Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 621(7977): 188-195, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648854

ABSTRACT

γδ T cells are potent anticancer effectors with the potential to target tumours broadly, independent of patient-specific neoantigens or human leukocyte antigen background1-5. γδ T cells can sense conserved cell stress signals prevalent in transformed cells2,3, although the mechanisms behind the targeting of stressed target cells remain poorly characterized. Vγ9Vδ2 T cells-the most abundant subset of human γδ T cells4-recognize a protein complex containing butyrophilin 2A1 (BTN2A1) and BTN3A1 (refs. 6-8), a widely expressed cell surface protein that is activated by phosphoantigens abundantly produced by tumour cells. Here we combined genome-wide CRISPR screens in target cancer cells to identify pathways that regulate γδ T cell killing and BTN3A cell surface expression. The screens showed previously unappreciated multilayered regulation of BTN3A abundance on the cell surface and triggering of γδ T cells through transcription, post-translational modifications and membrane trafficking. In addition, diverse genetic perturbations and inhibitors disrupting metabolic pathways in the cancer cells, particularly ATP-producing processes, were found to alter BTN3A levels. This induction of both BTN3A and BTN2A1 during metabolic crises is dependent on AMP-activated protein kinase (AMPK). Finally, small-molecule activation of AMPK in a cell line model and in patient-derived tumour organoids led to increased expression of the BTN2A1-BTN3A complex and increased Vγ9Vδ2 T cell receptor-mediated killing. This AMPK-dependent mechanism of metabolic stress-induced ligand upregulation deepens our understanding of γδ T cell stress surveillance and suggests new avenues available to enhance γδ T cell anticancer activity.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Neoplasms , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes , Humans , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Cell Line , Cell Membrane/metabolism , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
2.
J Transl Med ; 22(1): 190, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383458

ABSTRACT

BACKGROUND: Predictive biomarkers of immune checkpoint inhibitor (ICI) efficacy are currently lacking for non-small cell lung cancer (NSCLC). Here, we describe the results from the Anti-PD-1 Response Prediction DREAM Challenge, a crowdsourced initiative that enabled the assessment of predictive models by using data from two randomized controlled clinical trials (RCTs) of ICIs in first-line metastatic NSCLC. METHODS: Participants developed and trained models using public resources. These were evaluated with data from the CheckMate 026 trial (NCT02041533), according to the model-to-data paradigm to maintain patient confidentiality. The generalizability of the models with the best predictive performance was assessed using data from the CheckMate 227 trial (NCT02477826). Both trials were phase III RCTs with a chemotherapy control arm, which supported the differentiation between predictive and prognostic models. Isolated model containers were evaluated using a bespoke strategy that considered the challenges of handling transcriptome data from clinical trials. RESULTS: A total of 59 teams participated, with 417 models submitted. Multiple predictive models, as opposed to a prognostic model, were generated for predicting overall survival, progression-free survival, and progressive disease status with ICIs. Variables within the models submitted by participants included tumor mutational burden (TMB), programmed death ligand 1 (PD-L1) expression, and gene-expression-based signatures. The best-performing models showed improved predictive power over reference variables, including TMB or PD-L1. CONCLUSIONS: This DREAM Challenge is the first successful attempt to use protected phase III clinical data for a crowdsourced effort towards generating predictive models for ICI clinical outcomes and could serve as a blueprint for similar efforts in other tumor types and disease states, setting a benchmark for future studies aiming to identify biomarkers predictive of ICI efficacy. TRIAL REGISTRATION: CheckMate 026; NCT02041533, registered January 22, 2014. CheckMate 227; NCT02477826, registered June 23, 2015.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/pathology , B7-H1 Antigen , Biomarkers, Tumor
3.
EMBO J ; 37(20)2018 10 15.
Article in English | MEDLINE | ID: mdl-30209241

ABSTRACT

Nutrient restriction reprograms cellular signaling and metabolic network to shape cancer phenotype. Lactate dehydrogenase A (LDHA) has a key role in aerobic glycolysis (the Warburg effect) through regeneration of the electron acceptor NAD+ and is widely regarded as a desirable target for cancer therapeutics. However, the mechanisms of cellular response and adaptation to LDHA inhibition remain largely unknown. Here, we show that LDHA activity supports serine and aspartate biosynthesis. Surprisingly, however, LDHA inhibition fails to impact human melanoma cell proliferation, survival, or tumor growth. Reduced intracellular serine and aspartate following LDHA inhibition engage GCN2-ATF4 signaling to initiate an expansive pro-survival response. This includes the upregulation of glutamine transporter SLC1A5 and glutamine uptake, with concomitant build-up of essential amino acids, and mTORC1 activation, to ameliorate the effects of LDHA inhibition. Tumors with low LDHA expression and melanoma patients acquiring resistance to MAPK signaling inhibitors, which target the Warburg effect, exhibit altered metabolic gene expression reminiscent of the ATF4-mediated survival signaling. ATF4-controlled survival mechanisms conferring synthetic vulnerability to the approaches targeting the Warburg effect offer efficacious therapeutic strategies.


Subject(s)
Activating Transcription Factor 4/metabolism , Cell Proliferation , Glycolysis , L-Lactate Dehydrogenase/metabolism , Melanoma/metabolism , Neoplasm Proteins/metabolism , Signal Transduction , Activating Transcription Factor 4/genetics , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/metabolism , Aspartic Acid/biosynthesis , Aspartic Acid/genetics , Cell Line, Tumor , Cell Survival , Humans , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Melanoma/genetics , Melanoma/pathology , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Serine/biosynthesis , Serine/genetics
4.
Mol Syst Biol ; 15(3): e8323, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858180

ABSTRACT

Most patients with advanced cancer eventually acquire resistance to targeted therapies, spurring extensive efforts to identify molecular events mediating therapy resistance. Many of these events involve synthetic rescue (SR) interactions, where the reduction in cancer cell viability caused by targeted gene inactivation is rescued by an adaptive alteration of another gene (the rescuer). Here, we perform a genome-wide in silico prediction of SR rescuer genes by analyzing tumor transcriptomics and survival data of 10,000 TCGA cancer patients. Predicted SR interactions are validated in new experimental screens. We show that SR interactions can successfully predict cancer patients' response and emerging resistance. Inhibiting predicted rescuer genes sensitizes resistant cancer cells to therapies synergistically, providing initial leads for developing combinatorial approaches to overcome resistance proactively. Finally, we show that the SR analysis of melanoma patients successfully identifies known mediators of resistance to immunotherapy and predicts novel rescuers.


Subject(s)
Computational Biology , Drug Resistance, Neoplasm/genetics , Drug Synergism , Melanoma/genetics , Female , Gene Expression Profiling , Humans , Immunotherapy , Male , Melanoma/drug therapy , Molecular Targeted Therapy , Synthetic Lethal Mutations
5.
BMC Bioinformatics ; 15: 269, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-25104072

ABSTRACT

BACKGROUND: In cell differentiation, a cell of a less specialized type becomes one of a more specialized type, even though all cells have the same genome. Transcription factors and epigenetic marks like histone modifications can play a significant role in the differentiation process. RESULTS: In this paper, we present a simple analysis of cell types and differentiation paths using phylogenetic inference based on ChIP-Seq histone modification data. We precisely defined the notion of cell-type trees and provided a procedure of building such trees. We propose new data representation techniques and distance measures for ChIP-Seq data and use these together with standard phylogenetic inference methods to build biologically meaningful cell-type trees that indicate how diverse types of cells are related. We demonstrate our approach on various kinds of histone modifications for various cell types, also using the datasets to explore various issues surrounding replicate data, variability between cells of the same type, and robustness. We use the results to get some interesting biological findings like important patterns of histone modification changes during cell differentiation process. CONCLUSIONS: We introduced and studied the novel problem of inferring cell type trees from histone modification data. The promising results we obtain point the way to a new approach to the study of cell differentiation. We also discuss how cell-type trees can be used to study the evolution of cell types.


