Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
SLAS Discov ; 26(9): 1225-1237, 2021 10.
Article in English | MEDLINE | ID: mdl-34218698

ABSTRACT

High-throughput phenotypic screening is a key driver for the identification of novel chemical matter in drug discovery for challenging targets, especially for those with an unclear mechanism of pathology. For toxic or gain-of-function proteins, small-molecule suppressors are a targeting/therapeutic strategy that has been successfully applied. As with other high-throughput screens, the screening strategy and proper assays are critical for successfully identifying selective suppressors of the target of interest. We executed a small-molecule suppressor screen to identify compounds that specifically reduce apolipoprotein L1 (APOL1) protein levels, a genetically validated target associated with increased risk of chronic kidney disease. To enable this study, we developed homogeneous time-resolved fluorescence (HTRF) assays to measure intracellular APOL1 and apolipoprotein L2 (APOL2) protein levels and miniaturized them to 1536-well format. The APOL1 HTRF assay served as the primary assay, and the APOL2 and a commercially available p53 HTRF assay were applied as counterscreens. Cell viability was also measured with CellTiter-Glo to assess the cytotoxicity of compounds. From a 310,000-compound screening library, we identified 1490 confirmed primary hits with 12 different profiles. One hundred fifty-three hits selectively reduced APOL1 in 786-O, a renal cell adenocarcinoma cell line. Thirty-one of these selective suppressors also reduced APOL1 levels in conditionally immortalized human podocytes. The activity and specificity of seven resynthesized compounds were validated in both 786-O and podocytes.


Subject(s)
Apolipoprotein L1/antagonists & inhibitors , Drug Discovery/methods , High-Throughput Screening Assays , Podocytes/drug effects , Podocytes/metabolism , Humans , Small Molecule Libraries
2.
Sci Rep ; 11(1): 2118, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483531

ABSTRACT

Lung fibrosis, or the scarring of the lung, is a devastating disease with huge unmet medical need. There are limited treatment options and its prognosis is worse than most types of cancer. We previously discovered that MK-0429 is an equipotent pan-inhibitor of αv integrins that reduces proteinuria and kidney fibrosis in a preclinical model. In the present study, we further demonstrated that MK-0429 significantly inhibits fibrosis progression in a bleomycin-induced lung injury model. In search of newer integrin inhibitors for fibrosis, we characterized monoclonal antibodies discovered using Adimab's yeast display platform. We identified several potent neutralizing integrin antibodies with unique human and mouse cross-reactivity. Among these, Ab-31 blocked the binding of multiple αv integrins to their ligands with IC50s comparable to those of MK-0429. Furthermore, both MK-0429 and Ab-31 suppressed integrin-mediated cell adhesion and latent TGFß activation. In IPF patient lung fibroblasts, TGFß treatment induced profound αSMA expression in phenotypic imaging assays and Ab-31 demonstrated potent in vitro activity at inhibiting αSMA expression, suggesting that the integrin antibody is able to modulate TGFß action though mechanisms beyond the inhibition of latent TGFß activation. Together, our results highlight the potential to develop newer integrin therapeutics for the treatment of fibrotic lung diseases.


Subject(s)
Antibodies/metabolism , Fibroblasts/metabolism , Integrin alphaV/metabolism , Pulmonary Fibrosis/metabolism , Animals , Antibodies/immunology , Bleomycin , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Fibroblasts/cytology , Humans , Integrin alphaV/immunology , Male , Mice, Inbred C57BL , Naphthyridines/pharmacology , Propionates/pharmacology , Protein Binding , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/prevention & control
3.
Cell Rep Med ; 1(4): 100056, 2020 07 21.
Article in English | MEDLINE | ID: mdl-33205063

ABSTRACT

Fibrosis, or the accumulation of extracellular matrix, is a common feature of many chronic diseases. To interrogate core molecular pathways underlying fibrosis, we cross-examine human primary cells from various tissues treated with TGF-ß, as well as kidney and liver fibrosis models. Transcriptome analyses reveal that genes involved in fatty acid oxidation are significantly perturbed. Furthermore, mitochondrial dysfunction and acylcarnitine accumulation are found in fibrotic tissues. Substantial downregulation of the PGC1α gene is evident in both in vitro and in vivo fibrosis models, suggesting a common node of metabolic signature for tissue fibrosis. In order to identify suppressors of fibrosis, we carry out a compound library phenotypic screen and identify AMPK and PPAR as highly enriched targets. We further show that pharmacological treatment of MK-8722 (AMPK activator) and MK-4074 (ACC inhibitor) reduce fibrosis in vivo. Altogether, our work demonstrate that metabolic defect is integral to TGF-ß signaling and fibrosis.


Subject(s)
Fibrosis/genetics , Fibrosis/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Adenylate Kinase/metabolism , Animals , Benzimidazoles/pharmacology , Cells, Cultured , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Gene Expression/genetics , Gene Expression Profiling/methods , Humans , Kidney/metabolism , Male , Mice , Mice, Inbred C57BL , Organ Specificity/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction , Transcriptome/genetics , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL