Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
PLoS Genet ; 17(8): e1009757, 2021 08.
Article in English | MEDLINE | ID: mdl-34449766

ABSTRACT

To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Mitosis/physiology , Adaptor Proteins, Signal Transducing/physiology , Apoptosis Regulatory Proteins/physiology , Cell Cycle Proteins/metabolism , Cytokinesis , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , HeLa Cells , Humans , Protein Transport , Spindle Apparatus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Nano Lett ; 22(18): 7724-7733, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35969027

ABSTRACT

For more than a century, abnormal nuclei in tumor cells, presenting subnuclear invaginations and folds on the nuclear envelope, have been known to be associated with high malignancy and poor prognosis. However, current nuclear morphology analysis focuses on the features of the entire nucleus, overlooking the malignancy-related subnuclear features in nanometer scale. The main technical challenge is to probe such tiny and randomly distributed features inside cells. We here employ nanopillar arrays to guide subnuclear features into ordered patterns, enabling their quantification as a strong indicator of cell malignancy. Both breast and liver cancer cells were validated as well as the quantification of nuclear abnormality heterogeneity. The alterations of subnuclear patterns were also explored as effective readouts for drug treatment. We envision that this nanopillar-enabled quantification of subnuclear abnormal features in tumor cells opens a new angle in characterizing malignant cells and studying the unique nuclear biology in cancer.


Subject(s)
Neoplasms , Nuclear Envelope , Cell Count , Cell Differentiation , Cell Nucleus , Humans , Neoplasms/diagnostic imaging , Neoplasms/pathology , Nuclear Envelope/pathology
3.
Development ; 146(22)2019 11 18.
Article in English | MEDLINE | ID: mdl-31645358

ABSTRACT

During the extended prophase of Drosophila gametogenesis, spermatocytes undergo robust gene transcription and store many transcripts in the cytoplasm in a repressed state, until translational activation of select mRNAs in later steps of spermatogenesis. Here, we characterize the Drosophila Doublefault (Dbf) protein as a C2H2 zinc-finger protein, primarily expressed in testes, that is required for normal meiotic division and spermiogenesis. Loss of Dbf causes premature centriole disengagement and affects spindle structure, chromosome segregation and cytokinesis. We show that Dbf interacts with the RNA-binding protein Syncrip/hnRNPQ, a key regulator of localized translation in Drosophila We propose that the pleiotropic effects of dbf loss-of-function mutants are associated with the requirement of dbf function for translation of specific transcripts in spermatocytes. In agreement with this hypothesis, Dbf protein binds cyclin B mRNA and is essential for translation of cyclin B in mature spermatocytes.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/embryology , Gene Expression Regulation, Developmental , Intracellular Signaling Peptides and Proteins/physiology , Meiosis , RNA, Messenger/genetics , Spermatogenesis , Animals , Axoneme/metabolism , Cell Nucleus/metabolism , Centrosome/metabolism , Chromosome Segregation , Cloning, Molecular , Crosses, Genetic , Cyclin B , Cytokinesis , Drosophila Proteins/genetics , In Situ Hybridization, Fluorescence , Intracellular Signaling Peptides and Proteins/genetics , Male , Microtubules/metabolism , Mutation , RNA-Binding Proteins , Spermatocytes/metabolism , Spindle Apparatus/metabolism , Transgenes , Zinc Fingers
4.
J Cell Physiol ; 235(1): 504-512, 2020 01.
Article in English | MEDLINE | ID: mdl-31506944

ABSTRACT

Pyridoxine/pyridoxamine 5'-phosphate oxidase (PNPO) and pyridoxal kinase (PDXK) cooperate to produce pyridoxal 5'-phosphate (PLP), the active form of vitamin B6. PDXK phosphorylates pyridoxine, pyridoxamine, and pyridoxal by producing PNP, PMP, and PLP, whereas PNPO oxidizes PNP, PMP, into PLP. We previously demonstrated that PDXK depletion in Drosophila and human cells impacts on glucose metabolism and DNA integrity. Here we characterized sgll, the Drosophila ortholog of PNPO gene, showing that its silencing by RNA interference elicits chromosome aberrations (CABs) in brains and induces diabetic hallmarks such as hyperglycemia and small body size. We showed that in sgllRNAi neuroblasts CABs are largely produced by the genotoxic effect of the advanced glycation end products triggered by high glucose. As in sgllRNAi cells, part of PLP is still produced by PDXK activity, these data suggest that PLP dosage need to be tightly regulated to guarantee glucose homeostasis and DNA integrity.


Subject(s)
Drosophila melanogaster/metabolism , Pyridoxal Kinase/metabolism , Pyridoxal Phosphate/biosynthesis , Pyridoxaminephosphate Oxidase/metabolism , Animals , Chromosome Aberrations , DNA/physiology , Glucose/metabolism , Glycation End Products, Advanced/metabolism , Hyperglycemia/genetics , Models, Animal , Pyridoxaminephosphate Oxidase/genetics , RNA Interference , RNA, Small Interfering/genetics
5.
Chromosoma ; 128(1): 41-52, 2019 03.
Article in English | MEDLINE | ID: mdl-30612150

ABSTRACT

Aurora-A is a conserved mitotic kinase overexpressed in many types of cancer. Growing evidence shows that Aurora-A plays a crucial role in DNA damage response (DDR) although this aspect has been less characterized. We isolated a new aur-A mutation, named aur-A949, in Drosophila, and we showed that it causes chromosome aberrations (CABs). In addition, aur-A949 mutants were sensitive to X-ray treatment and showed impaired γ-H2Av foci dissolution kinetics. To identify the pathway in which Aur-A works, we conducted an epistasis analysis by evaluating CAB frequencies in double mutants carrying aur-A949 mutation combined to mutations in genes related to DNA damage response (DDR). We found that mutations in tefu (ATM) and in the histone variant H2Av were epistatic over aur-A949 indicating that Aur-A works in DDR and that it is required for γ-H2Av foci dissolution. More interestingly, we found that a mutation in lig4, a gene belonging to the non-homologous end joining (NHEJ) repair pathway, was epistatic over aur-A949. Based on studies in other systems, which show that phosphorylation is important to target Lig4 for degradation, we hypothesized that in aur-A949 mutant cells, there is a persistence of Lig4 that could be, in the end, responsible for CABs. Finally, we observed a synergistic interaction between Aur-A and the homologous recombination (HR) repair system component Rad 51 in the process that converts chromatid deletions into isochromatid deletions. Altogether, these data indicate that Aur-A depletion can elicit chromosome damage. This conclusion should be taken into consideration, since some anticancer therapies are aimed at reducing Aurora-A expression.


Subject(s)
Aurora Kinase A/genetics , Chromosomes, Insect/chemistry , DNA End-Joining Repair , DNA Repair Enzymes/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Epistasis, Genetic , Animals , Aurora Kinase A/deficiency , Chromosome Aberrations/radiation effects , Chromosomes, Insect/radiation effects , DNA Damage , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , DNA Repair Enzymes/metabolism , Drosophila Proteins/deficiency , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/radiation effects , Female , Genomic Instability , Histones/genetics , Histones/metabolism , Male , Mutation , Phosphorylation/radiation effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteolysis/radiation effects , X-Rays
6.
PLoS Genet ; 11(6): e1005260, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26110638

ABSTRACT

Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Nuclear Proteins/genetics , Telomere/genetics , Animals , Animals, Genetically Modified , Brain/metabolism , Chromosomes, Insect/genetics , Chromosomes, Insect/metabolism , DNA Replication , Drosophila Proteins/metabolism , Heterochromatin/metabolism , Mutation , Nuclear Proteins/metabolism , Polymorphism, Single Nucleotide , Proliferating Cell Nuclear Antigen/metabolism , Telomere/metabolism , Y Chromosome/genetics , Y Chromosome/metabolism
7.
PLoS Genet ; 11(6): e1005167, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26110528

ABSTRACT

Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively suggest that AKTIP/Ft1 works in concert with TRF1 to facilitate telomeric DNA replication.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Proteins/metabolism , Telomere/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/genetics , Cell Cycle/genetics , Cells, Cultured , DNA Damage/genetics , DNA Replication , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Fibroblasts/physiology , Genes, p53 , Humans , Mice , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Proteins/genetics , Telomere/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomeric Repeat Binding Protein 2/metabolism
8.
Nucleic Acids Res ; 39(13): 5459-73, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21421559

ABSTRACT

Deciphering the crosstalk between a host cell and a virus during infection is important not only to better define viral biology but also to improve our understanding of cellular processes. We identified the FANC pathway as a helper of viral replication and recombination by searching for cellular targets that are modified by adenovirus (Ad) infection and are involved in its outcome. This pathway, which is involved in the DNA damage response and checkpoint control, is altered in Fanconi anaemia, a rare cancer predisposition syndrome. We show here that Ad5 infection activates the FANC pathway independent of the classical DNA damage response. Infection with a non-replicating Ad shows that the presence of viral DNA is not sufficient to induce the monoubiquitination of FANCD2 but still activates the DNA damage response coordinated by phospho-NBS1 and phospho-CHK1. E1A expression alone fails to induce FANCD2 monoubiquitination, indicating that a productive viral infection and/or replication is required for FANC pathway activation. Our data indicate that Ad5 infection induces FANCD2 activation to promote its own replication. Specifically, we show that FANCD2 is involved in the recombination process that accompanies viral DNA replication. This study provides evidence of a DNA damage-independent function of the FANC pathway and identifies a cellular system involved in Ad5 recombination.


Subject(s)
Adenoviridae/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Recombination, Genetic , Virus Replication , Adenoviridae/physiology , Adenovirus E1A Proteins/metabolism , Cell Line , Cells, Cultured , DNA Damage , DNA Replication , Fanconi Anemia Complementation Group Proteins/metabolism , Humans , Kinetics , Ubiquitination
9.
Aging Cell ; 22(12): e14022, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37960940

ABSTRACT

DNA damage is emerging as a driver of heart disease, although the cascade of events, its timing, and the cell types involved are yet to be fully clarified. In this context, the implication of cardiomyocytes has been highlighted, while that of vasculature smooth muscle cells has been implicated but not explored exhaustively. In our previous work we characterized a factor called Ft1 in mice and AKTIP in humans whose depletion generates telomere instability and DNA damage. Herein, we explored the effect of the reduction of Ft1 on the heart with the goal of comparatively defining the impact of DNA damage targeted to vasculature smooth muscle cells to that of diffuse damage. Using two newly generated mouse models, Ft1 constitutively knocked out (Ft1ko) mice, and mice in which we targeted the Ft1 depletion to the smooth muscle cells (Ft1sm22ko), it is shown that both genetic models display cardiac defects but with differences. Both Ft1ko and Ft1sm22ko mice display hypertrophy, fibrosis, and functional heart defects. Interestingly, Ft1sm22ko mice have early milder pathological traits that become manifest with age. Significantly, the defects of Ft1ko mice, including the alteration of the left ventricle and functional heart defects, are rescued by depletion of the DNA damage sensor p53. These results point to Ft1 deficiency as a driver of cardiac disease and show that Ft1 deficiency targeted to vasculature smooth muscle cells generates a pre-pathological profile exacerbated by age.


Subject(s)
DNA Damage , Telomere , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , DNA Damage/genetics , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Telomere/genetics , Telomere/metabolism
10.
Cells ; 11(11)2022 05 25.
Article in English | MEDLINE | ID: mdl-35681444

ABSTRACT

Membrane-enclosed organelle compartmentalization is not the only way by which cell processes are spatially organized. Phase separation is emerging as a new driver in the organization of membrane-less compartments and biological processes. Liquid-liquid phase separation has been indicated as a new way to control the kinetics of molecular reactions and is based on weak multivalent interactions affecting the stoichiometry of the molecules involved. In the nucleus, liquid-liquid phase separation may represent an ancestral means of controlling genomic activity by forming discrete chromatin regions, regulating transcriptional activity, contributing to the assembly of DNA damage response foci, and controlling the organization of chromosomes. Liquid-liquid phase separation also contributes to chromatin function through its role in the reorganization of the nuclear periphery in the post-mitotic phase. Herein, we describe the basic principles regulating liquid-liquid phase separation, analyze examples of phase separation occurring in the nucleus, and dedicate attention to the implication of liquid-liquid phase separation in the reorganization of the nuclear periphery by the endosomal sorting complexes required for transport (ESCRT) machinery. Although some caution is warranted, current scientific knowledge allows for the hypothesis that many factors and processes in the cell are yet to be discovered which are functionally associated with phase separation.


Subject(s)
Cell Nucleus , Nuclear Envelope , Chromatin , Chromosomes , Endosomal Sorting Complexes Required for Transport/genetics
11.
Bone Res ; 10(1): 50, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35853852

ABSTRACT

The Gsα/cAMP signaling pathway mediates the effect of a variety of hormones and factors that regulate the homeostasis of the post-natal skeleton. Hence, the dysregulated activity of Gsα due to gain-of-function mutations (R201C/R201H) results in severe architectural and functional derangements of the entire bone/bone marrow organ. While the consequences of gain-of-function mutations of Gsα have been extensively investigated in osteoblasts and in bone marrow osteoprogenitor cells at various differentiation stages, their effect in adipogenically-committed bone marrow stromal cells has remained unaddressed. We generated a mouse model with expression of GsαR201C driven by the Adiponectin (Adq) promoter. Adq-GsαR201C mice developed a complex combination of metaphyseal, diaphyseal and cortical bone changes. In the metaphysis, GsαR201C caused an early phase of bone resorption followed by bone deposition. Metaphyseal bone formation was sustained by cells that were traced by Adq-Cre and eventually resulted in a high trabecular bone mass phenotype. In the diaphysis, GsαR201C, in combination with estrogen, triggered the osteogenic activity of Adq-Cre-targeted perivascular bone marrow stromal cells leading to intramedullary bone formation. Finally, consistent with the previously unnoticed presence of Adq-Cre-marked pericytes in intraosseous blood vessels, GsαR201C caused the development of a lytic phenotype that affected both cortical (increased porosity) and trabecular (tunneling resorption) bone. These results provide the first evidence that the Adq-cell network in the skeleton not only regulates bone resorption but also contributes to bone formation, and that the Gsα/cAMP pathway is a major modulator of both functions.

12.
J Exp Clin Cancer Res ; 41(1): 273, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36096808

ABSTRACT

BACKGROUND: Lamins, key nuclear lamina components, have been proposed as candidate risk biomarkers in different types of cancer but their accuracy is still debated. AKTIP is a telomeric protein with the property of being enriched at the nuclear lamina. AKTIP has similarity with the tumor susceptibility gene TSG101. AKTIP deficiency generates genome instability and, in p53-/- mice, the reduction of the mouse counterpart of AKTIP induces the exacerbation of lymphomas. Here, we asked whether the distribution of AKTIP is altered in cancer cells and whether this is associated with alterations of lamins. METHODS: We performed super-resolution imaging, quantification of lamin expression and nuclear morphology on HeLa, MCF7, and A549 tumor cells, and on non-transformed fibroblasts from healthy donor and HGPS (LMNA c.1824C > T p.Gly608Gly) and EDMD2 (LMNA c.775 T > G) patients. As proof of principle model combining a defined lamin alteration with a tumor cell setting, we produced HeLa cells exogenously expressing the HGPS lamin mutant progerin that alters nuclear morphology. RESULTS: In HeLa cells, AKTIP locates at less than 0.5 µm from the nuclear rim and co-localizes with lamin A/C. As compared to HeLa, there is a reduced co-localization of AKTIP with lamin A/C in both MCF7 and A549. Additionally, MCF7 display lower amounts of AKTIP at the rim. The analyses in non-transformed fibroblasts show that AKTIP mislocalizes in HGPS cells but not in EDMD2. The integrated analysis of lamin expression, nuclear morphology, and AKTIP topology shows that positioning of AKTIP is influenced not only by lamin expression, but also by nuclear morphology. This conclusion is validated by progerin-expressing HeLa cells in which nuclei are morphologically altered and AKTIP is mislocalized. CONCLUSIONS: Our data show that the combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP. The results also point to the fact that lamin alterations per se are not predictive of AKTIP mislocalization, in both non-transformed and tumor cells. In more general terms, this study supports the thesis that a combined analytical approach should be preferred to predict lamin-associated changes in tumor cells. This paves the way of next translational evaluation to validate the use of this combined analytical approach as risk biomarker.


