Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
iScience ; 27(4): 109342, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38495819

ABSTRACT

The existence of neural stem cells (NSCs) in adult human brain neurogenic regions remains unresolved. To address this, we created a cell atlas of the adult human subventricular zone (SVZ) derived from fresh neurosurgical samples using single-cell transcriptomics. We discovered 2 adult radial glia (RG)-like populations, aRG1 and aRG2. aRG1 shared features with fetal early RG (eRG) and aRG2 were transcriptomically similar to fetal outer RG (oRG). We also captured early neuronal and oligodendrocytic NSC states. We found that the biological programs driven by their transcriptomes support their roles as early lineage NSCs. Finally, we show that these NSCs have the potential to transition between states and along lineage trajectories. These data reveal that multipotent NSCs reside in the adult human SVZ.

2.
Cell Rep ; 23(6): 1639-1650, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29742422

ABSTRACT

Widespread remodeling of the transcriptome is a signature of cancer; however, little is known about the post-transcriptional regulatory factors, including RNA-binding proteins (RBPs) that regulate mRNA stability, and the extent to which RBPs contribute to cancer-associated pathways. Here, by modeling the global change in gene expression based on the effect of sequence-specific RBPs on mRNA stability, we show that RBP-mediated stability programs are recurrently deregulated in cancerous tissues. Particularly, we uncovered several RBPs that contribute to the abnormal transcriptome of renal cell carcinoma (RCC), including PCBP2, ESRP2, and MBNL2. Modulation of these proteins in cancer cell lines alters the expression of pathways that are central to the disease and highlights RBPs as driving master regulators of RCC transcriptome. This study presents a framework for the screening of RBP activities based on computational modeling of mRNA stability programs in cancer and highlights the role of post-transcriptional gene dysregulation in RCC.


Subject(s)
Neoplasms/genetics , RNA Stability/genetics , RNA-Binding Proteins/metabolism , Transcriptome/genetics , Carcinoma, Renal Cell/genetics , Cell Cycle/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Neoplasm Proteins/metabolism , Protein Biosynthesis , Transcription, Genetic , Up-Regulation/genetics
3.
Sci Rep ; 7: 44876, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28332632

ABSTRACT

Recent genomic studies of sporadic clear cell renal cell carcinoma (ccRCC) have uncovered novel driver genes and pathways. Given the unequal incidence rates among men and women (male:female incidence ratio approaches 2:1), we compared the genome-wide distribution of the chromosomal abnormalities in both sexes. We observed a higher frequency for the somatic recurrent chromosomal copy number variations (CNVs) of autosomes in male subjects, whereas somatic loss of chromosome X was detected exclusively in female patients (17.1%). Furthermore, somatic loss of chromosome Y (LOY) was detected in about 40% of male subjects, while mosaic LOY was detected in DNA isolated from peripheral blood in 9.6% of them, and was the only recurrent CNV in constitutional DNA samples. LOY in constitutional DNA, but not in tumor DNA was associated with older age. Amongst Y-linked genes that were downregulated due to LOY, KDM5D and KDM6C epigenetic modifiers have functionally-similar X-linked homologs whose deficiency is involved in ccRCC progression. Our findings establish somatic LOY as a highly recurrent genetic defect in ccRCC that leads to downregulation of hitherto unsuspected epigenetic factors, and suggest that different mechanisms may underlie the somatic and mosaic LOY observed in tumors and peripheral blood, respectively.


Subject(s)
Carcinoma, Renal Cell/genetics , Chromosome Deletion , Chromosomes, Human, Y , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histone Demethylases/genetics , Kidney Neoplasms/genetics , Minor Histocompatibility Antigens/genetics , Cell Survival/genetics , DNA Copy Number Variations , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL