Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Chem Theory Comput ; 19(22): 7989-7997, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37955975

ABSTRACT

We present a new velocity-gauge real-time, time-dependent density functional tight-binding (VG-rtTDDFTB) implementation in the open-source DFTB+ software package (https://dftbplus.org) for probing electronic excitations in large, condensed matter systems. Our VG-rtTDDFTB approach enables real-time electron dynamics simulations of large, periodic, condensed matter systems containing thousands of atoms with a favorable computational scaling as a function of system size. We provide computational details and benchmark calculations to demonstrate its accuracy and computational parallelizability on a variety of large material systems. As a representative example, we calculate laser-induced electron dynamics in a 512-atom amorphous silicon supercell to highlight the large periodic systems that can be examined with our implementation. Taken together, our VG-rtTDDFTB approach enables new electron dynamics simulations of complex systems that require large periodic supercells, such as crystal defects, complex surfaces, nanowires, and amorphous materials.

SELECTION OF CITATIONS
SEARCH DETAIL