Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Neurooncol ; 143(3): 417-428, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31115870

ABSTRACT

PURPOSE: Glioblastoma (GBM) is the most aggressive adult brain cancer, with a 15 month median survivorship attributed to the existence of treatment-refractory brain tumor initiating cells (BTICs). In order to better understand the mechanisms regulating the tumorigenic properties of this population, we studied the role of the polycomb group member BMI1 in our patient-derived GBM BTICs and its relationship with CD133, a well-established marker of BTICs. METHODS: Using gain and loss-of-function studies for Bmi1 in neural stem cells (NSCs) and patient-derived GBM BTICs respectively, we assessed in vitro self-renewal and in vivo tumor formation in these two cell populations. We further explored the BMI1 transcriptional regulatory network through RNA sequencing of different GBM BTIC populations that were knocked down for Bmi1. RESULTS: There is a differential role of BMI1 in CD133-positive cells, notably involving cell metabolism. In addition, we identified pivotal targets downstream of BMI1 in CD133+ cells such as integrin alpha 2 (ITGA2), that may contribute to regulating GBM stem cell properties. CONCLUSIONS: Our work sheds light on the association of three genes with CD133-BMI1 circuitry, their importance as downstream effectors of the BMI1 signalling pathway, and their potential as future targets for tackling GBM treatment-resistant cell populations.


Subject(s)
AC133 Antigen/metabolism , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Polycomb Repressive Complex 1/metabolism , AC133 Antigen/genetics , Animals , Apoptosis , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Proliferation , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Polycomb Repressive Complex 1/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
J Immunother Cancer ; 10(1)2022 01.
Article in English | MEDLINE | ID: mdl-35017149

ABSTRACT

PURPOSE: Glioblastoma (GBM) patients suffer from a dismal prognosis, with standard of care therapy inevitably leading to therapy-resistant recurrent tumors. The presence of cancer stem cells (CSCs) drives the extensive heterogeneity seen in GBM, prompting the need for novel therapies specifically targeting this subset of tumor-driving cells. Here, we identify CD70 as a potential therapeutic target for recurrent GBM CSCs. EXPERIMENTAL DESIGN: In the current study, we identified the relevance and functional influence of CD70 on primary and recurrent GBM cells, and further define its function using established stem cell assays. We use CD70 knockdown studies, subsequent RNAseq pathway analysis, and in vivo xenotransplantation to validate CD70's role in GBM. Next, we developed and tested an anti-CD70 chimeric antigen receptor (CAR)-T therapy, which we validated in vitro and in vivo using our established preclinical model of human GBM. Lastly, we explored the importance of CD70 in the tumor immune microenvironment (TIME) by assessing the presence of its receptor, CD27, in immune infiltrates derived from freshly resected GBM tumor samples. RESULTS: CD70 expression is elevated in recurrent GBM and CD70 knockdown reduces tumorigenicity in vitro and in vivo. CD70 CAR-T therapy significantly improves prognosis in vivo. We also found CD27 to be present on the cell surface of multiple relevant GBM TIME cell populations, notably putative M1 macrophages and CD4 T cells. CONCLUSION: CD70 plays a key role in recurrent GBM cell aggressiveness and maintenance. Immunotherapeutic targeting of CD70 significantly improves survival in animal models and the CD70/CD27 axis may be a viable polytherapeutic avenue to co-target both GBM and its TIME.


Subject(s)
Brain Neoplasms/therapy , CD27 Ligand/metabolism , Glioblastoma/therapy , Immunotherapy/methods , Proteomics/methods , Transcriptome/genetics , Tumor Microenvironment/immunology , Animals , Brain Neoplasms/immunology , Cell Proliferation , Glioblastoma/immunology , Humans , Male , Mice, Inbred NOD , Mice, SCID , Neoplasm Recurrence, Local , Prognosis
3.
Cell Rep ; 40(13): 111420, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170831

ABSTRACT

Recurrence of solid tumors renders patients vulnerable to advanced, treatment-refractory disease state with mutational and oncogenic landscape distinctive from initial diagnosis. Improving outcomes for recurrent cancers requires a better understanding of cell populations that expand from the post-therapy, minimal residual disease (MRD) state. We profile barcoded tumor stem cell populations through therapy at tumor initiation, MRD, and recurrence in our therapy-adapted, patient-derived xenograft models of glioblastoma (GBM). Tumors show distinct patterns of recurrence in which clonal populations exhibit either a pre-existing fitness advantage or an equipotency fitness acquired through therapy. Characterization of the MRD state by single-cell and bulk RNA sequencing reveals a tumor-intrinsic immunomodulatory signature with prognostic significance at the transcriptomic level and in proteomic analysis of cerebrospinal fluid (CSF) collected from patients with GBM. Our results provide insight into the innate and therapy-driven dynamics of human GBM and the prognostic value of interrogating the MRD state in solid cancers.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm, Residual/genetics , Neoplastic Stem Cells/pathology , Proteomics
4.
STAR Protoc ; 2(4): 100920, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34761232