Subject(s)
Lamin Type A , Progeria , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins/metabolism , Fibroblasts/metabolism , HeLa Cells , Humans , Lamin Type A/genetics , Lamin Type A/metabolism , Mice , Progeria/genetics , Progeria/metabolism , Progeria/pathology , Telomere/metabolism
13.
J Gene Med ; 13(11): 622-31, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22002551

ABSTRACT

BACKGROUND: The ability to direct efficiently and specifically carriers toward target cells and express the transgene of interest is a critical step in gene therapy trails. The display of targeting molecules on the surface of phage particles might represent a potent solution. In the present study, we evaluated a chemical coupling strategy for displaying human holotransferrin as a targeting molecule on the surface of phage lambda particles for specifically delivering green fluorescent protein (GFP) encoding gene into a human cell line. METHODS: Human holotransferrin was coupled on the phage lambda particles bearing a GFP-expression cassette by a chemical coupling strategy to formulate transferrin-targeted lambda-GFP (Tf-targeted-λ-GFP) gene nanocarrier. The carrier was then characterized by phage-enzyme-linked immunosorbent assay experiments and used for transfection of the human 293T cell line. Particle internalization into the cells was evaluated by immunocytochemical staining and transfection efficacy was studied using fluorescence-activated cell sorting (FACS) analysis. RESULTS: Characterization of the nanocarrier showed a rather high copy number (274 molecules) of transferrin molecules coupled per phage particle. Immunocytochemical staining revealed efficient internalization of the Tf-targeted-λ-GFP compared to wild lambda-GFP (λ-GFP) particles. FACS analysis showed 6.72% GFP positive cells for transfections mediated by Tf-targeted-λ-GFP, whereas the value was 0.61% for wild lambda-GFP particles. CONCLUSIONS: Our findings highlight chemical coupling as an efficient and straightforward strategy for displaying a targeting molecule at high density on the phage surface, which, in turn, may improve the efficiency of phage-mediated gene transfer and expression.


Subject(s)
Bacteriophage lambda/chemistry , Gene Transfer Techniques , Nanoparticles/chemistry , Transferrin/chemistry , Bacteriophage lambda/genetics , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/virology , Flow Cytometry , Gene Dosage , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , HEK293 Cells , Humans , Immunohistochemistry , Protein Binding , Receptors, Virus/chemistry , Transfection , Transferrin/genetics , Transgenes
14.
Nucleus ; 11(1): 205-218, 2020 12.
Article in English | MEDLINE | ID: mdl-32835589

ABSTRACT

The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envelope components are lamins that associate with a panoply of factors, including the LEM domain proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled and associated with chromatin at the end of mitosis when telomeres tether to the nuclear periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a machinery operating in multiple membrane assembly pathways, including nuclear envelope reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as laminopathies and cancer. ABBREVIATIONS: na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2-emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic Reticulum; SPB, spindle pole body.


Subject(s)
Chromatin/metabolism , Laminopathies/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Nuclear Envelope/metabolism , Animals , Chromatin/genetics , Chromatin/pathology , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Humans , Interphase , Laminopathies/genetics , Laminopathies/pathology , Lamins/genetics , Lamins/metabolism , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Nuclear Envelope/genetics , Nuclear Envelope/pathology
15.
Cell Rep ; 30(5): 1358-1372.e5, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32023455

ABSTRACT

Biogenesis of the human telomerase RNA (hTR) involves a complex series of posttranscriptional modifications, including hypermethylation of the 5' mono-methylguanosine cap to a tri-methylguanosine cap (TMG). How the TMG cap affects hTR maturation is unknown. Here, we show that depletion of trimethylguanosine synthase 1 (TGS1), the enzyme responsible for cap hypermethylation, increases levels of hTR and telomerase. Diminished trimethylation increases hTR association with the cap-binding complex (CBC) and with Sm chaperone proteins. Loss of TGS1 causes an increase in accumulation of mature hTR in both the nucleus and the cytoplasm compared with controls. In TGS1 mutant cells, increased hTR assembles with telomerase reverse transcriptase (TERT) protein to yield elevated active telomerase complexes and increased telomerase activity, resulting in telomere elongation in cultured human cells. Our results show that TGS1-mediated hypermethylation of the hTR cap inhibits hTR accumulation, restrains levels of assembled telomerase, and limits telomere elongation.


Subject(s)
Methyltransferases/deficiency , RNA/metabolism , Telomerase/metabolism , Telomere/metabolism , Biocatalysis , Coiled Bodies/metabolism , Guanosine/metabolism , HEK293 Cells , HeLa Cells , Humans , Methylation , Methyltransferases/genetics , Models, Biological , Mutation/genetics , Polyadenylation , RNA Caps/metabolism , Subcellular Fractions/metabolism
16.
PLoS One ; 15(1): e0227279, 2020.
Article in English | MEDLINE | ID: mdl-31999703

ABSTRACT

Fibrous dysplasia (FD) of bone is a complex disease of the skeleton caused by dominant activating mutations of the GNAS locus encoding for the α subunit of the G protein-coupled receptor complex (Gsα). The mutation involves a substitution of arginine at position 201 by histidine or cysteine (GsαR201H or R201C), which leads to overproduction of cAMP. Several signaling pathways are implicated downstream of excess cAMP in the manifestation of disease. However, the pathogenesis of FD remains largely unknown. The overall FD phenotype can be attributed to alterations of skeletal stem/progenitor cells which normally develop into osteogenic or adipogenic cells (in cis), and are also known to provide support to angiogenesis, hematopoiesis, and osteoclastogenesis (in trans). In order to dissect the molecular pathways rooted in skeletal stem/progenitor cells by FD mutations, we engineered human skeletal stem/progenitor cells with the GsαR201C mutation and performed transcriptomic analysis. Our data suggest that this FD mutation profoundly alters the properties of skeletal stem/progenitor cells by pushing them towards formation of disorganized bone with a concomitant alteration of adipogenic differentiation. In addition, the mutation creates an altered in trans environment that induces neovascularization, cytokine/chemokine changes and osteoclastogenesis. In silico comparison of our data with the signature of FD craniofacial samples highlighted common traits, such as the upregulation of ADAM (A Disintegrin and Metalloprotease) proteins and other matrix-related factors, and of PDE7B (Phosphodiesterase 7B), which can be considered as a buffering process, activated to compensate for excess cAMP. We also observed high levels of CEBPs (CCAAT-Enhancer Binding Proteins) in both data sets, factors related to browning of white fat. This is the first analysis of the reaction of human skeletal stem/progenitor cells to the introduction of the FD mutation and we believe it provides a useful background for further studies on the molecular basis of the disease and for the identification of novel potential therapeutic targets.


Subject(s)
Bone Marrow Cells/physiology , Cell Differentiation/genetics , Chromogranins/genetics , Fibrous Dysplasia of Bone/pathology , GTP-Binding Protein alpha Subunits, Gs/genetics , Stem Cells/physiology , ADAM Proteins/metabolism , Adipogenesis/genetics , Adipose Tissue, White/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cells, Cultured , Chromogranins/metabolism , Computer Simulation , Cyclic Nucleotide Phosphodiesterases, Type 7/metabolism , Datasets as Topic , Fibrous Dysplasia of Bone/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , Gain of Function Mutation , Gene Expression Profiling , Healthy Volunteers , Humans , Oligonucleotide Array Sequence Analysis , Osteoblasts/metabolism , Osteogenesis/genetics , Primary Cell Culture , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Stromal Cells/physiology , Up-Regulation
17.
Front Mol Neurosci ; 12: 71, 2019.
Article in English | MEDLINE | ID: mdl-30983967

ABSTRACT

The options available for genetic modification of cells of the central nervous system (CNS) have greatly increased in the last decade. The current panoply of viral and nonviral vectors provides multifunctional platforms to deliver expression cassettes to many structures and nuclei. These cassettes can replace defective genes, modify a given pathway perturbed by diseases, or express proteins that can be selectively activated by drugs or light to extinguish or excite neurons. This review focuses on the use of canine adenovirus type 2 (CAV-2) vectors for gene transfer to neurons in the brain, spinal cord, and peripheral nervous system. We discuss (1) recent advances in vector production, (2) why CAV-2 vectors preferentially transduce neurons, (3) the mechanism underlying their widespread distribution via retrograde axonal transport, (4) how CAV-2 vectors have been used to address structure/function, and (5) their therapeutic applications.

18.
Sci Rep ; 9(1): 14188, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31578392

ABSTRACT

In eukaryotes, pyridoxal kinase (PDXK) acts in vitamin B6 salvage pathway to produce pyridoxal 5'-phosphate (PLP), the active form of the vitamin, which is implicated in numerous crucial metabolic reactions. In Drosophila, mutations in the dPdxk gene cause chromosome aberrations (CABs) and increase glucose content in larval hemolymph. Both phenotypes are rescued by the expression of the wild type human PDXK counterpart. Here we expressed, in dPdxk1 mutant flies, four PDXK human variants: three (D87H, V128I and H246Q) listed in databases, and one (A243G) found in a genetic screening in patients with diabetes. Differently from human wild type PDXK, none of the variants was able to completely rescue CABs and glucose content elicited by dPdxk1 mutation. Biochemical analysis of D87H, V128I, H246Q and A243G proteins revealed reduced catalytic activity and/or reduced affinity for PLP precursors which justify this behavior. Although these variants are rare in population and carried in heterozygous condition, our findings suggest that in certain metabolic contexts and diseases in which PLP levels are reduced, the presence of these PDXK variants could threaten genome integrity and increase cancer risk.


Subject(s)
Drosophila/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Pyridoxal Kinase/genetics , Pyridoxal Phosphate/genetics , Animals , Animals, Genetically Modified/genetics , Chromosome Aberrations , Drosophila/metabolism , Gene Expression Regulation, Enzymologic/genetics , Genomic Instability , Glucose/metabolism , Hemolymph/metabolism , Humans , Larva/genetics , Larva/metabolism , Metabolic Networks and Pathways/genetics , Mutation/genetics , Pyridoxal Kinase/metabolism , Pyridoxal Phosphate/biosynthesis , Vitamin B 6/biosynthesis , Vitamin B 6/genetics
19.
Sci Rep ; 8(1): 11432, 2018 07 30.
Article in English | MEDLINE | ID: mdl-30061626

ABSTRACT

Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer.


Subject(s)
DNA Damage , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Drosophila melanogaster/physiology , Protective Agents/therapeutic use , Vitamin B 6/therapeutic use , Animals , Body Size/drug effects , Brain/pathology , Chromosome Aberrations , DNA/metabolism , Disease Models, Animal , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/drug effects , Female , Glucose/toxicity , Glycation End Products, Advanced/toxicity , Histones/metabolism , Insulin/metabolism , Larva/drug effects , Male , Protective Agents/pharmacology , Pyridoxine/analogs & derivatives , Pyridoxine/toxicity , Signal Transduction/drug effects , Vitamin B 6/pharmacology
20.
Front Genet ; 9: 388, 2018.
Article in English | MEDLINE | ID: mdl-30271425

ABSTRACT

Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, works as cofactor in numerous enzymatic reactions and it behaves as antioxidant molecule. PLP deficiency has been associated to many human pathologies including cancer and diabetes and the mechanism behind this connection is now becoming clearer. Inadequate intake of this vitamin increases the risk of many cancers; furthermore, PLP deprivation impairs insulin secretion in rats, whereas PLP supplementation prevents diabetic complications and improves gestational diabetes. Growing evidence shows that diabetes and cancer are correlated not only because they share same risk factors but also because diabetic patients have a higher risk of developing tumors, although the underlying mechanisms remain elusive. In this review, we will explore data obtained in Drosophila revealing the existence of a connection between vitamin B6, DNA damage and diabetes, as flies in the past decade turned out to be a promising model also for metabolic diseases including diabetes. We will focus on recent studies that revealed a specific role for PLP in maintaining chromosome integrity and glucose homeostasis, and we will show that these aspects are correlated. In addition, we will discuss recent data identifying PLP as a putative linking factor between diabetes and cancer.

SELECTION OF CITATIONS
SEARCH DETAIL