Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Publication year range
1.
Radiology ; 310(1): e223170, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38259208

ABSTRACT

Despite recent advancements in machine learning (ML) applications in health care, there have been few benefits and improvements to clinical medicine in the hospital setting. To facilitate clinical adaptation of methods in ML, this review proposes a standardized framework for the step-by-step implementation of artificial intelligence into the clinical practice of radiology that focuses on three key components: problem identification, stakeholder alignment, and pipeline integration. A review of the recent literature and empirical evidence in radiologic imaging applications justifies this approach and offers a discussion on structuring implementation efforts to help other hospital practices leverage ML to improve patient care. Clinical trial registration no. 04242667 © RSNA, 2024 Supplemental material is available for this article.


Subject(s)
Artificial Intelligence , Radiology , Humans , Radiography , Algorithms , Machine Learning
2.
Eur Radiol ; 30(7): 3770-3781, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32107603

ABSTRACT

OBJECTIVE: This study was conducted in order to assess the diagnostic accuracy of LI-RADS v2018 ancillary features (AFs) favoring malignancy applied to LR-3 and LR-4 observations on gadoxetate-enhanced MRI. METHODS: In this retrospective dual-institution study, we included consecutive patients at high risk for hepatocellular carcinoma (HCC) imaged with gadoxetate disodium-enhanced MRI between 2009 and 2014 fulfilling the following criteria: (i) at least one LR-3 or LR-4 observation ≥ 10 mm; (ii) nonrim arterial phase hyperenhancement; and (iii) confirmation of benignity or malignancy by pathology or imaging follow-up. We compared the distribution of AFs between HCCs and benign observations and the diagnostic performance for the diagnosis of HCC using univariate and multivariate analyses. Significance was set at p value < 0.05. RESULTS: Two hundred five observations were selected in 155 patients (108 M, 47 F) including 167 (81.5%) LR-3 and 38 (18.5%) LR-4. There were 126 (61.5%) HCCs and 79 (28.5%) benign lesions. A significantly larger number of AFs favoring malignancy were found in LR-3 and LR-4 lesions that progressed to HCC compared to benign lesions (p < 0.001 and p = 0.003, respectively). The most common AFs favoring malignancy in HCCs were hepatobiliary phase (HBP) hypointensity (p < 0.001), transitional phase hypointensity (p < 0.001), and mild-moderate T2 hyperintensity (p < 0.001). Sensitivity and specificity of AFs for the diagnosis of HCC ranged 0.8-76.2% and 86.1-100%, respectively. HBP hypointensity yielded the highest sensitivity but also the lowest specificity and was the only AF remaining independently associated with the diagnosis of HCC at multivariate logistic regression analysis (OR 14.83, 95% CI 5.81-42.76, p < 0.001). CONCLUSIONS: Among all AFs, HBP hypointensity yields the highest sensitivity for the diagnosis of HCC. KEY POINTS: • LR-3 and LR-4 observations diagnosed as HCC have a significantly higher number of ancillary features favoring malignancy compared to observations proven to be benign. • The presence of three or more ancillary features favoring malignancy has a high specificity (96.2%) for the diagnosis of HCC. • Among all ancillary features favoring malignancy, hepatobiliary phase hypointensity yields the highest sensitivity, but also the lowest specificity for the diagnosis of HCC.


Subject(s)
Carcinoma, Hepatocellular/diagnosis , Gadolinium DTPA/pharmacology , Liver Neoplasms/diagnosis , Magnetic Resonance Imaging/methods , Carcinoma, Hepatocellular/blood supply , Contrast Media/pharmacology , Female , Humans , Liver Neoplasms/blood supply , Male , Middle Aged , Reproducibility of Results , Research Design , Retrospective Studies
3.
J Biomed Inform ; 92: 103137, 2019 04.
Article in English | MEDLINE | ID: mdl-30807833

ABSTRACT

We propose an efficient natural language processing approach for inferring the BI-RADS final assessment categories by analyzing only the mammogram findings reported by the mammographer in narrative form. The proposed hybrid method integrates semantic term embedding with distributional semantics, producing a context-aware vector representation of unstructured mammography reports. A large corpus of unannotated mammography reports (300,000) was used to learn the context of the key-terms using a distributional semantics approach, and the trained model was applied to generate context-aware vector representations of the reports annotated with BI-RADS category (22,091). The vectorized reports were utilized to train a supervised classifier to derive the BI-RADS assessment class. Even though the majority of the proposed embedding pipeline is unsupervised, the classifier was able to recognize substantial semantic information for deriving the BI-RADS categorization not only on a holdout internal testset and also on an external validation set (1900 reports). Our proposed method outperforms a recently published domain-specific rule-based system and could be relevant for evaluating concordance between radiologists. With minimal requirement for task specific customization, the proposed method can be easily transferable to a different domain to support large scale text mining or derivation of patient phenotype.


Subject(s)
Breast/diagnostic imaging , Data Mining/methods , Deep Learning , Mammography , Natural Language Processing , Female , Humans , Radiographic Image Interpretation, Computer-Assisted , Semantics
4.
Lancet ; 382(9894): 790-6, 2013 Aug 31.
Article in English | MEDLINE | ID: mdl-23755828

ABSTRACT

BACKGROUND: VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans. METHODS: We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged ≥18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 -1639G→A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5×10(-8) in the discovery cohort and p<0·0038 in the replication cohort. FINDINGS: The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1·51×10(-8)). This association was confirmed in the replication cohort (p=5·04×10(-5)); analysis of the two cohorts together produced a p value of 4·5×10(-12). Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6·92 mg/week and those homozygous 9·34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement). INTERPRETATION: A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population. FUNDING: National Institutes of Health, American Heart Association, Howard Hughes Medical Institute, Wisconsin Network for Health Research, and the Wellcome Trust.


Subject(s)
Anticoagulants/administration & dosage , Aryl Hydrocarbon Hydroxylases/genetics , Black or African American/genetics , Polymorphism, Single Nucleotide/genetics , Warfarin/administration & dosage , Alleles , Anticoagulants/pharmacokinetics , Cytochrome P-450 CYP2C9 , Female , Genome-Wide Association Study , Genotype , Humans , Male , Mixed Function Oxygenases/genetics , Vitamin K Epoxide Reductases , Warfarin/pharmacokinetics
5.
Sci Rep ; 14(1): 14807, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926479

ABSTRACT

The study of muscle mass as an imaging-derived phenotype (IDP) may yield new insights into determining the normal and pathologic variations in muscle mass in the population. This can be done by determining 3D abdominal muscle mass from 12 distinct abdominal muscle regions and groups using computed tomography (CT) in a racially diverse medical biobank. To develop a fully automatic technique for assessment of CT abdominal muscle IDPs and preliminarily determine abdominal muscle IDP variations with age and sex in a clinically and racially diverse medical biobank. This retrospective study was conducted using the Penn Medicine BioBank (PMBB), a research protocol that recruits adult participants during outpatient visits at hospitals in the Penn Medicine network. We developed a deep residual U-Net (ResUNet) to segment 12 abdominal muscle groups including the left and right psoas, quadratus lumborum, erector spinae, gluteus medius, rectus abdominis, and lateral abdominals. 110 CT studies were randomly selected for training, validation, and testing. 44 of the 110 CT studies were selected to enrich the dataset with representative cases of intra-abdominal and abdominal wall pathology. The studies were divided into non-overlapping training, validation and testing sets. Model performance was evaluated using the Sørensen-Dice coefficient. Volumes of individual muscle groups were plotted to distribution curves. To investigate associations between muscle IDPs, age, and sex, deep learning model segmentations were performed on a larger abdominal CT dataset from PMBB consisting of 295 studies. Multivariable models were used to determine relationships between muscle mass, age and sex. The model's performance (Dice scores) on the test data was the following: psoas: 0.85 ± 0.12, quadratus lumborum: 0.72 ± 0.14, erector spinae: 0.92 ± 0.07, gluteus medius: 0.90 ± 0.08, rectus abdominis: 0.85 ± 0.08, lateral abdominals: 0.85 ± 0.09. The average Dice score across all muscle groups was 0.86 ± 0.11. Average total muscle mass for females was 2041 ± 560.7 g with a high of 2256 ± 560.1 g (41-50 year old cohort) and a change of - 0.96 g/year, declining to an average mass of 1579 ± 408.8 g (81-100 year old cohort). Average total muscle mass for males was 3086 ± 769.1 g with a high of 3385 ± 819.3 g (51-60 year old cohort) and a change of - 1.73 g/year, declining to an average mass of 2629 ± 536.7 g (81-100 year old cohort). Quadratus lumborum was most highly correlated with age for both sexes (correlation coefficient of - 0.5). Gluteus medius mass in females was positively correlated with age with a coefficient of 0.22. These preliminary findings show that our CNN can automate detailed abdominal muscle volume measurement. Unlike prior efforts, this technique provides 3D muscle segmentations of individual muscles. This technique will dramatically impact sarcopenia diagnosis and research, elucidating its clinical and public health implications. Our results suggest a peak age range for muscle mass and an expected rate of decline, both of which vary between genders. Future goals are to investigate genetic variants for sarcopenia and malnutrition, while describing genotype-phenotype associations of muscle mass in healthy humans using imaging-derived phenotypes. It is feasible to obtain 3D abdominal muscle IDPs with high accuracy from patients in a medical biobank using fully automated machine learning methods. Abdominal muscle IDPs showed significant variations in lean mass by age and sex. In the future, this tool can be leveraged to perform a genome-wide association study across the medical biobank and determine genetic variants associated with early or accelerated muscle wasting.


Subject(s)
Abdominal Muscles , Biological Specimen Banks , Phenotype , Tomography, X-Ray Computed , Humans , Female , Male , Tomography, X-Ray Computed/methods , Middle Aged , Adult , Retrospective Studies , Aged , Abdominal Muscles/diagnostic imaging , Age Factors , Sex Factors , Aged, 80 and over
6.
Sci Rep ; 14(1): 53, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167550

ABSTRACT

The objective of this study is to define CT imaging derived phenotypes for patients with hepatic steatosis, a common metabolic liver condition, and determine its association with patient data from a medical biobank. There is a need to further characterize hepatic steatosis in lean patients, as its epidemiology may differ from that in overweight patients. A deep learning method determined the spleen-hepatic attenuation difference (SHAD) in Hounsfield Units (HU) on abdominal CT scans as a quantitative measure of hepatic steatosis. The patient cohort was stratified by BMI with a threshold of 25 kg/m2 and hepatic steatosis with threshold SHAD ≥ - 1 HU or liver mean attenuation ≤ 40 HU. Patient characteristics, diagnoses, and laboratory results representing metabolism and liver function were investigated. A phenome-wide association study (PheWAS) was performed for the statistical interaction between SHAD and the binary characteristic LEAN. The cohort contained 8914 patients-lean patients with (N = 278, 3.1%) and without (N = 1867, 20.9%) steatosis, and overweight patients with (N = 1863, 20.9%) and without (N = 4906, 55.0%) steatosis. Among all lean patients, those with steatosis had increased rates of cardiovascular disease (41.7 vs 27.8%), hypertension (86.7 vs 49.8%), and type 2 diabetes mellitus (29.1 vs 15.7%) (all p < 0.0001). Ten phenotypes were significant in the PheWAS, including chronic kidney disease, renal failure, and cardiovascular disease. Hepatic steatosis was found to be associated with cardiovascular, kidney, and metabolic conditions, separate from overweight BMI.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Fatty Liver , Non-alcoholic Fatty Liver Disease , Humans , Cardiovascular Diseases/complications , Overweight/complications , Overweight/diagnostic imaging , Diabetes Mellitus, Type 2/complications , Fatty Liver/complications , Tomography, X-Ray Computed/methods , Phenotype , Non-alcoholic Fatty Liver Disease/complications
7.
Nat Commun ; 15(1): 5763, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982051

ABSTRACT

While high circulating tumor DNA (ctDNA) levels are associated with poor survival for multiple cancers, variant-specific differences in the association of ctDNA levels and survival have not been examined. Here we investigate KRAS ctDNA (ctKRAS) variant-specific associations with overall and progression-free survival (OS/PFS) in first-line metastatic pancreatic ductal adenocarcinoma (mPDAC) for patients receiving chemoimmunotherapy ("PRINCE", NCT03214250), and an independent cohort receiving standard of care (SOC) chemotherapy. For PRINCE, higher baseline plasma levels are associated with worse OS for ctKRAS G12D (log-rank p = 0.0010) but not G12V (p = 0.7101), even with adjustment for clinical covariates. Early, on-therapy clearance of G12D (p = 0.0002), but not G12V (p = 0.4058), strongly associates with OS for PRINCE. Similar results are obtained for the SOC cohort, and for PFS in both cohorts. These results suggest ctKRAS G12D but not G12V as a promising prognostic biomarker for mPDAC and that G12D clearance could also serve as an early biomarker of response.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Circulating Tumor DNA , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Female , Male , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Middle Aged , Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Prognosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mutation , Progression-Free Survival , Neoplasm Metastasis
8.
BMC Genomics ; 14 Suppl 3: S11, 2013.
Article in English | MEDLINE | ID: mdl-23819817

ABSTRACT

BACKGROUND: Many genome-wide association studies focus on associating single loci with target phenotypes. However, in the setting of rare variation, accumulating sufficient samples to assess these associations can be difficult. Moreover, multiple variations in a gene or a set of genes within a pathway may all contribute to the phenotype, suggesting that the aggregation of variations found over the gene or pathway may be useful for improving the power to detect associations. RESULTS: Here, we present a method for aggregating single nucleotide polymorphisms (SNPs) along biologically relevant pathways in order to seek genetic associations with phenotypes. Our method uses all available genetic variants and does not remove those in linkage disequilibrium (LD). Instead, it uses a novel SNP weighting scheme to down-weight the contributions of correlated SNPs. We apply our method to three cohorts of patients taking warfarin: two European descent cohorts and an African American cohort. Although the clinical covariates and key pharmacogenetic loci for warfarin have been characterized, our association metric identifies a significant association with mutations distributed throughout the pathway of warfarin metabolism. We improve dose prediction after using all known clinical covariates and pharmacogenetic variants in VKORC1 and CYP2C9. In particular, we find that at least 1% of the missing heritability in warfarin dose may be due to the aggregated effects of variations in the warfarin metabolic pathway, even though the SNPs do not individually show a significant association. CONCLUSIONS: Our method allows researchers to study aggregative SNP effects in an unbiased manner by not preselecting SNPs. It retains all the available information by accounting for LD-structure through weighting, which eliminates the need for LD pruning.


Subject(s)
Genome, Human/genetics , Genome-Wide Association Study/methods , Metabolic Networks and Pathways/genetics , Models, Genetic , Polymorphism, Single Nucleotide/genetics , Warfarin/metabolism , Black or African American/genetics , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P-450 CYP2C9 , Dose-Response Relationship, Drug , Genotype , Humans , Linkage Disequilibrium , Mixed Function Oxygenases/genetics , Vitamin K Epoxide Reductases , Warfarin/administration & dosage , White People/genetics
9.
Diagnostics (Basel) ; 13(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37627951

ABSTRACT

COVID-19 is an ongoing global health pandemic. Although COVID-19 can be diagnosed with various tests such as PCR, these tests do not establish pulmonary disease burden. Whereas point-of-care lung ultrasound (POCUS) can directly assess the severity of characteristic pulmonary findings of COVID-19, the advantage of using US is that it is inexpensive, portable, and widely available for use in many clinical settings. For automated assessment of pulmonary findings, we have developed an unsupervised learning technique termed the calculated lung ultrasound (CLU) index. The CLU can quantify various types of lung findings, such as A or B lines, consolidations, and pleural effusions, and it uses these findings to calculate a CLU index score, which is a quantitative measure of pulmonary disease burden. This is accomplished using an unsupervised, patient-specific approach that does not require training on a large dataset. The CLU was tested on 52 lung ultrasound examinations from several institutions. CLU demonstrated excellent concordance with radiologist findings in different pulmonary disease states. Given the global nature of COVID-19, the CLU would be useful for sonographers and physicians in resource-strapped areas with limited ultrasound training and diagnostic capacities for more accurate assessment of pulmonary status.

10.
Predict Intell Med ; 14277: 46-57, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38957550

ABSTRACT

Early diagnosis of Type 2 Diabetes Mellitus (T2DM) is crucial to enable timely therapeutic interventions and lifestyle modifications. As the time available for clinical office visits shortens and medical imaging data become more widely available, patient image data could be used to opportunistically identify patients for additional T2DM diagnostic workup by physicians. We investigated whether image-derived phenotypic data could be leveraged in tabular learning classifier models to predict T2DM risk in an automated fashion to flag high-risk patients without the need for additional blood laboratory measurements. In contrast to traditional binary classifiers, we leverage neural networks and decision tree models to represent patient data as 'SynthA1c' latent variables, which mimic blood hemoglobin A1c empirical lab measurements, that achieve sensitivities as high as 87.6%. To evaluate how SynthA1c models may generalize to other patient populations, we introduce a novel generalizable metric that uses vanilla data augmentation techniques to predict model performance on input out-of-domain covariates. We show that image-derived phenotypes and physical examination data together can accurately predict diabetes risk as a means of opportunistic risk stratification enabled by artificial intelligence and medical imaging. Our code is available at https://github.com/allisonjchae/DMT2RiskAssessment.

11.
Blood ; 115(18): 3827-34, 2010 May 06.
Article in English | MEDLINE | ID: mdl-20203262

ABSTRACT

Warfarin-dosing algorithms incorporating CYP2C9 and VKORC1 -1639G>A improve dose prediction compared with algorithms based solely on clinical and demographic factors. However, these algorithms better capture dose variability among whites than Asians or blacks. Herein, we evaluate whether other VKORC1 polymorphisms and haplotypes explain additional variation in warfarin dose beyond that explained by VKORC1 -1639G>A among Asians (n = 1103), blacks (n = 670), and whites (n = 3113). Participants were recruited from 11 countries as part of the International Warfarin Pharmacogenetics Consortium effort. Evaluation of the effects of individual VKORC1 single nucleotide polymorphisms (SNPs) and haplotypes on warfarin dose used both univariate and multi variable linear regression. VKORC1 -1639G>A and 1173C>T individually explained the greatest variance in dose in all 3 racial groups. Incorporation of additional VKORC1 SNPs or haplotypes did not further improve dose prediction. VKORC1 explained greater variability in dose among whites than blacks and Asians. Differences in the percentage of variance in dose explained by VKORC1 across race were largely accounted for by the frequency of the -1639A (or 1173T) allele. Thus, clinicians should recognize that, although at a population level, the contribution of VKORC1 toward dose requirements is higher in whites than in nonwhites; genotype predicts similar dose requirements across racial groups.


Subject(s)
Anticoagulants/administration & dosage , Mixed Function Oxygenases/genetics , Polymorphism, Single Nucleotide/genetics , Racial Groups/genetics , Warfarin/administration & dosage , Adult , Aged , Aged, 80 and over , Algorithms , Asian People/genetics , Black People/genetics , Dose-Response Relationship, Drug , Female , Genotype , Haplotypes , Humans , Linkage Disequilibrium , Male , Middle Aged , Pharmacogenetics , Risk Factors , Vitamin K Epoxide Reductases , White People/genetics
12.
IEEE Int Ultrason Symp ; 20222022 Oct.
Article in English | MEDLINE | ID: mdl-37220606

ABSTRACT

Progression of liver fibrosis to cirrhosis, a severe non-reversible process, is one of the most critical risk factors in developing hepatocellular carcinoma and liver failure. Detection of liver fibrosis at an early stage is therefore essential for better patient management. Ultrasound (US) imaging can provide a noninvasive alternative to biopsies. This study evaluates quantitative US texture features to improve early-stage versus advanced liver fibrosis detection. 157 B-mode US images of different liver lobes acquired from early and advanced fibrosis rat cases were used for analysis. 5-6 regions of interest were placed on each image. Twelve quantitative features that describe liver texture changes were extracted from the images, including first-order histogram, run length (RL), and gray level co-occurrence matrix (GLCM). The diagnostic performance of individual features was high with AUC ranging from 0.80 to 0.94. Logistic regression with leave-one-out cross-validation was used to evaluate the performance of the combined features. All features combined showed a slight improvement in performance with AUC = 0.95, sensitivity = 96.8%, and specificity = 93.7%. Quantitative US texture features characterize liver fibrosis changes with high accuracy and can differentiate early from advanced disease. Quantitative ultrasound, if validated in future clinical studies, can have a potential role in identifying fibrosis changes that are not easily detected by visual US image assessments.

13.
Diagnostics (Basel) ; 12(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36359580

ABSTRACT

Objective: The study evaluates quantitative ultrasound (QUS) texture features with machine learning (ML) to enhance the sensitivity of B-mode ultrasound (US) for the detection of fibrosis at an early stage and distinguish it from advanced fibrosis. Different ML methods were evaluated to determine the best diagnostic model. Methods: 233 B-mode images of liver lobes with early and advanced-stage fibrosis induced in a rat model were analyzed. Sixteen features describing liver texture were measured from regions of interest (ROIs) drawn on B-mode images. The texture features included a first-order statistics run length (RL) and gray-level co-occurrence matrix (GLCM). The features discriminating between early and advanced fibrosis were used to build diagnostic models with logistic regression (LR), naïve Bayes (nB), and multi-class perceptron (MLP). The diagnostic performances of the models were compared by ROC analysis using different train-test sampling approaches, including leave-one-out, 10-fold cross-validation, and varying percentage splits. METAVIR scoring was used for histological fibrosis staging of the liver. Results: 15 features showed a significant difference between the advanced and early liver fibrosis groups, p < 0.05. Among the individual features, first-order statics features led to the best classification with a sensitivity of 82.1−90.5% and a specificity of 87.1−89.8%. For the features combined, the diagnostic performances of nB and MLP were high, with the area under the ROC curve (AUC) approaching 0.95−0.96. LR also yielded high diagnostic performance (AUC = 0.91−0.92) but was lower than nB and MLP. The diagnostic variability between test-train trials, measured by the coefficient-of-variation (CV), was higher for LR (3−5%) than nB and MLP (1−2%). Conclusion: Quantitative ultrasound with machine learning differentiated early and advanced fibrosis. Ultrasound B-mode images contain a high level of information to enable accurate diagnosis with relatively straightforward machine learning methods like naïve Bayes and logistic regression. Implementing simple ML approaches with QUS features in clinical settings could reduce the user-dependent limitation of ultrasound in detecting early-stage liver fibrosis.

14.
Radiol Artif Intell ; 4(3): e210174, 2022 May.
Article in English | MEDLINE | ID: mdl-35652118

ABSTRACT

Purpose: To develop a deep learning-based risk stratification system for thyroid nodules using US cine images. Materials and Methods: In this retrospective study, 192 biopsy-confirmed thyroid nodules (175 benign, 17 malignant) in 167 unique patients (mean age, 56 years ± 16 [SD], 137 women) undergoing cine US between April 2017 and May 2018 with American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS)-structured radiology reports were evaluated. A deep learning-based system that exploits the cine images obtained during three-dimensional volumetric thyroid scans and outputs malignancy risk was developed and compared, using fivefold cross-validation, against a two-dimensional (2D) deep learning-based model (Static-2DCNN), a radiomics-based model using cine images (Cine-Radiomics), and the ACR TI-RADS level, with histopathologic diagnosis as ground truth. The system was used to revise the ACR TI-RADS recommendation, and its diagnostic performance was compared against the original ACR TI-RADS. Results: The system achieved higher average area under the receiver operating characteristic curve (AUC, 0.88) than Static-2DCNN (0.72, P = .03) and tended toward higher average AUC than Cine-Radiomics (0.78, P = .16) and ACR TI-RADS level (0.80, P = .21). The system downgraded recommendations for 92 benign and two malignant nodules and upgraded none. The revised recommendation achieved higher specificity (139 of 175, 79.4%) than the original ACR TI-RADS (47 of 175, 26.9%; P < .001), with no difference in sensitivity (12 of 17, 71% and 14 of 17, 82%, respectively; P = .63). Conclusion: The risk stratification system using US cine images had higher diagnostic performance than prior models and improved specificity of ACR TI-RADS when used to revise ACR TI-RADS recommendation.Keywords: Neural Networks, US, Abdomen/GI, Head/Neck, Thyroid, Computer Applications-3D, Oncology, Diagnosis, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2022.

15.
Lancet ; 375(9725): 1525-35, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20435227

ABSTRACT

BACKGROUND: The cost of genomic information has fallen steeply, but the clinical translation of genetic risk estimates remains unclear. We aimed to undertake an integrated analysis of a complete human genome in a clinical context. METHODS: We assessed a patient with a family history of vascular disease and early sudden death. Clinical assessment included analysis of this patient's full genome sequence, risk prediction for coronary artery disease, screening for causes of sudden cardiac death, and genetic counselling. Genetic analysis included the development of novel methods for the integration of whole genome and clinical risk. Disease and risk analysis focused on prediction of genetic risk of variants associated with mendelian disease, recognised drug responses, and pathogenicity for novel variants. We queried disease-specific mutation databases and pharmacogenomics databases to identify genes and mutations with known associations with disease and drug response. We estimated post-test probabilities of disease by applying likelihood ratios derived from integration of multiple common variants to age-appropriate and sex-appropriate pre-test probabilities. We also accounted for gene-environment interactions and conditionally dependent risks. FINDINGS: Analysis of 2.6 million single nucleotide polymorphisms and 752 copy number variations showed increased genetic risk for myocardial infarction, type 2 diabetes, and some cancers. We discovered rare variants in three genes that are clinically associated with sudden cardiac death-TMEM43, DSP, and MYBPC3. A variant in LPA was consistent with a family history of coronary artery disease. The patient had a heterozygous null mutation in CYP2C19 suggesting probable clopidogrel resistance, several variants associated with a positive response to lipid-lowering therapy, and variants in CYP4F2 and VKORC1 that suggest he might have a low initial dosing requirement for warfarin. Many variants of uncertain importance were reported. INTERPRETATION: Although challenges remain, our results suggest that whole-genome sequencing can yield useful and clinically relevant information for individual patients. FUNDING: National Institute of General Medical Sciences; National Heart, Lung And Blood Institute; National Human Genome Research Institute; Howard Hughes Medical Institute; National Library of Medicine, Lucile Packard Foundation for Children's Health; Hewlett Packard Foundation; Breetwor Family Foundation.


Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Testing , Genome, Human , Sequence Analysis, DNA , Vascular Diseases/genetics , Adult , Aryl Hydrocarbon Hydroxylases/genetics , Carrier Proteins/genetics , Cytochrome P-450 CYP2C19 , Cytochrome P-450 Enzyme System/genetics , Cytochrome P450 Family 4 , Death, Sudden, Cardiac , Desmoplakins/genetics , Environment , Family Health , Genetic Counseling , Humans , Lipoprotein(a)/genetics , Male , Membrane Proteins/genetics , Mixed Function Oxygenases/genetics , Mutation , Osteoarthritis/genetics , Pedigree , Pharmacogenetics , Polymorphism, Single Nucleotide , Risk Assessment , Vitamin K Epoxide Reductases
16.
Adv Chronic Kidney Dis ; 28(3): 262-269, 2021 05.
Article in English | MEDLINE | ID: mdl-34906311

ABSTRACT

Ultrasonography is a practical imaging technique used in numerous health care settings. It is relatively inexpensive, portable, and safe, and it has dynamic capabilities that make it an invaluable tool for a wide variety of diagnostic and interventional studies. Recently, there has been a revolution in medical imaging using artificial intelligence (AI). A particularly potent form of AI is deep learning, in which the computer learns to recognize pixel or written data on its own without the selection of predetermined features, usually through a specific neural network architecture. Neural networks vary in architecture depending on their task, and key design considerations include the number of layers and complexity, data available, technical requirements, and domain knowledge. Deep learning models offer the potential for promising innovations to workflow, image quality, and vision tasks in sonography. However, there are key limitations and challenges in creating reliable and safe AI models for patients and clinicians.


Subject(s)
Artificial Intelligence , Deep Learning , Algorithms , Humans , Kidney/diagnostic imaging , Machine Learning , Ultrasonography
17.
J Am Med Inform Assoc ; 28(6): 1178-1187, 2021 06 12.
Article in English | MEDLINE | ID: mdl-33576413

ABSTRACT

OBJECTIVE: The objective was to develop a fully automated algorithm for abdominal fat segmentation and to deploy this method at scale in an academic biobank. MATERIALS AND METHODS: We built a fully automated image curation and labeling technique using deep learning and distributive computing to identify subcutaneous and visceral abdominal fat compartments from 52,844 computed tomography scans in 13,502 patients in the Penn Medicine Biobank (PMBB). A classification network identified the inferior and superior borders of the abdomen, and a segmentation network differentiated visceral and subcutaneous fat. Following technical evaluation of our method, we conducted studies to validate known relationships with visceral and subcutaneous fat. RESULTS: When compared with 100 manually annotated cases, the classification network was on average within one 5-mm slice for both the superior (0.4 ± 1.1 slice) and inferior (0.4 ± 0.6 slice) borders. The segmentation network also demonstrated excellent performance with intraclass correlation coefficients of 1.00 (P < 2 × 10-16) for subcutaneous and 1.00 (P < 2 × 10-16) for visceral fat on 100 testing cases. We performed integrative analyses of abdominal fat with the phenome extracted from the electronic health record and found highly significant associations with diabetes mellitus, hypertension, and renal failure, among other phenotypes. CONCLUSIONS: This work presents a fully automated and highly accurate method for the quantification of abdominal fat that can be applied to routine clinical imaging studies to fuel translational scientific discovery.


Subject(s)
Deep Learning , Abdominal Fat , Biological Specimen Banks , Electronic Health Records , Humans , Tomography, X-Ray Computed
18.
BMC Bioinformatics ; 11 Suppl 9: S9, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-21044367

ABSTRACT

BACKGROUND: A key challenge in pharmacogenomics is the identification of genes whose variants contribute to drug response phenotypes, which can include severe adverse effects. Pharmacogenomics GWAS attempt to elucidate genotypes predictive of drug response. However, the size of these studies has severely limited their power and potential application. We propose a novel knowledge integration and SNP aggregation approach for identifying genes impacting drug response. Our SNP aggregation method characterizes the degree to which uncommon alleles of a gene are associated with drug response. We first use pre-existing knowledge sources to rank pharmacogenes by their likelihood to affect drug response. We then define a summary score for each gene based on allele frequencies and train linear and logistic regression classifiers to predict drug response phenotypes. RESULTS: We applied our method to a published warfarin GWAS data set comprising 181 individuals. We find that our method can increase the power of the GWAS to identify both VKORC1 and CYP2C9 as warfarin pharmacogenes, where the original analysis had only identified VKORC1. Additionally, we find that our method can be used to discriminate between low-dose (AUROC=0.886) and high-dose (AUROC=0.764) responders. CONCLUSIONS: Our method offers a new route for candidate pharmacogene discovery from pharmacogenomics GWAS, and serves as a foundation for future work in methods for predictive pharmacogenomics.


Subject(s)
Anticoagulants/administration & dosage , Genome-Wide Association Study , Pharmacogenetics/methods , Warfarin/administration & dosage , Cytochrome P-450 Enzyme System/genetics , Dose-Response Relationship, Drug , Gene Frequency , Genotype , Logistic Models , Mixed Function Oxygenases/genetics , Polymorphism, Single Nucleotide , Vitamin K Epoxide Reductases
19.
Pharmacogenet Genomics ; 20(7): 407-13, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20442691

ABSTRACT

OBJECTIVE: Warfarin dosing remains challenging because of its narrow therapeutic window and large variability in dose response. We sought to analyze new factors involved in its dosing and to evaluate eight dosing algorithms, including two developed by the International Warfarin Pharmacogenetics Consortium (IWPC). METHODS: we enrolled 108 patients on chronic warfarin therapy and obtained complete clinical and pharmacy records; we genotyped single nucleotide polymorphisms relevant to the VKORC1, CYP2C9, and CYP4F2 genes using integrated fluidic circuits made by Fluidigm. RESULTS: When applying the IWPC pharmacogenetic algorithm to our cohort of patients, the percentage of patients within 1 mg/d of the therapeutic warfarin dose increases from 54% to 63% using clinical factors only, or from 38% using a fixed-dose approach. CYP4F2 adds 4% to the fraction of the variability in dose (R) explained by the IWPC pharmacogenetic algorithm (P<0.05). Importantly, we show that pooling rare variants substantially increases the R for CYP2C9 (rare variants: P=0.0065, R=6%; common variants: P=0.0034, R=7%; rare and common variants: P=0.00018; R=12%), indicating that relatively rare variants not genotyped in genome-wide association studies may be important. In addition, the IWPC pharmacogenetic algorithm and the Gage (2008) algorithm perform best (IWPC: R=50%; Gage: R=49%), and all pharmacogenetic algorithms outperform the IWPC clinical equation (R=22%). VKORC1 and CYP2C9 genotypes did not affect long-term variability in dose. Finally, the Fluidigm platform, a novel warfarin genotyping method, showed 99.65% concordance between different operators and instruments. CONCLUSION: CYP4F2 and pooled rare variants of CYP2C9 significantly improve the ability to estimate warfarin dose.


Subject(s)
Algorithms , Anticoagulants/administration & dosage , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P-450 Enzyme System/genetics , Pharmacogenetics/methods , Polymorphism, Single Nucleotide/genetics , Warfarin/administration & dosage , Aged , Alleles , Cohort Studies , Cytochrome P-450 CYP2C9 , Cytochrome P450 Family 4 , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged
20.
J Biomed Inform ; 43(5): 747-51, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20363365

ABSTRACT

There is debate about the utility of clinical data warehouses for research. Using a clinical warfarin dosing algorithm derived from research-quality data, we evaluated the data quality of both a general-purpose database and a coagulation-specific database. We evaluated the functional utility of these repositories by using data extracted from them to predict warfarin dose. We reasoned that high-quality clinical data would predict doses nearly as accurately as research data, while poor-quality clinical data would predict doses less accurately. We evaluated the Mean Absolute Error (MAE) in predicted weekly dose as a metric of data quality. The MAE was comparable between the clinical gold standard (10.1mg/wk) and the specialty database (10.4 mg/wk), but the MAE for the clinical warehouse was 40% greater (14.1mg/wk). Our results indicate that the research utility of clinical data collected in focused clinical settings is greater than that of data collected during general-purpose clinical care.


Subject(s)
Anticoagulants/administration & dosage , Biopharmaceutics/methods , Databases, Factual , Drug Dosage Calculations , Medical Informatics/methods , Warfarin/administration & dosage , Algorithms , Biomedical Research , Cohort Studies , Humans
SELECTION OF CITATIONS
SEARCH DETAIL