ABSTRACT

Advances in chimeric antigen receptor (CAR) T cell therapies have led to the modality dominating translational cancer research; however, a standardized protocol for evaluating such therapies in vitro is needed. This protocol details the in vitro preclinical evaluation of CAR-T cell therapies for glioblastoma (GBM), including target cell cytotoxicity and T cell proliferation, activation, and cytokine release assays. For complete details on the use and execution of this protocol, please refer to Vora et al. (2020).


Subject(s)
Brain Neoplasms , Coculture Techniques/methods , Glioblastoma , Immunotherapy, Adoptive , Models, Biological , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Tumor Cells, Cultured
5.
Cancers (Basel) ; 13(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34298615

ABSTRACT

Despite aggressive multimodal therapy, glioblastoma (GBM) remains the most common malignant primary brain tumor in adults. With the advent of therapies that revitalize the anti-tumor immune response, several immunotherapeutic modalities have been developed for treatment of GBM. In this review, we summarize recent clinical and preclinical efforts to evaluate vaccination strategies, immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells. Although these modalities have shown long-term tumor regression in subsets of treated patients, the underlying biology that may predict efficacy and inform therapy development is being actively investigated. Common to all therapeutic modalities are fundamental mechanisms of therapy evasion by tumor cells, including immense intratumoral heterogeneity, suppression of the tumor immune microenvironment and low mutational burden. These insights have led efforts to design rational combinatorial therapies that can reignite the anti-tumor immune response, effectively and specifically target tumor cells and reliably decrease tumor burden for GBM patients.

6.
Front Oncol ; 10: 603738, 2020.
Article in English | MEDLINE | ID: mdl-33489908

ABSTRACT

During embryonic development, radial glial precursor cells give rise to neural lineages, and a small proportion persist in the adult mammalian brain to contribute to long-term neuroplasticity. Neural stem cells (NSCs) reside in two neurogenic niches of the adult brain, the hippocampus and the subventricular zone (SVZ). NSCs in the SVZ are endowed with the defining stem cell properties of self-renewal and multipotent differentiation, which are maintained by intrinsic cellular programs, and extrinsic cellular and niche-specific interactions. In glioblastoma, the most aggressive primary malignant brain cancer, a subpopulation of cells termed glioblastoma stem cells (GSCs) exhibit similar stem-like properties. While there is an extensive overlap between NSCs and GSCs in function, distinct genetic profiles, transcriptional programs, and external environmental cues influence their divergent behavior. This review highlights the similarities and differences between GSCs and SVZ NSCs in terms of their gene expression, regulatory molecular pathways, niche organization, metabolic programs, and current therapies designed to exploit these differences.

7.
STAR Protoc ; 1(3): 100174, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33377068

ABSTRACT

Glioblastoma (GBM) is the most common malignant adult brain tumor that is resistant to the standard care therapy. Advances in chimeric antigen receptor (CAR) T cell therapies have spurred renewed interest in developing CAR T cell therapies to target chemoradiotherapy-resistant brain tumor-initiating cells. This protocol shows how to isolate peripheral blood mononuclear cells from healthy donors and generate CAR T cells for the antigens of interest, and how to intracranially inject the CAR T cells into a patient-derived xenograft mouse model of GBM. For complete details on the use and execution of this protocol, please refer to Vora et al. (2020).


Subject(s)
Glioblastoma/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays/methods , Anatomic Landmarks , Animals , Cell Proliferation , HEK293 Cells , Humans , Lentivirus/physiology , Lymphocyte Activation/immunology , Mice , Neoplastic Stem Cells/pathology , Plasmids/metabolism
8.
STAR Protoc ; 1(3): 100124, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33377018

ABSTRACT

Despite a surge in the preclinical development of immunotherapies, current models are unable to predict putative toxicity, particularly the "on-target, off-tumor" effects of these therapeutics. To address this gap, we used a humanized mouse model of hematopoiesis to examine the toxicity profile of CAR-Ts targeting brain tumor-antigens also expressed in the hematopoietic system. In assessing the safety of cell-based therapies, we aim to develop and integrate a preclinical evaluation protocol as a necessary step in the clinical development pathway. For complete details on the use and execution of this protocol, please refer to Vora et al. (2020).


Subject(s)
Brain Neoplasms/therapy , Hematopoiesis/immunology , Immunotherapy, Adoptive/methods , Animals , Brain Neoplasms/immunology , Hematopoiesis/physiology , Hematopoietic Stem Cells/immunology , Humans , Immunotherapy/methods , Mice , Models, Animal , Receptors, Chimeric Antigen/immunology
9.
Syst Rev ; 9(1): 47, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32127049

ABSTRACT

BACKGROUND: Central nervous system tumors remain the leading cause of cancer-related mortality amongst children with solid tumors, with medulloblastoma (MB) representing the most common pediatric brain malignancy. Despite best current therapies, patients with recurrent MB experience have an alarmingly high mortality rate and often have limited therapeutic options beyond inadequate chemotherapy or experimental clinical trials. Therefore, a systematic review of the literature regarding treatment strategies employed in recurrent pediatric MB will evaluate previous salvage therapies in order to guide future clinical trials. The aim of this systematic review will be to investigate the efficacy and safety of salvage therapies for the management of children with progressive, treatment-refractory, or recurrent MB. METHODS: We will conduct literature searches (from 1995 onwards) in MEDLINE, EMBASE, ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, and Cochrane Central Register of Controlled Trials. Studies examining the survival and toxicity of therapies administered to treatment-refractory pediatric MB patients will be included. Two reviewers will independently assess the search results based on predefined selection criteria, complete data abstraction, and quality assessment. The primary outcomes of this review will be overall and progression-free survival. Secondary outcomes will include safety and toxicity of each therapy administered. The study methodological quality (or bias) will be appraised using an appropriate tool. Due to the nature of the research question and published literature, we expect large inter-study heterogeneity and therefore will use random effects regression analysis to extract the combined effect. In additional analyses, we will investigate the role of re-irradiation and mono- vs. poly-therapy in recurrent disease, and whether molecular subgrouping of MB influences salvage therapy. DISCUSSION: This systematic review will provide an overview of the current literature regarding salvage therapies for relapsed MB patients. Investigation of clinically tested therapies for children with recurrent MB has significant implications for clinical practice. By reviewing the efficacy and toxicity of MB salvage therapies, this study will identify effective therapeutic strategies administered to recurrent MB patients and can inform future clinical trials aimed to improve patient survivorship and quality of life. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020167421.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Cerebellar Neoplasms/therapy , Child , Humans , Medulloblastoma/therapy , Quality of Life , Salvage Therapy , Systematic Reviews as Topic
10.
Cell Stem Cell ; 26(6): 832-844.e6, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32464096

ABSTRACT

CD133 marks self-renewing cancer stem cells (CSCs) in a variety of solid tumors, and CD133+ tumor-initiating cells are known markers of chemo- and radio-resistance in multiple aggressive cancers, including glioblastoma (GBM), that may drive intra-tumoral heterogeneity. Here, we report three immunotherapeutic modalities based on a human anti-CD133 antibody fragment that targets a unique epitope present in glycosylated and non-glycosylated CD133 and studied their effects on targeting CD133+ cells in patient-derived models of GBM. We generated an immunoglobulin G (IgG) (RW03-IgG), a dual-antigen T cell engager (DATE), and a CD133-specific chimeric antigen receptor T cell (CAR-T): CART133. All three showed activity against patient-derived CD133+ GBM cells, and CART133 cells demonstrated superior efficacy in patient-derived GBM xenograft models without causing adverse effects on normal CD133+ hematopoietic stem cells in humanized CD34+ mice. Thus, CART133 cells may be a therapeutically tractable strategy to target CD133+ CSCs in human GBM or other treatment-resistant primary cancers.


Subject(s)
Brain Neoplasms , Glioblastoma , AC133 Antigen , Animals , Brain Neoplasms/therapy , Glioblastoma/therapy , Humans , Immunotherapy , Mice , Neoplastic Stem Cells
11.
Methods Mol Biol ; 1869: 85-91, 2019.
Article in English | MEDLINE | ID: mdl-30324516

ABSTRACT

Differentiation is a central key capability of stem cells. Their ability to be multipotent and undergo self-renewal are key identifying features of stem cells. A differentiation assay allows for study of one of the essential features of stem cells, the ability to differentiate into all of the cell types of its lineage, in order to ensure that the cells cultured and utilized in key experiments indeed have stem cell properties. Neural stem cells when plated in differentiation media, differentiate into all three neural lineages: Neurons, Astrocytes, and Oligodendrocytes. Brain tumor initiating cells (BTICs) are cells present in brain tumors that possess stem cell properties and are able to self-renew and differentiate into neural lineages. In the current chapter, we discuss protocols involved in immunofluorescence staining and identification of differentiated cells from BTIC populations.


Subject(s)
Brain Neoplasms/pathology , Cell Culture Techniques/methods , Cell Differentiation , Neoplastic Stem Cells/pathology , Cell Membrane Permeability , Flow Cytometry , Glial Fibrillary Acidic Protein/metabolism , Humans , Neural Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL