Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cell ; 149(4): 912-22, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22559943

ABSTRACT

Gene duplication is an important source of phenotypic change and adaptive evolution. We leverage a haploid hydatidiform mole to identify highly identical sequences missing from the reference genome, confirming that the cortical development gene Slit-Robo Rho GTPase-activating protein 2 (SRGAP2) duplicated three times exclusively in humans. We show that the promoter and first nine exons of SRGAP2 duplicated from 1q32.1 (SRGAP2A) to 1q21.1 (SRGAP2B) ∼3.4 million years ago (mya). Two larger duplications later copied SRGAP2B to chromosome 1p12 (SRGAP2C) and to proximal 1q21.1 (SRGAP2D) ∼2.4 and ∼1 mya, respectively. Sequence and expression analyses show that SRGAP2C is the most likely duplicate to encode a functional protein and is among the most fixed human-specific duplicate genes. Our data suggest a mechanism where incomplete duplication created a novel gene function-antagonizing parental SRGAP2 function-immediately "at birth" 2-3 mya, which is a time corresponding to the transition from Australopithecus to Homo and the beginning of neocortex expansion.


Subject(s)
Evolution, Molecular , GTPase-Activating Proteins/genetics , Primates/genetics , Segmental Duplications, Genomic , Animals , DNA Copy Number Variations , Female , Genetics, Medical , Humans , Hydatidiform Mole/genetics , In Situ Hybridization, Fluorescence , Mammals/genetics , Molecular Sequence Data , Pregnancy
2.
Nature ; 486(7404): 527-31, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22722832

ABSTRACT

Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.


Subject(s)
Evolution, Molecular , Genetic Variation/genetics , Genome, Human/genetics , Genome/genetics , Pan paniscus/genetics , Pan troglodytes/genetics , Animals , DNA Transposable Elements/genetics , Gene Duplication/genetics , Genotype , Humans , Molecular Sequence Data , Phenotype , Phylogeny , Species Specificity
3.
Nature ; 483(7388): 169-75, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22398555

ABSTRACT

Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.


Subject(s)
Evolution, Molecular , Genetic Speciation , Genome/genetics , Gorilla gorilla/genetics , Animals , Female , Gene Expression Regulation , Genetic Variation/genetics , Genomics , Humans , Macaca mulatta/genetics , Molecular Sequence Data , Pan troglodytes/genetics , Phylogeny , Pongo/genetics , Proteins/genetics , Sequence Alignment , Species Specificity , Transcription, Genetic
5.
Genome Res ; 22(6): 1036-49, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22419167

ABSTRACT

Chimpanzee and gorilla chromosomes differ from human chromosomes by the presence of large blocks of subterminal heterochromatin thought to be composed primarily of arrays of tandem satellite sequence. We explore their sequence composition and organization and show a complex organization composed of specific sets of segmental duplications that have hyperexpanded in concert with the formation of subterminal satellites. These regions are highly copy number polymorphic between and within species, and copy number differences involving hundreds of copies can be accurately estimated by assaying read-depth of next-generation sequencing data sets. Phylogenetic and comparative genomic analyses suggest that the structures have arisen largely independently in the two lineages with the exception of a few seed sequences present in the common ancestor of humans and African apes. We propose a model where an ancestral human-chimpanzee pericentric inversion and the ancestral chromosome 2 fusion both predisposed and protected the chimpanzee and human genomes, respectively, to the formation of subtelomeric heterochromatin. Our findings highlight the complex interplay between duplicated sequences and chromosomal rearrangements that rapidly alter the cytogenetic landscape in a short period of evolutionary time.


Subject(s)
Chromosomes, Human, Pair 2 , Evolution, Molecular , Heterochromatin/genetics , Hominidae/genetics , Models, Genetic , Amino Acid Sequence , Animals , Cytogenetic Analysis , DNA, Satellite , Gene Duplication , Gorilla gorilla/genetics , Humans , Molecular Sequence Data , Pan troglodytes/genetics , Phylogeny , Telomere/genetics
6.
Genome Res ; 21(10): 1640-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21685127

ABSTRACT

Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes.


Subject(s)
Evolution, Molecular , Genomic Structural Variation , Gorilla gorilla/genetics , Pan troglodytes/genetics , Animals , Base Sequence , Chromosome Mapping , Chromosome Structures , Comparative Genomic Hybridization , Humans , In Situ Hybridization, Fluorescence , Karyotype , Molecular Sequence Data , Segmental Duplications, Genomic , Sequence Analysis, DNA
7.
Nat Methods ; 8(1): 61-5, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21102452

ABSTRACT

High-throughput sequencing technologies promise to transform the fields of genetics and comparative biology by delivering tens of thousands of genomes in the near future. Although it is feasible to construct de novo genome assemblies in a few months, there has been relatively little attention to what is lost by sole application of short sequence reads. We compared the recent de novo assemblies using the short oligonucleotide analysis package (SOAP), generated from the genomes of a Han Chinese individual and a Yoruban individual, to experimentally validated genomic features. We found that de novo assemblies were 16.2% shorter than the reference genome and that 420.2 megabase pairs of common repeats and 99.1% of validated duplicated sequences were missing from the genome. Consequently, over 2,377 coding exons were completely missing. We conclude that high-quality sequencing approaches must be considered in conjunction with high-throughput sequencing for comparative genomics analyses and studies of genome evolution.


Subject(s)
Genome, Human/genetics , Genomics/methods , Genomics/trends , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/trends , Algorithms , Base Sequence , Evolution, Molecular , Genomics/economics , Humans , Sequence Analysis, DNA/economics , Sequence Analysis, DNA/standards
SELECTION OF CITATIONS
SEARCH DETAIL