart/physiopathology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/pathology , Regeneration , Animals , Animals, Newborn , Disease Models, Animal , Heart Injuries/metabolism , Humans , Infant, Newborn , Mice , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Recovery of Function , Signal Transduction
17.
Circ Res ; 121(3): e2-e8, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28652256

ABSTRACT

Recent decades have witnessed robust successes in conquering the acutely lethal manifestations of heart and vascular diseases. Many patients who previously would have died now survive. Lifesaving successes like these provide a tremendous and easily recognized benefit to individuals and society. Although cardiovascular mortality has declined, the devastating impact of chronic heart disease and comorbidities on quality of life and healthcare resources continues unabated. Future strides, extending those made in recent decades, will require continued research into mechanisms underlying disease prevention, pathogenesis, progression, and therapeutic intervention. However, severe financial constraints currently jeopardize these efforts. To chart a path for the future, this report analyzes the challenges and opportunities we face in continuing the battle against cardiovascular disease and highlights the return on societal investment afforded by fundamental cardiovascular research.


Subject(s)
American Heart Association , Biomedical Research/trends , Cardiovascular Diseases/therapy , Investments/trends , Social Norms , Biomedical Research/economics , Cardiovascular Diseases/economics , Cardiovascular Diseases/epidemiology , Humans , Investments/economics , United States/epidemiology
18.
Nature ; 497(7448): 249-253, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23594737

ABSTRACT

The neonatal mammalian heart is capable of substantial regeneration following injury through cardiomyocyte proliferation. However, this regenerative capacity is lost by postnatal day 7 and the mechanisms of cardiomyocyte cell cycle arrest remain unclear. The homeodomain transcription factor Meis1 is required for normal cardiac development but its role in cardiomyocytes is unknown. Here we identify Meis1 as a critical regulator of the cardiomyocyte cell cycle. Meis1 deletion in mouse cardiomyocytes was sufficient for extension of the postnatal proliferative window of cardiomyocytes, and for re-activation of cardiomyocyte mitosis in the adult heart with no deleterious effect on cardiac function. In contrast, overexpression of Meis1 in cardiomyocytes decreased neonatal myocyte proliferation and inhibited neonatal heart regeneration. Finally, we show that Meis1 is required for transcriptional activation of the synergistic CDK inhibitors p15, p16 and p21. These results identify Meis1 as a critical transcriptional regulator of cardiomyocyte proliferation and a potential therapeutic target for heart regeneration.


Subject(s)
Cell Cycle Checkpoints , Homeodomain Proteins/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Neoplasm Proteins/metabolism , Alleles , Animals , Animals, Newborn , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p15/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Heart/anatomy & histology , Heart/physiology , Homeodomain Proteins/genetics , Male , Mice , Myeloid Ecotropic Viral Integration Site 1 Protein , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Regeneration , Transcriptional Activation
20.
Eur Heart J ; 38(30): 2333-2342, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28810672

ABSTRACT

The capacity of the mammalian heart to regenerate cardiomyocytes has been debated over the last decades. However, limitations in existing techniques to track and identify nascent cardiomyocytes have often led to inconsistent results. Radiocarbon (14C) birth dating, in combination with other quantitative strategies, allows to establish the number and age of human cardiomyocytes, making it possible to describe their age distribution and turnover dynamics. Accurate estimates of cardiomyocyte generation in the adult heart can provide the foundation for novel regenerative strategies that aim to stimulate cardiomyocyte renewal in various cardiac pathologies.


Subject(s)
Myocytes, Cardiac/physiology , Regeneration/physiology , Animals , Cell Cycle/physiology , Cell Proliferation/physiology , Cellular Senescence/physiology , Humans , Mice , Models, Animal , Myocytes, Cardiac/cytology , Radiometric Dating , Swine
SELECTION OF CITATIONS
SEARCH DETAIL