Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Cancer ; 23(1): 71, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36670405

ABSTRACT

Chronic infection with Kaposi's sarcoma-associated herpes virus (KSHV) in B lymphocytes causes primary effusion lymphoma (PEL), the most aggressive form of KSHV-related cancer, which is resistant to conventional chemotherapy. In this study, we report that the BCBL-1 KSHV+ PEL cell line does not harbor oncogenic mutations responsible for its aggressive malignancy. Assuming that KSHV viral oncogenes play crucial roles in PEL proliferation, we examined the effect of cyclin-dependent kinase 9 (CDK9) inhibitor FIT-039 on KSHV viral gene expression and KSHV+ PEL proliferation. We found that FIT-039 treatment impaired the proliferation of KSHV+ PEL cells and the expression of KSHV viral genes in vitro. The effects of FIT-039 treatment on PEL cells were further evaluated in the PEL xenograft model that retains a more physiological environment for the growth of PEL growth and KSHV propagation, and we confirmed that FIT-039 administration drastically inhibited PEL growth in vivo. Our current study indicates that FIT-039 is a potential new anticancer drug targeting KSHV for PEL patients.


Subject(s)
Herpesvirus 8, Human , Lymphoma, Primary Effusion , Neoplasms , Sarcoma, Kaposi , Humans , Sarcoma, Kaposi/drug therapy , Lymphoma, Primary Effusion/pathology , Cyclin-Dependent Kinase 9/metabolism
2.
Nat Commun ; 12(1): 4507, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301951

ABSTRACT

Approximately half of genetic disease-associated mutations cause aberrant splicing. However, a widely applicable therapeutic strategy to splicing diseases is yet to be developed. Here, we analyze the mechanism whereby IKBKAP-familial dysautonomia (FD) exon 20 inclusion is specifically promoted by a small molecule splice modulator, RECTAS, even though IKBKAP-FD exon 20 has a suboptimal 5' splice site due to the IVS20 + 6 T > C mutation. Knockdown experiments reveal that exon 20 inclusion is suppressed in the absence of serine/arginine-rich splicing factor 6 (SRSF6) binding to an intronic splicing enhancer in intron 20. We show that RECTAS directly interacts with CDC-like kinases (CLKs) and enhances SRSF6 phosphorylation. Consistently, exon 20 splicing is bidirectionally manipulated by targeting cellular CLK activity with RECTAS versus CLK inhibitors. The therapeutic potential of RECTAS is validated in multiple FD disease models. Our study indicates that small synthetic molecules affecting phosphorylation state of SRSFs is available as a new therapeutic modality for mechanism-oriented precision medicine of splicing diseases.


Subject(s)
Alternative Splicing/genetics , Dysautonomia, Familial/genetics , Mutation , Transcriptional Elongation Factors/genetics , Alternative Splicing/drug effects , Animals , Cells, Cultured , Disease Models, Animal , Dysautonomia, Familial/drug therapy , Dysautonomia, Familial/metabolism , Enhancer Elements, Genetic/genetics , Exons/genetics , HeLa Cells , Humans , Introns/genetics , Mice, Transgenic , Molecular Structure , Phosphoproteins/metabolism , Protein Binding/drug effects , RNA Splice Sites/genetics , Serine-Arginine Splicing Factors/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Transcriptional Elongation Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL