Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Rev Physiol Biochem Pharmacol ; 186: 135-176, 2023.
Article in English | MEDLINE | ID: mdl-35915363

ABSTRACT

People suffering from obesity and associated metabolic disorders including diabetes are increasing exponentially around the world. Adipose tissue (AT) distribution and alteration in their biochemical properties play a major role in the pathogenesis of these diseases. Emerging evidence suggests that AT heterogeneity and depot-specific physiological changes are vital in the development of insulin resistance in peripheral tissues like muscle and liver. Classically, AT depots are classified into white adipose tissue (WAT) and brown adipose tissue (BAT); WAT is the site of fatty acid storage, while BAT is a dedicated organ of metabolic heat production. The discovery of beige adipocyte clusters in WAT depots indicates AT heterogeneity has a more central role than hither to ascribed. Therefore, we have discussed in detail the current state of understanding on cellular and molecular origin of different AT depots and their relevance toward physiological metabolic homeostasis. A major focus is to highlight the correlation between altered WAT distribution in the body and metabolic pathogenesis in animal models and humans. We have also underscored the disparity in the molecular (including signaling) changes in various WAT tissues during diabetic pathogenesis. Exercise-mediated beneficial alteration in WAT physiology/distribution that protects against metabolic disorders is evolving. Here we have discussed the depot-specific biochemical adjustments induced by different forms of exercise. A detailed understanding of the molecular details of inter-organ crosstalk via substrate utilization/storage and signaling through chemokines provide strategies to target selected WAT depots to pharmacologically mimic the benefits of exercise countering metabolic diseases including diabetes.


Subject(s)
Insulin Resistance , Metabolic Diseases , Animals , Humans , Obesity/metabolism , Obesity/pathology , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Metabolic Diseases/metabolism
2.
Biochem J ; 480(17): 1397-1409, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37622342

ABSTRACT

Birds are endothermic homeotherms even though they lack the well-studied heat producing brown adipose tissue (BAT), found in several clades of eutherian mammals. Earlier studies in ducklings have demonstrated that skeletal muscle is the primary organ of nonshivering thermogenesis (NST) plausibly via futile calcium (Ca2+)-handling through ryanodine receptor (RyR) and sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). However, recruitment of futile Ca2+-cycling in adult avian skeletal muscle has not been documented. Studies in mammals show remarkable mitochondrial remodeling concurrently with muscle NST during cold. Here, we wanted to define the mitochondrial and biochemical changes in the muscles in free-ranging adult birds and whether different skeletal muscle groups undergo similar seasonal changes. We analyzed four different muscles (pectoralis, biceps, triceps and iliotibialis) from local pigeon (Columba livia) collected during summer and winter seasons in two consecutive years. Remarkable increase in mitochondrial capacity was observed as evidenced from succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activity staining in all the muscles. Interestingly, fibers with low SDH activity exhibited greater cross-sectional area during winter in all muscles except iliotibialis and became peripherally arranged in individual fascicles of pectoralis, which might indicate increased shivering. Furthermore, gene expression analysis showed that SERCA, sarcolipin and RyR are up-regulated to different levels in the muscles analyzed indicating muscle NST via futile Ca2+-cycling is recruited to varying degrees in winter. Moreover, proteins of mitochondrial-SR-tethering and biogenesis also showed differential alterations across the muscles. These data suggest that tropical winter (Ć¢ĀˆĀ¼15Ā°C) is sufficient to induce distinct remodeling across muscles in adult bird.


Subject(s)
Calcium , Columbidae , Animals , Seasons , Muscle, Skeletal , Thermogenesis , Ryanodine Receptor Calcium Release Channel/genetics , Mammals
3.
J Cell Biochem ; 124(11): 1792-1802, 2023 11.
Article in English | MEDLINE | ID: mdl-37814838

ABSTRACT

Skeletal muscle during postnatal development undergoes several structural and biochemical modifications. It is proposed that these changes are closely intertwined with the increase in load-bearing capacity of the muscle (i.e., myofibrils) and molecular machinery to support the energy demand (i.e., mitochondria). Concomitant establishment of the sarcoplasmic reticulum (SR) and mitochondrial network seems to be a major developmental adjustment of skeletal muscle leading to adult phenotype. Here, we have studied oxidativeness, vascularization, and the changes in mitofusins (Mfn) 1-Mfn 2 expression and interaction in the due course of muscle development. TowardĀ this, we used a series of histochemical techniques to compare neonatal and adult limb muscles (Gastrocnemius and Quadriceps) of Wistar rat (Rattus norvegicus). Additionally, we probed the proximity between Mfn 1 and Mfn 2 using a highly sensitive antibody-based proximity ligation assay indicating the change in mitochondrial fusion pattern or mitochondria-SR interaction. The results show that neonatal fibers bear a uniform distribution of mitochondria while a differential pattern of distribution is seen in adults. The distribution of the blood vessels is also quite distinct in adult muscles with a well-formed capillary network but in neonates, only central blood vessels are seen. Interestingly, our Mfn 1-Mfn 2 interaction data show that this interaction is uniformly distributed throughout the neonatal fibers, while it becomes peripherally localized in fibers of adult muscles. This peripheralization of Mfn 1-Mfn 2 interaction must be an important event of muscle development and might be critical to cater to the metabolic needs of adult muscle.


Subject(s)
GTP Phosphohydrolases , Muscle, Skeletal , Rats , Animals , GTP Phosphohydrolases/genetics , Rats, Wistar , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Protein Isoforms/metabolism
4.
Biofactors ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052304

ABSTRACT

A newly categorized myokine called fractalkine (CX3CL1) has been associated with divergent conditions such as obesity, tissue inflammation, and exercise. CX3CL1 works through specific membrane-bound receptors (CX3CR1) found in various tissues including skeletal muscles. Studies indicate CX3CL1 induces muscles to uptake energy substrates thereby improving glucose utilization and countering diabetes. Here, we tested if the administration of purified CX3CL1 directly into mice skeletal muscles affects its histoarchitecture, mitochondrial activity, and expression of metabolic proteins. We analyzed four muscles: two upper-limb (quadriceps, hamstrings) and two lower-limb (tibialis anterior, gastrocnemius), contralateral leg muscles were taken as controls. The effects of CX3CL1 treatment on histoarchitecture, mitochondrial activity, and expression of metabolic proteins in muscles were characterized. We used histochemical staining succinate dehydrogenase (SDH)/cytochrome c oxidase (COX), myosin ATPase, alkaline phosphatase (ALP) to evaluate the mitochondrial activity, fiber types, and vascularization in the muscles, respectively. Western blotting was used to evaluate the expression of proteins associated with mitochondrial metabolism (OXPHOS), glycolysis, and vascularization. Overall, this study indicates CX3CL1 primarily modulates mitochondrial metabolism and shifts substrate preference toward glucose in the skeletal muscle. Evidence also supports that CX3CL1 stimulates the relative composition of fast fiber types, influencing selection of energy substrates in the skeletal muscle.

5.
Physiol Rep ; 12(11): e16002, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831632

ABSTRACT

During skeletal muscle development, the intricate mitochondrial network formation relies on continuous fission and fusion. This process in larger mammals differs from rodents, the most used animal models. However, the expression pattern of proteins regulating mitochondrial dynamics in developing skeletal muscle remains unexplored in larger mammals. Therefore, we characterized the cellular expression and tissue-level distribution of these proteins during development taking goat as a model. We have performed histological and immunohistochemical analyses to study metabolic features in various muscles. Neonatal muscles display uniform distribution of mitochondrial activity. In contrast, adult muscles exhibit clear distinctions based on their function, whether dedicated for posture maintenance or facilitating locomotion. Mitochondrial fission proteins like DRP-1, MFF, and fusion proteins like MFN-1 and 2 are abundantly expressed in neonatal muscles. Fission proteins exhibit drastic downregulation with limited peripheral expression, whereas fusion proteins continue to express in a fiber-specific manner during adulthood. Locomotory muscles exhibit different fibers based on mitochondrial activity and peripheralization with high SDH activity. The proximity ligation assay between MFN1 and MFN2 demonstrates that their interaction is restricted to subsarcolemmal mitochondria in adult fibers while distributed evenly in neonatal fibers. These differences between postural and locomotory muscles suggest their physiological and metabolic properties are different.


Subject(s)
Goats , Mitochondrial Dynamics , Mitochondrial Proteins , Muscle, Skeletal , Animals , Goats/metabolism , Mitochondrial Dynamics/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Muscle, Skeletal/physiology , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria, Muscle/metabolism , Muscle Development/physiology
6.
Biochimie ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39121901

ABSTRACT

In mammals, skeletal muscles (SkMs) and adipose tissues regulate energy homeostasis and share developmental origins. Notably, the perirenal adipose tissue (PRAT) depot has been reported to display adipocyte heterogeneity: while some originated from Myogenic factor 5 (Myf-5) expressing progenitors, others did not. Our study examines the expression and distribution of Myf-5 using immunohistochemical staining and western blotting of PRAT, gastrocnemius, and trapezius from goat at various developmental stages. Contrary to earlier beliefs, functionally divergent SkM gastrocnemius and trapezius showed similar Myf-5 expressional pattern. SkM abundantly expresses Myf-5 in developing myocytes which gradually becomes limited to the nucleus of myogenic stem cells and is retained only in a few differentiated postnatal fibers. During the same period, PRAT displays a unique brown-to-white transition. PRAT exhibited an elevated expression of Myf-5 during prenatal periods, which declines thereafter and becomes negligible during adulthood where it gets fully enriched white adipocytes. The reduction of Myf-5 during the neonatal period was common to all three tissues. However, Myf-5 expression was retained in some of the differentiated myofibers while it was undetectable in adult PRAT. These observations suggest a possible developmental interplay between adipose tissue and SkM where Myf-5 might be a major regulator.

7.
Mol Omics ; 20(1): 64-77, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37909389

ABSTRACT

Physical inactivity affects multiple organ systems, including the musculoskeletal system, which upsets the delicate balance of several secretory factors leading to metabolic derailment. This reduces contractile recruitment of the skeletal muscle with dampening of its oxidative capacity resulting in impaired intramuscular lipid metabolism and substrate utilization. We hypothesized that this altered phenotype would also have an indispensable effect on circulatory cytokines and the level of metabolic intermediates. In this study, comparison between sedentary (SED) and exercised (EXER) animal models showed that organismal metabolic parameters (body mass, oxygen utilization and glucose tolerance) are altered based on physical activity. Our data suggest that cytokines linked to glycemic excursions (insulin, c-peptide, glucagon) and their passive regulators (leptin, BDNF, active ghrelin, and GIP) exhibit changes in the SED group. Furthermore, some of the proinflammatory cytokines and myokines were upregulated in SED. Interestingly, serum metabolite analysis showed that the levels of glucogenic amino acids (alanine, glycine, tryptophan, proline and valine), nitrogenous amino acids (ornithine, asparagine, and glutamine) and myogenic metabolites (taurine, creatine) were altered due to the level of physical activity. A pyrimidine nucleoside (uridine), lipid metabolite (glycerol) and ketone bodies (acetoacetate and acetate) were found to be altered in SED. A Spearman rank correlation study between SED and CTRL showed that cytokines build a deformed network with metabolites in SED, indicating significant modifications in amino acids, phosphatidylinositol phosphate and glycerophospholipid metabolic pathways. Overall, long-term physical inactivity reorganizes the profile of proinflammatory cytokines, glucose sensing hormones, and protein and glycerophospholipid metabolism, which might be the initial factors of metabolic diseases due to SED.


Subject(s)
Glucose , Insulin , Animals , Mice , Insulin/metabolism , Lipid Metabolism , Amino Acids/metabolism , Cytokines/metabolism
8.
Biochimie ; 204: 92-107, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36084909

ABSTRACT

Diseases originating from altered energy homeostasis including obesity, and type 2 diabetes are rapidly increasing worldwide. Research in the last few decades on animal models and humans demonstrates that the white adipose tissue (WAT) is critical for energy balance and more than just an energy storage site. WAT orchestrates the whole-body metabolism through inter-organ crosstalk primarily mediated by cytokines named "Adipokines". The adipokines influence metabolism and fuel selection of the skeletal muscle and liver thereby fine-tuning the load on WAT itself in physiological conditions like starvation, exercise and cold. In addition, adipokine secretion is influenced by various pathological conditions like obesity, inflammation and diabetes. In this review, we have surveyed the current state of knowledge on important adipokines and their significance in regulating energy balance and metabolic diseases. Furthermore, we have summarized the interplay of pro-inflammatory and anti-inflammatory adipokines in the modulation of pathological conditions.


Subject(s)
Adipokines , Diabetes Mellitus, Type 2 , Animals , Humans , Adipokines/metabolism , Diabetes Mellitus, Type 2/metabolism , Adipose Tissue, White/metabolism , Obesity/metabolism , Homeostasis , Adipose Tissue/metabolism , Energy Metabolism
9.
RSC Med Chem ; 14(8): 1429-1445, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37593583

ABSTRACT

The prevalence of obesity along with its related metabolic diseases has increased globally in recent decades. Obesity originates from a heterogeneous physiological state, which is further complicated by the influence of factors such as genetic, behavioural, and environmental. Lifestyle interventions including exercise and diet have limited success, necessitating the development of pharmacological approaches. Mechanistically, strategies target either reducing energy intake or increasing consumption through metabolism boosting. Current drugs lower energy intake via inducing satiety or inhibiting substrate absorption, while targeting mitochondria or cytosolic energy sensors has shown limited success due to toxicity. Nonshivering thermogenesis (NST) has provided hope for activating these processes selectively without significant side effects. The internet-based marketing of plant-based formulations for enhancing metabolism has surged. This review compiles scientific articles, magazines, newspapers, and online resources on anti-obesity drug development. Combination therapy of metabolic boosters and established anti-obesity compounds appears to be a promising future approach that requires further research.

SELECTION OF CITATIONS
SEARCH DETAIL