Subject(s)
Cell Differentiation/genetics , Epigenomics/methods , Histones/metabolism , Phylogeny , Chromatin Immunoprecipitation , Histones/genetics , Humans , Sequence Analysis, DNA , Transcription Factors/genetics , Transcription Factors/metabolism
6.
SLAS Technol ; 29(3): 100137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657705

ABSTRACT

After haematology, urinalysis is the most common biological test performed in clinical settings. Hence, simplified workflow and automated analysis of urine elements are of absolute necessities. In the present work, a novel lab-on-chip cartridge (Gravity Sedimentation Cartridge) for the auto analysis of urine elements is developed. The GSC consists of a capillary chamber that uptakes a raw urine sample by capillary force and performs particles and cells enrichment within 5 min through a gravity sedimentation process for the microscopic examination. Centrifugation, which is necessary for enrichment in the conventional method, was circumvented in this approach. The AI100 device (Image based autoanalyzer) captures microscopic images from the cartridge at 40x magnification and uploads them into the cloud. Further, these images were auto-analyzed using an AI-based object detection model, which delivers the reports. These reports were available for expert review on a web-based platform that enables evidence-based tele reporting. A comparative analysis was carried out for various analytical parameters of the data generated through GSC (manual microscopy, tele reporting, and AI model) with the gold standard method. The presented approach makes it a viable product for automated urinalysis in point-of-care and large-scale settings.


Subject(s)
Automation, Laboratory , Lab-On-A-Chip Devices , Urinalysis , Urinalysis/instrumentation , Urinalysis/methods , Humans , Automation, Laboratory/instrumentation , Automation, Laboratory/methods , Artificial Intelligence
7.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38313282

ABSTRACT

The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers, a phenomenon that has been investigated without resolution since the late 1980s. Expanding beyond previous gene-centric studies, we investigate the co-occurrence in a genome-wide manner taking an evolutionary perspective. First, by mining large tumor aneuploidy data, we predict that the more likely order is 10 loss followed by 7 gain. Second, by analyzing extensive genomic and transcriptomic data from both patients and cell lines, we find that this co-occurrence can be explained by functional rescue interactions that are highly enriched on 7, which can possibly compensate for any detrimental consequences arising from the loss of 10. Finally, by analyzing transcriptomic data from normal, non-cancerous, human brain tissues, we provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain.

8.
Int J Occup Saf Ergon ; 29(3): 963-969, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35713151

ABSTRACT

Objectives. The hand block printing technique practiced in Dhar District of Madhya Pradesh involves highly repetitive tasks with awkward posture, which contribute to the development of musculoskeletal disorders (MSDs) among the artisans, The aim of this study was to determine the prevalence of MSDs and the risks factors involved. Methods. An observational study and a self-reported questionnaire study were conducted with a sample of 70 artisans. The working postures of the artisans were analyzed using rapid upper limb assessment (RULA) and the occupational repetitive actions (OCRA) method. p ≤ 0.05 was considered significant throughout the study. Results. MSDs in the neck, shoulders, elbows, wrist/forearm, lower back and hips/thighs were found to be highly prevalent among artisans of age greater than 31 years and experience greater than 11 years. Most complaints were reported in the wrist, neck and lower back region. Conclusion. From the findings, it was evident that artisans working in Bagh printing are at high risk of the development of MSDs; thus, an immediate intervention is needed to eliminate the ergonomic risks among the artisans.


Subject(s)
Musculoskeletal Diseases , Occupational Diseases , Humans , Adult , Occupational Diseases/epidemiology , Industry , Musculoskeletal Diseases/epidemiology , Ergonomics/methods , Risk Factors , Surveys and Questionnaires , India/epidemiology , Prevalence
9.
Nat Protoc ; 18(8): 2404-2414, 2023 08.
Article in English | MEDLINE | ID: mdl-37391666

ABSTRACT

RNA-sequencing (RNA-seq) has become an increasingly cost-effective technique for molecular profiling and immune characterization of tumors. In the past decade, many computational tools have been developed to characterize tumor immunity from gene expression data. However, the analysis of large-scale RNA-seq data requires bioinformatics proficiency, large computational resources and cancer genomics and immunology knowledge. In this tutorial, we provide an overview of computational analysis of bulk RNA-seq data for immune characterization of tumors and introduce commonly used computational tools with relevance to cancer immunology and immunotherapy. These tools have diverse functions such as evaluation of expression signatures, estimation of immune infiltration, inference of the immune repertoire, prediction of immunotherapy response, neoantigen detection and microbiome quantification. We describe the RNA-seq IMmune Analysis (RIMA) pipeline integrating many of these tools to streamline RNA-seq analysis. We also developed a comprehensive and user-friendly guide in the form of a GitBook with text and video demos to assist users in analyzing bulk RNA-seq data for immune characterization at both individual sample and cohort levels by using RIMA.


Subject(s)
Neoplasms , RNA , Humans , Software , Computational Biology/methods , Neoplasms/genetics , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods
10.
Cancer Discov ; 13(3): 672-701, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36745048

ABSTRACT

Drugs that kill tumors through multiple mechanisms have the potential for broad clinical benefits. Here, we first developed an in silico multiomics approach (BipotentR) to find cancer cell-specific regulators that simultaneously modulate tumor immunity and another oncogenic pathway and then used it to identify 38 candidate immune-metabolic regulators. We show the tumor activities of these regulators stratify patients with melanoma by their response to anti-PD-1 using machine learning and deep neural approaches, which improve the predictive power of current biomarkers. The topmost identified regulator, ESRRA, is activated in immunotherapy-resistant tumors. Its inhibition killed tumors by suppressing energy metabolism and activating two immune mechanisms: (i) cytokine induction, causing proinflammatory macrophage polarization, and (ii) antigen-presentation stimulation, recruiting CD8+ T cells into tumors. We also demonstrate a wide utility of BipotentR by applying it to angiogenesis and growth suppressor evasion pathways. BipotentR (http://bipotentr.dfci.harvard.edu/) provides a resource for evaluating patient response and discovering drug targets that act simultaneously through multiple mechanisms. SIGNIFICANCE: BipotentR presents resources for evaluating patient response and identifying targets for drugs that can kill tumors through multiple mechanisms concurrently. Inhibition of the topmost candidate target killed tumors by suppressing energy metabolism and effects on two immune mechanisms. This article is highlighted in the In This Issue feature, p. 517.


Subject(s)
Antineoplastic Agents , Melanoma , Humans , Antineoplastic Agents/pharmacology , Receptors, Estrogen , Immunotherapy , Melanoma/pathology , CD8-Positive T-Lymphocytes , Tumor Microenvironment , Cell Line, Tumor , ERRalpha Estrogen-Related Receptor
11.
Nat Commun ; 14(1): 3830, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37380628

ABSTRACT

Combination of anti-cancer drugs is broadly seen as way to overcome the often-limited efficacy of single agents. The design and testing of combinations are however very challenging. Here we present a uniquely large dataset screening over 5000 targeted agent combinations across 81 non-small cell lung cancer cell lines. Our analysis reveals a profound heterogeneity of response across the tumor models. Notably, combinations very rarely result in a strong gain in efficacy over the range of response observable with single agents. Importantly, gain of activity over single agents is more often seen when co-targeting functionally proximal genes, offering a strategy for designing more efficient combinations. Because combinatorial effect is strongly context specific, tumor specificity should be achievable. The resource provided, together with an additional validation screen sheds light on major challenges and opportunities in building efficacious combinations against cancer and provides an opportunity for training computational models for synergy prediction.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Drug Combinations
12.
Int J Occup Saf Ergon ; 28(4): 2324-2332, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34622747

ABSTRACT

Objectives. Hand block printing is a highly repetitive and precision job involving tasks such as hitting the wooden hand block with the hands as a hammer, causing chronic mechanical trauma to the ulnar side of the palm. This study aimed to determine the prevalence of work-related hand symptoms, to identify ergonomic risks and musculoskeletal disorders (MSDs) and evidence of mechanical trauma among artisans working in Bagh print of Madhya Pradesh. Methods. Occupational risk involved in the artisan's wrist area was identified using the modified Dutch musculoskeletal questionnaire (MDMQ) and modified Boston hand evaluation questionnaire. The Boston hand evaluation questionnaire helps in the measurement of the severity of the symptoms. A direct observation study was performed to identify the chronic effects of mechanical trauma (CEMT) on artisan's hands. Results. Symptoms like pain, weakness, numbness and tingling were highly prevalent among the artisans, those with experience <3 years were more likely to report pain during working hours (p < 0.001) and those with experience >13 years were more likely to report numbness (p < 0.001) and tingling (p < 0.001). Conclusion. This study supports the evidence that the new artisans are at higher risks of reporting pain and CEMT, including fever and body pain, ultimately causing job loss.


Subject(s)
Musculoskeletal Diseases , Occupational Diseases , Humans , Ergonomics , Hypesthesia/complications , India/epidemiology , Musculoskeletal Diseases/epidemiology , Musculoskeletal Diseases/etiology , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Pain , Prevalence , Risk Factors , Surveys and Questionnaires , Textile Industry
13.
Methods Mol Biol ; 2381: 203-215, 2021.
Article in English | MEDLINE | ID: mdl-34590278

ABSTRACT

Despite the success of targeted therapies including immunotherapies in cancer treatments, tumor resistance to targeted therapies remains a fundamental challenge. Tumors can evolve resistance to a therapy that targets one gene by acquiring compensatory alterations in another gene, such compensatory interaction between two genes is referred to as synthetic rescue (SR) interactions. To identify SRs, here we describe an algorithm, INCISOR, that leverages tumor transcriptomics and clinical information from 10,000 patients as well as data from experimental screens. INCISOR can identify SRs that are common across several cancer-types in genome-wide fashion by sifting through half a billion possible gene-gene combinations and provide a framework to design therapies to tackle resistance.


Subject(s)
Neoplasms , Algorithms , Humans , Immunotherapy , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/therapy , Transcriptome
14.
Nat Commun ; 12(1): 3199, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045463

ABSTRACT

In patients with metastatic cancer, spatial heterogeneity of somatic alterations may lead to incomplete assessment of a cancer's mutational profile when analyzing a single tumor biopsy. In this study, we perform sequencing of cell-free DNA (cfDNA) and distinct metastatic tissue samples from ten rapid autopsy cases with pre-treated metastatic cancer. We show that levels of heterogeneity in genetic biomarkers vary between patients but that gene expression signatures representative of the tumor microenvironment are more consistent. Across nine patients with plasma samples available, we are able to detect 62/62 truncal and 47/121 non-truncal point mutations in cfDNA. We observe that mutation clonality in cfDNA is correlated with the number of metastatic lesions in which the mutation is detected and use this result to derive a clonality threshold to classify truncal and non-truncal driver alterations with reasonable specificity. In contrast, mutation truncality is more often incorrectly assigned when studying single tissue samples. Our results demonstrate the utility of a single cfDNA sample relative to that of single tissue samples when treating patients with metastatic cancer.


Subject(s)
Autopsy/methods , Circulating Tumor DNA/genetics , DNA Mutational Analysis/methods , Neoplasms/diagnosis , Tumor Microenvironment/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Chemoradiotherapy, Adjuvant , Cohort Studies , DNA Copy Number Variations , Female , Genetic Heterogeneity , Humans , Male , Neoadjuvant Therapy , Neoplasms/blood , Neoplasms/pathology , Neoplasms/therapy , Point Mutation , RNA-Seq , Reference Values , Sensitivity and Specificity , Spatial Analysis , Time Factors , Exome Sequencing
15.
Cancer Immunol Res ; 9(11): 1245-1251, 2021 11.
Article in English | MEDLINE | ID: mdl-34544686

ABSTRACT

Recent success in the use of immunotherapy for a broad range of cancers has propelled the field of cancer immunology to the forefront of cancer research. As more and more young investigators join the community of cancer immunologists, the Arthur L. Irving Family Foundation Cancer Immunology Symposium provided a platform to bring this expanding and vibrant community together and support the development of the future leaders in the field. This commentary outlines the lessons that emerged from the inaugural symposium highlighting the areas of scientific and career development that are essential for professional growth in the field of cancer immunology and beyond. Leading scientists and clinicians in the field provided their experience on the topics of scientific trajectory, career trajectory, publishing, fundraising, leadership, mentoring, and collaboration. Herein, we provide a conceptual and practical framework for career development to the broader scientific community.


Subject(s)
Allergy and Immunology/education , Biomedical Research/methods , Neoplasms/epidemiology , Physicians/organization & administration , Humans , Leadership
16.
Cancer Discov ; 11(6): 1524-1541, 2021 06.
Article in English | MEDLINE | ID: mdl-33589424

ABSTRACT

Immune checkpoint blockade (ICB) therapy revolutionized cancer treatment, but many patients with impaired MHC-I expression remain refractory. Here, we combined FACS-based genome-wide CRISPR screens with a data-mining approach to identify drugs that can upregulate MHC-I without inducing PD-L1. CRISPR screening identified TRAF3, a suppressor of the NFκB pathway, as a negative regulator of MHC-I but not PD-L1. The Traf3-knockout gene expression signature is associated with better survival in ICB-naïve patients with cancer and better ICB response. We then screened for drugs with similar transcriptional effects as this signature and identified Second Mitochondria-derived Activator of Caspase (SMAC) mimetics. We experimentally validated that the SMAC mimetic birinapant upregulates MHC-I, sensitizes cancer cells to T cell-dependent killing, and adds to ICB efficacy. Our findings provide preclinical rationale for treating tumors expressing low MHC-I expression with SMAC mimetics to enhance sensitivity to immunotherapy. The approach used in this study can be generalized to identify other drugs that enhance immunotherapy efficacy. SIGNIFICANCE: MHC-I loss or downregulation in cancer cells is a major mechanism of resistance to T cell-based immunotherapies. Our study reveals that birinapant may be used for patients with low baseline MHC-I to enhance ICB response. This represents promising immunotherapy opportunities given the biosafety profile of birinapant from multiple clinical trials.This article is highlighted in the In This Issue feature, p. 1307.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , B7-H1 Antigen/metabolism , Data Mining , Gene Expression Profiling , Histocompatibility Antigens Class I/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Tumor Microenvironment/drug effects
17.
Clin Cancer Res ; 27(18): 5049-5061, 2021 09 15.
Article in English | MEDLINE | ID: mdl-33323402

ABSTRACT

PURPOSE: Whole-exome (WES) and RNA sequencing (RNA-seq) are key components of cancer immunogenomic analyses. To evaluate the consistency of tumor WES and RNA-seq profiling platforms across different centers, the Cancer Immune Monitoring and Analysis Centers (CIMAC) and the Cancer Immunologic Data Commons (CIDC) conducted a systematic harmonization study. EXPERIMENTAL DESIGN: DNA and RNA were centrally extracted from fresh frozen and formalin-fixed paraffin-embedded non-small cell lung carcinoma tumors and distributed to three centers for WES and RNA-seq profiling. In addition, two 10-plex HapMap cell line pools with known mutations were used to evaluate the accuracy of the WES platforms. RESULTS: The WES platforms achieved high precision (> 0.98) and recall (> 0.87) on the HapMap pools when evaluated on loci using > 50× common coverage. Nonsynonymous mutations clustered by tumor sample, achieving an index of specific agreement above 0.67 among replicates, centers, and sample processing. A DV200 > 24% for RNA, as a putative presequencing RNA quality control (QC) metric, was found to be a reliable threshold for generating consistent expression readouts in RNA-seq and NanoString data. MedTIN > 30 was likewise assessed as a reliable RNA-seq QC metric, above which samples from the same tumor across replicates, centers, and sample processing runs could be robustly clustered and HLA typing, immune infiltration, and immune repertoire inference could be performed. CONCLUSIONS: The CIMAC collaborating laboratory platforms effectively generated consistent WES and RNA-seq data and enable robust cross-trial comparisons and meta-analyses of highly complex immuno-oncology biomarker data across the NCI CIMAC-CIDC Network.


Subject(s)
Base Sequence , DNA, Neoplasm/analysis , Exome Sequencing , Neoplasms/genetics , RNA, Neoplasm/analysis , Humans , Monitoring, Immunologic , Neoplasms/immunology
18.
Nat Med ; 27(6): 985-992, 2021 06.
Article in English | MEDLINE | ID: mdl-33941922

ABSTRACT

Despite initial responses1-3, most melanoma patients develop resistance4 to immune checkpoint blockade (ICB). To understand the evolution of resistance, we studied 37 tumor samples over 9 years from a patient with metastatic melanoma with complete clinical response to ICB followed by delayed recurrence and death. Phylogenetic analysis revealed co-evolution of seven lineages with multiple convergent, but independent resistance-associated alterations. All recurrent tumors emerged from a lineage characterized by loss of chromosome 15q, with post-treatment clones acquiring additional genomic driver events. Deconvolution of bulk RNA sequencing and highly multiplexed immunofluorescence (t-CyCIF) revealed differences in immune composition among different lineages. Imaging revealed a vasculogenic mimicry phenotype in NGFRhi tumor cells with high PD-L1 expression in close proximity to immune cells. Rapid autopsy demonstrated two distinct NGFR spatial patterns with high polarity and proximity to immune cells in subcutaneous tumors versus a diffuse spatial pattern in lung tumors, suggesting different roles of this neural-crest-like program in different tumor microenvironments. Broadly, this study establishes a high-resolution map of the evolutionary dynamics of resistance to ICB, characterizes a de-differentiated neural-crest tumor population in melanoma immunotherapy resistance and describes site-specific differences in tumor-immune interactions via longitudinal analysis of a patient with melanoma with an unusual clinical course.


Subject(s)
B7-H1 Antigen/genetics , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/therapy , Nerve Tissue Proteins/genetics , Receptors, Nerve Growth Factor/genetics , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Chromosomes, Human, Pair 15/genetics , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic , Humans , Immune Checkpoint Inhibitors/adverse effects , Immunotherapy/adverse effects , Male , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Neoplasm Metastasis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy , Nerve Tissue Proteins/immunology , Phylogeny , Receptors, Nerve Growth Factor/immunology , Tumor Microenvironment/drug effects
19.
Genomics Proteomics Bioinformatics ; 18(1): 26-40, 2020 02.
Article in English | MEDLINE | ID: mdl-32413516

ABSTRACT

BRAF is a serine/threonine kinase that harbors activating mutations in ∼7% of human malignancies and ∼60% of melanomas. Despite initial clinical responses to BRAF inhibitors, patients frequently develop drug resistance. To identify candidate therapeutic targets for BRAF inhibitor resistant melanoma, we conduct CRISPR screens in melanoma cells harboring an activating BRAF mutation that had also acquired resistance to BRAF inhibitors. To investigate the mechanisms and pathways enabling resistance to BRAF inhibitors in melanomas, we integrate expression, ATAC-seq, and CRISPR screen data. We identify the JUN family transcription factors and the ETS family transcription factor ETV5 as key regulators of CDK6, which together enable resistance to BRAF inhibitors in melanoma cells. Our findings reveal genes contributing to resistance to a selective BRAF inhibitor PLX4720, providing new insights into gene regulation in BRAF inhibitor resistant melanoma cells.


Subject(s)
Drug Resistance, Neoplasm , Indoles/pharmacology , Intercellular Signaling Peptides and Proteins/physiology , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Sulfonamides/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Clustered Regularly Interspaced Short Palindromic Repeats , Drug Resistance, Neoplasm/genetics , Humans , Melanoma/genetics , Melanoma/pathology , Mutation , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/metabolism
20.
Genome Biol ; 21(1): 263, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33059736

ABSTRACT

BACKGROUND: Immune checkpoint blockade (ICB) therapy has improved patient survival in a variety of cancers, but only a minority of cancer patients respond. Multiple studies have sought to identify general biomarkers of ICB response, but elucidating the molecular and cellular drivers of resistance for individual tumors remains challenging. We sought to determine whether a tumor with defined genetic background exhibits a stereotypic or heterogeneous response to ICB treatment. RESULTS: We establish a unique mouse system that utilizes clonal tracing and mathematical modeling to monitor the growth of each cancer clone, as well as the bulk tumor, in response to ICB. We find that tumors derived from the same clonal populations showed heterogeneous ICB response and diverse response patterns. Primary response is associated with higher immune infiltration and leads to enrichment of pre-existing ICB-resistant cancer clones. We further identify several cancer cell-intrinsic gene expression signatures associated with ICB resistance, including increased interferon response genes and glucocorticoid response genes. These findings are supported by clinical data from ICB treatment cohorts. CONCLUSIONS: Our study demonstrates diverse response patterns from the same ancestor cancer cells in response to ICB. This suggests the value of monitoring clonal constitution and tumor microenvironment over time to optimize ICB response and to design new combination therapies. Furthermore, as ICB response may enrich for cancer cell-intrinsic resistance signatures, this can affect interpretations of tumor RNA-seq data for response-signature association studies.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Pharmacogenomic Variants , Animals , Biomarkers, Tumor/genetics , Clone Cells , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Biological , Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL