Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
Add more filters

Publication year range
1.
Malar J ; 23(1): 166, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807105

ABSTRACT

BACKGROUND: Deforestation is an important driver of malaria dynamics, with a relevant impact on mosquito ecology, including larval habitat availability, blood-feeding behaviour, and peak biting time. The latter is one of several entomological metrics to evaluate vectorial capacity and effectiveness of disease control. This study aimed to test the effect of forest cover percentage on the peak biting time of Plasmodium-uninfected and infected Nyssorhynchus darlingi females. METHODS: Mosquitoes were captured utilizing human landing catch (HLC) in the peridomestic habitat in field collections carried out in the wet, wet-dry transition, and dry seasons from 2014 to 2017 in areas with active malaria transmission in Amazonian Brazil. The study locations were in rural settlements in areas with the mean annual malaria parasite incidence (Annual Parasite Incidence, API ≥ 30). All Ny. darlingi females were tested for Plasmodium spp. infection using real time PCR technique. Forest cover percentage was calculated for each collection site using QGIS v. 2.8 and was categorized in three distinct deforestation scenarios: (1) degraded, < 30% forest cover, (2) intermediate, 30-70% forest cover, and (3) preserved, > 70% forest cover. RESULTS: The highest number of uninfected female Ny. darlingi was found in degraded landscape-sites with forest cover < 30% in any peak biting time between 18:00 and 0:00. Partially degraded landscape-sites, with (30-70%) forest cover, showed the highest number of vivax-infected females, with a peak biting time of 21:00-23:00. The number of P. falciparum-infected mosquitoes was highest in preserved sites with > 70% forest cover, a peak biting at 19:00-20:00, and in sites with 30-70% forest cover at 22:00-23:00. CONCLUSIONS: Results of this study show empirically that degraded landscapes favour uninfected Ny. darlingi with a peak biting time at dusk (18:00-19:00), whereas partially degraded landscapes affect the behaviour of Plasmodium-infected Ny. darlingi by shifting its peak biting time towards hours after dark (21:00-23:00). In preserved sites, Plasmodium-infected Ny. darlingi bite around dusk (18:00-19:00) and shortly after (19:00-20:00).


Subject(s)
Feeding Behavior , Forests , Mosquito Vectors , Animals , Brazil , Female , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Conservation of Natural Resources , Insect Bites and Stings/epidemiology , Seasons , Malaria/transmission
2.
BMC Microbiol ; 22(1): 161, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35733096

ABSTRACT

INTRODUCTION: Mosquitoes (Diptera: Culicidae) are vectors that transmit numerous pathogens to humans and other vertebrates. Haemagogus leucocelaenus is a mosquito associated with transmission of yellow fever virus. The insect gut harbors a variety of microorganisms that can live and multiply within it, thus contributing to digestion, nutrition, and development of its host. The composition of bacterial communities in mosquitoes can be influenced by both biotic and abiotic factors. The goal of this study was to investigate the bacterial diversity of Hg. leucocelaenus and verify the differences between the bacterial communities in Hg. leucocelaenus from three different locations in the Atlantic tropical rain forest and southeastern state of São Paulo State, Brazil. RESULTS: The phylum Proteobacteria was found in mosquitoes collected from the three selected study sites. More than 50% of the contigs belong to Wolbachia, followed by 5% Swaminathania, and 3% Acinetobacter. The genus Serratia was found in samples from two locations. CONCLUSIONS: Wolbachia was reported for the first time in this species and may indicates that the vector competence of the populations of the species can vary along its geographical distribution area. The presence of Serratia might facilitate viral invasion caused by the disruption of the midgut barrier via action of the SmEnhancin protein, which digests the mucins present in the intestinal epithelium.


Subject(s)
Culicidae , Mercury , Yellow Fever , Animals , Brazil , Humans , Mosquito Vectors
3.
World Dev ; 145: 105533, 2021 Sep.
Article in English | MEDLINE | ID: mdl-36570383

ABSTRACT

Ecosystem health and zoonotic diseases are closely interwoven. Even as we grapple with the SARS-Coronavirus-2 pandemic, which may have its origins in wildlife, weakening environmental policies in the Brazilian Amazon are elevating the risk of additional zoonotic spillover events. We examine the links between deforestation and disease emergence in the Amazon, as illustrated by outbreaks of yellow fever virus, Venezuelan equine encephalitis virus, and Oropouche virus. It has been well established that in Brazil, indigenous territories exhibit lower rates of forest conversion and degradation than in areas designated for sustainable use. In this way, Amazonia's indigenous tribes promote public health while sustaining ecosystem services. However, indigenous land rights are under attack due to current policies enabling illegal land grabbing, mining and logging. Further adding to the existential struggle of indigenous tribes, malaria and SARS-Coronavirus-2 are wreaking havoc on these vulnerable populations. There is a critical need for protection of indigenous people's rights and health, as well as a sustained effort to support the study of mechanisms underlying anthropogenic land use change and zoonotic disease risk.

4.
BMC Microbiol ; 20(1): 180, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32586275

ABSTRACT

BACKGROUND: The bacterial community present in the abdomen in Anophelinae mosquitoes can influence mosquito susceptibility to Plasmodium infection. Little is known about the bacteria associated with Nyssorhynchus darlingi, a primary malaria vector in the Amazon basin. We investigated the abdominal bacterial community compositions of naturally Plasmodium-infected (P-positive, n = 9) and non-infected (P-negative, n = 7) Ny. darlingi from the Brazilian Amazon region through massive parallel sequencing of the bacterial V4 variable region of the 16S rRNA gene. RESULTS: Bacterial richness of Ny. darlingi encompassed 379 operational taxonomic units (OTUs), the majority of them belonging to the Proteobacteria, Firmicutes and Bacteroides phyla. Escherichia/Shigella and Pseudomonas were more abundant in the P-positive and P-negative groups, respectively, than in the opposite groups. Enterobacter was found only in the P-negative group. The results of statistical analyses conducted to compare bacterial abundance and diversity between Plasmodium-infected and Plasmodium-non-infected mosquitoes were not significant. CONCLUSIONS: This study increased knowledge about bacterial composition in Ny. darlingi and revealed that Plasmodium-positive and Plasmodium-negative groups share a common core of bacteria. The genera Prevotella 9, Sphingomonas, Bacteroides, and Bacillus were reported for the first time in Ny. darlingi.


Subject(s)
Anopheles/microbiology , Bacteria/classification , Plasmodium/pathogenicity , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Abdomen/microbiology , Abdomen/parasitology , Animals , Anopheles/parasitology , Bacteria/genetics , Bacteria/isolation & purification , Brazil , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Female , High-Throughput Nucleotide Sequencing , Phylogeny
5.
BMC Genomics ; 20(1): 721, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31561749

ABSTRACT

BACKGROUND: The tribe Sabethini (Diptera: Culicidae) contains important vectors of the yellow fever virus and presents remarkable morphological and ecological diversity unequalled in other mosquito groups. However, there is limited information about mitochondrial genomes (mitogenomes) from these species. As mitochondrial genetics has been fundamental for posing evolutionary hypotheses and identifying taxonomical markers, in this study we sequenced the first sabethine mitogenomes: Sabethes undosus, Trichoprosopon pallidiventer, Runchomyia reversa, Limatus flavisetosus, and Wyeomyia confusa. In addition, we performed phylogenetic analyses of Sabethini within Culicidae and compared its mitogenomic architecture to that of other insects. RESULTS: Similar to other insects, the Sabethini mitogenome contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region. However, the gene order is not the same as that in other mosquitoes; the tyrosine (Y) and cysteine (C) tRNA genes have translocated. In general, mitogenome rearrangements within insects are uncommon events; the translocation reported here is unparalleled among Culicidae and can be considered an autapomorphy for the Neotropical sabethines. CONCLUSIONS: Our study provides clear evidence of gene rearrangements in the mitogenomes of these Neotropical genera in the tribe Sabethini. Gene order can be informative at the taxonomic level of tribe. The translocations found, along with the mitogenomic sequence data and other recently published findings, reinforce the status of Sabethini as a well-supported monophyletic taxon. Furthermore, T. pallidiventer was recovered as sister to R. reversa, and both were placed as sisters of other Sabethini genera (Sabethes, Wyeomyia, and Limatus).


Subject(s)
Culicidae/classification , Mitochondria/genetics , Sequence Analysis, DNA/methods , Animals , Culicidae/genetics , Evolution, Molecular , Gene Order , Gene Rearrangement , Genome Size , Genome, Mitochondrial , Phylogeny
6.
Malar J ; 18(1): 306, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31484519

ABSTRACT

BACKGROUND: Plasmodium falciparum malaria is a threat to public health, but Plasmodium vivax malaria is most prevalent in Latin America, where the incidence rate has been increasing since 2016, particularly in Venezuela and Brazil. The Brazilian Amazon reported 193,000 cases in 2017, which were mostly confirmed as P. vivax (~ 90%). Herein, the relationships among malaria incidence rates and the proportion of accumulated deforestation were contrasted using data from the states of Acre and Rondônia in the south-western Brazilian Amazon. The main purpose is to test the hypothesis that the observed difference in incidence rates is associated with the proportion of accumulated deforestation. METHODS: An ecological study using spatial and temporal models for mapping and modelling malaria risk was performed. The municipalities of Acre and Rondônia were the spatial units of analysis, whereas month and year were the temporal units. The number of reported malaria cases from 2009 until 2015 were used to calculate the incidence rate per 1000 people at risk. Accumulated deforestation was calculated using publicly available satellite images. Geographically weighted regression was applied to provide a local model of the spatial heterogeneity of incidence rates. Time-series dynamic regression was applied to test the correlation of incidence rates and accumulated deforestation, adjusted by climate and socioeconomic factors. RESULTS: The malaria incidence rate declined in Rondônia but remained stable in Acre. There was a high and positive correlation between the decline in malaria and higher proportions of accumulated deforestation in Rondônia. Geographically weighted regression showed a complex relationship. As deforestation increased, malaria incidence also increased in Acre, while as deforestation increased, malaria incidence decreased in Rondônia. Time-series dynamic regression showed a positive association between malaria incidence and precipitation and accumulated deforestation, whereas the association was negative with the human development index in the westernmost areas of Acre. CONCLUSION: Landscape modification caused by accumulated deforestation is an important driver of malaria incidence in the Brazilian Amazon. However, this relationship is not linearly correlated because it depends on the overall proportion of the land covered by forest. For regions that are partially degraded, forest cover becomes a less representative component in the landscape, causing the abovementioned non-linear relationship. In such a scenario, accumulated deforestation can lead to a decline in malaria incidence.


Subject(s)
Environment , Malaria/epidemiology , Socioeconomic Factors , Brazil/epidemiology , Humans , Incidence , Malaria/parasitology , Models, Theoretical , Spatio-Temporal Analysis
7.
Malar J ; 18(1): 117, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30947726

ABSTRACT

BACKGROUND: Brazilian malaria control programmes successfully reduced the incidence and mortality rates from 2005 to 2016. Since 2017, increased malaria has been reported across the Amazon. Few field studies focus on the primary malaria vector in high to moderate endemic areas, Nyssorhynchus darlingi, as the key entomological component of malaria risk, and on the metrics of Plasmodium vivax propagation in Amazonian rural communities. METHODS: Human landing catch collections were carried out in 36 houses of 26 communities in five municipalities in the Brazilian states of Acre, Amazonas and Rondônia states, with API (> 30). In addition, data on the number of locally acquired symptomatic infections were employed in mathematical modelling analyses carried out to determine Ny. darlingi vector competence and vectorial capacity to P. vivax; and to calculate the basic reproduction number for P. vivax. RESULTS: Entomological indices and malaria metrics ranged among localities: prevalence of P. vivax infection in Ny. darlingi, from 0.243% in Mâncio Lima, Acre to 3.96% in Machadinho D'Oeste, Rondônia; daily human-biting rate per person from 23 ± 1.18 in Cruzeiro do Sul, Acre, to 66 ± 2.41 in Lábrea, Amazonas; vector competence from 0.00456 in São Gabriel da Cachoeira, Amazonas to 0.04764 in Mâncio Lima, Acre; vectorial capacity from 0.0836 in Mâncio Lima, to 1.5 in Machadinho D'Oeste. The estimated R0 for P. vivax (PvR0) was 3.3 in Mâncio Lima, 7.0 in Lábrea, 16.8 in Cruzeiro do Sul, 55.5 in São Gabriel da Cachoeira, and 58.7 in Machadinho D'Oeste. Correlation between P. vivax prevalence in Ny. darlingi and vector competence was non-linear whereas association between prevalence of P. vivax in mosquitoes, vectorial capacity and R0 was linear and positive. CONCLUSIONS: In spite of low vector competence of Ny. darlingi to P. vivax, parasite propagation in the human population is enhanced by the high human-biting rate, and relatively high vectorial capacity. The high PvR0 values suggest hyperendemicity in Machadinho D'Oeste and São Gabriel da Cachoeira at levels similar to those found for P. falciparum in sub-Saharan Africa regions. Mass screening for parasite reservoirs, effective anti-malarial drugs and vector control interventions will be necessary to shrinking transmission in Amazonian rural communities, Brazil.


Subject(s)
Anopheles/parasitology , Basic Reproduction Number , Insect Bites and Stings/epidemiology , Malaria, Vivax/epidemiology , Mosquito Vectors/parasitology , Animals , Brazil/epidemiology , Humans , Malaria, Vivax/parasitology , Plasmodium vivax/physiology
8.
Mem Inst Oswaldo Cruz ; 113(9): e170522, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30043836

ABSTRACT

The Malaria Frontier Hypothesis (MFH) is the current model for predicting malaria emergence in the Brazilian Amazon. It has two important dimensions, 'settlement time' and 'malaria incidence', and its prediction are: malaria incidence peaks five years after the initiation of human settlement and declines towards zero after an estimated 10 years. Although MFH is currently accepted, it has been challenged recently. Herein, we described a novel method for estimating settlement timeline by using remote sensing technology integrated in an open-software geographic information system. Surprisingly, we found that of the majority of the rural settlements with high malaria incidence are more than 10 years old.


Subject(s)
Conservation of Natural Resources , Forests , Malaria/transmission , Brazil/epidemiology , Conservation of Natural Resources/trends , Geographic Information Systems , Humans , Incidence , Malaria/epidemiology , Malaria/parasitology , Parasite Load , Rural Population , Time Factors
9.
Mem Inst Oswaldo Cruz ; 113(12): e180380, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30517211

ABSTRACT

BACKGROUND Nyssorhynchus dunhami, a member of the Nuneztovari Complex, has been collected in Brazil, Colombia, and Peru and described as zoophilic. Although to date Ny. dunhami has not been documented to be naturally infected by Plasmodium, it is frequently misidentified as other Oswaldoi subgroup species that are local or regional malaria vectors. OBJECTIVES The current study seeks to verify the morphological identification of Nuneztovari Complex species collected in the peri-Iquitos region of Amazonian Peru, to determine their Plasmodium infection status, and to describe ecological characteristics of their larval habitats. METHODS We collected Ny. nuneztovari s.l. adults in 2011-2012, and Ny. nuneztovari s.l. larvae and adults in 2016-2017. When possible, samples were identified molecularly using cytochrome c oxidase subunit I (COI) barcode sequencing. Adult Ny. nuneztovari s.l. from 2011-2012 were tested for Plasmodium using real-time PCR. Environmental characteristics associated with Ny. nuneztovari s.l. larvae-positive water bodies were evaluated. FINDINGS We collected 590 Ny. nuneztovari s.l. adults and 116 larvae from eight villages in peri-Iquitos. Of these, 191 adults and 111 larvae were identified by COI sequencing; all were Ny. dunhami. Three Ny. dunhami were infected with P. falciparum, and one with P. vivax, all collected from one village on one night. Ny. dunhami larvae were collected from natural and artificial water bodies, and their presence was positively associated with other Anophelinae larvae and amphibians, and negatively associated with people living within 250m. MAIN CONCLUSIONS Of Nuneztovari Complex species, we identified only Ny. dunhami across multiple years in eight peri-Iquitos localities. This study is, to our knowledge, the first report of natural infection of molecularly identified Ny. dunhami with Plasmodium. We advocate the use of molecular identification methods in this region to monitor Ny. dunhami and other putative secondary malaria vectors to more precisely evaluate their importance in malaria transmission.


Subject(s)
Anopheles/parasitology , Mosquito Vectors/parasitology , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Animals , Anopheles/classification , Brazil , Colombia , Ecology , Malaria, Falciparum/transmission , Malaria, Vivax/transmission , Mosquito Vectors/classification , Peru
10.
Mem Inst Oswaldo Cruz ; 113(2): 87-95, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29236930

ABSTRACT

BACKGROUND Studies on malaria vectors in the Pantanal biome, Central Brazil, were conducted more than half a century ago. OBJECTIVES To update anopheline records and assess receptivity and vulnerability to malaria transmission. METHODS Five-day anopheline collections were conducted bimonthly in Salobra, Mato Grosso do Sul state, for one year. Indoors, mosquitoes were collected from their resting places, while in open fields, they were captured using protected human-baited and horse-baited traps near the house and at the Miranda River margin, respectively. Hourly biting activity outdoors was also assessed. Secondary data were collected on the arrival of tourists, economic projects, and malaria cases. FINDINGS A total of 24,894 anophelines belonging to 13 species were caught. The main Brazilian malaria vector Anopheles darlingi was the predominant species, followed by An. triannulatus s.l. Hourly variation in anopheline biting showed three main peaks occurring at sunset, around midnight, and at sunrise, the first and last being the most prominent. The highest density of all species was recorded near the river margin and during the transition period between the rainy and early dry seasons. This coincides with the time of main influx of outsider workers and tourists, whose activities mostly occur in the open fields and frequently start before sunrise and last until sunset. Some of these individuals originate from neighbouring malaria-endemic countries and states, and are likely responsible for the recorded imported and introduced malaria cases. MAIN CONCLUSION Pantanal is a malaria-prone area in Brazil. Surveillance and anopheline control measures must be applied to avoid malaria re-emergence in the region.


Subject(s)
Anopheles/classification , Mosquito Vectors/classification , Wetlands , Animals , Anopheles/parasitology , Anopheles/physiology , Brazil , Female , Humans , Malaria/transmission , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Oviposition , Seasons , Species Specificity
11.
BMC Genomics ; 16: 831, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26489754

ABSTRACT

BACKGROUND: The Coronator Group currently encompasses six morphologically similar species (Culex camposi Dyar, Culex coronator Dyar and Knab, Culex covagarciai Forattini, Culex usquatus Dyar, Culex usquatissimus Dyar, and Culex ousqua Dyar). Culex coronator has been incriminated as a potential vector of West Nile Virus (WNV), Saint Louis Encephalitis Virus (SLEV), and Venezuelan Equine Encephalitis Virus (VEEV). The complete mitochondrial genome of Cx. coronator, Cx. usquatus, Cx.usquatissimus, and Cx. camposi was sequenced, annotated, and analyzed to provide genetic information about these species. RESULTS: The mitochondrial genomes of Cx. coronator, Cx. usquatus, Cx.usquatissimus, and Cx. camposi varied from 15,573 base pairs in Cx. usquatus to 15,576 in Cx. coronator. They contained 37 genes (13 protein-encoding genes, 2 rRNA genes, and 22 tRNA genes) and the AT-rich control region. Comparative analyses of the 37 genes demonstrated the mitochondrial genomes to be composed of variable and conserved genes. Despite the small size, the ATP8, ATP6 plus NADH5 protein-encoding genes were polymorphic, whereas tRNAs and rRNAs were conserved. The control region contained some poly-T stretch. The Bayesian phylogenetic tree corroborated that both the Coronator Group and the Culex pipens complex are monophyletic taxa. CONCLUSIONS: The mitochondrial genomes of Cx. coronator, Cx. usquatus, Cx. usquatissimus and Cx. camposi share the same gene composition and arrangement features that match to those reported for most Culicidae species. They are composed of the same 37 genes and the AT-rich control region, which contains poly-T stretches that may be involved in the functional role of the mitochondrial genome. Taken together, results of the dN/dS ratios, the sliding window analyses and the Bayesian phylogenetic analyses suggest that ATP6, ATP8 and NADH5 are promising genes to be employed in phylogenetic studies involving species of the Coronator Group, and probably other species groups of the subgenus Culex. Bayesian topology corroborated the morphological hypothesis of the Coronator Group as monophyletic lineage within the subgenus Culex.


Subject(s)
Culex/genetics , Genome, Insect , Genome, Mitochondrial , Animals , Base Composition , Brazil , Codon , Computational Biology , Culex/classification , Genes, Insect , Genes, Mitochondrial , Genomics/methods , High-Throughput Nucleotide Sequencing , Insect Vectors , Molecular Sequence Annotation , Open Reading Frames , Phylogeny
12.
Malar J ; 14: 181, 2015 Apr 25.
Article in English | MEDLINE | ID: mdl-25909655

ABSTRACT

BACKGROUND: Recently an unexpectedly high prevalence of Plasmodium falciparum was found in asymptomatic blood donors living in the southeastern Brazilian Atlantic forest. The bromeliad-malaria paradigm assumes that transmission of Plasmodium vivax and Plasmodium malariae involves species of the subgenus Kerteszia of Anopheles and only a few cases of P. vivax malaria are reported annually in this region. The expectations of this paradigm are a low prevalence of P. vivax and a null prevalence of P. falciparum. Therefore, the aim of this study was to verify if P. falciparum is actively circulating in the southeastern Brazilian Atlantic forest remains. METHODS: In this study, anophelines were collected with Shannon and CDC-light traps in seven distinct Atlantic forest landscapes over a 4-month period. Field-collected Anopheles mosquitoes were tested by real-time PCR assay in pools of ten, and then each mosquito from every positive pool, separately for P. falciparum and P. vivax. Genomic DNA of P. falciparum or P. vivax from positive anophelines was then amplified by traditional PCR for sequencing of the 18S ribosomal DNA to confirm Plasmodium species. Binomial probabilities were calculated to identify non-random results of the P. falciparum-infected anopheline findings. RESULTS: The overall proportion of anophelines naturally infected with P. falciparum was 4.4% (21/480) and only 0.8% (4/480) with P. vivax. All of the infected mosquitoes were found in intermixed natural and human-modified environments and most were Anopheles cruzii (22/25 = 88%, 18 P. falciparum plus 4 P. vivax). Plasmodium falciparum was confirmed by sequencing in 76% (16/21) of positive mosquitoes, whereas P. vivax was confirmed in only 25% (1/4). Binomial probabilities suggest that P. falciparum actively circulates throughout the region and that there may be a threshold of the forested over human-modified environment ratio upon which the proportion of P. falciparum-infected anophelines increases significantly. CONCLUSIONS: These results show that P. falciparum actively circulates, in higher proportion than P. vivax, among Anopheles mosquitoes of fragments of the southeastern Brazilian Atlantic forest. This finding challenges the classical bromeliad-malaria paradigm, which considers P. vivax circulation as the driver for the dynamics of residual malaria transmission in this region.


Subject(s)
Anopheles/parasitology , Bromeliaceae/physiology , Forests , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Animals , Brazil , Humans , Molecular Sequence Data , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Sequence Analysis, DNA
13.
Malar J ; 13: 337, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25168319

ABSTRACT

A recent paper in Malaria Journal reported the observation of unexpected prevalence rates of healthy individuals carrying Plasmodium falciparum (5.14%) or Plasmodium vivax (2.26%) DNA among blood donors from the main transfusion centre in the metropolitan São Paulo, a non-endemic area for malaria. The article has been challenged by a group of authors who argued that the percentages reported were higher than those found in blood banks of the endemic Amazon Region and also that that paper had not considered the literature on the classical dynamics of malaria transmission in the Atlantic Forest, which involves Anopheles (Kerteszia) cruzii and bromeliad malaria, due to P. vivax and Plasmodium malariae parasites, but not P. falciparum. The present commentary paper responds to this challenge and brings evidence and literature data supporting that the observed prevalence ratios may indicate a proportion of individuals that are exposed to Plasmodium transmission in permissive environments; that blood carrying parasite DNA may not be necessarily infective if used in transfusion; and that in the literature, there are examples supporting the circulation of P. falciparum in the area.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Vivax/diagnosis , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Transfusion Reaction , Humans
14.
Malar J ; 13: 224, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24906577

ABSTRACT

BACKGROUND: In Brazil, malaria is endemic in the Amazon River basin and non-endemic in the extra-Amazon region, which includes areas of São Paulo state. In this state, a number of autochthonous cases of malaria occur annually, and the prevalence of subclinical infection is unknown. Asymptomatic infections may remain undetected, maintaining transmission of the pathogen, including by blood transfusion. In these report it has been described subclinical Plasmodium infection in blood donors from a blood transfusion centre in São Paulo, Brazil. METHODS: In this cross-sectional study, representative samples of blood were obtained from 1,108 healthy blood donors at the Fundação Pró-Sangue Hemocentro de São Paulo, the main blood transfusion centre in São Paulo. Malaria exposure was defined by the home region (exposed: forest region; non-exposed: non-forest region). Real-time PCR was used to detect Plasmodium falciparum and Plasmodium vivax. Subclinical malaria cases were geo-referenced. RESULTS: Eighty-four (7.41%) blood donors tested positive for Plasmodium; 57 of these were infected by P. falciparum, 25 by P. vivax, and 2 by both. The prevalence of P. falciparum and P. vivax was 5.14 and 2.26, respectively. The overall prevalence ratio (PR) was 3.23 (95% confidence interval (CI) 2.03, 5.13); P. falciparum PR was 16.11 (95% CI 5.87, 44.21) and P. vivax PR was 0.47 (95% CI 0.2, 1.12). Plasmodium falciparum subclinical malaria infection in the Atlantic Forest domain was present in the mountain regions while P. vivax infection was observed in cities from forest-surrounded areas. CONCLUSIONS: The presence of Plasmodium in healthy blood donors from a region known as non-endemic, which is important in the context of transfusion biosafety, was described. Infected recipients may become asymptomatic carriers and a reservoir for parasites, maintaining their transmission. Furthermore, P. falciparum PR was positively associated with the forest environment, and P. vivax was associated with forest fragmentation.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Vivax/diagnosis , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Transfusion Reaction , Blood Donors , Brazil/epidemiology , Cross-Sectional Studies , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/transmission , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Real-Time Polymerase Chain Reaction
15.
BMC Ecol ; 14: 30, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25384802

ABSTRACT

BACKGROUND: Species coexistence in mosquito assemblages may depend on mechanisms related to interspecific resource partitioning occurring at multiple scales. In the present work we investigated co-occurrence or spatial segregation in mosquito assemblages sharing resources at micro-habitat, habitat and landscape scales. Environmental characteristics, mosquito fauna as adults and larvae were assessed along vegetation gradient in a natural landscape of tropical rainforest. Huisman-Olff-Fresco (HOF) and Generalized Additive (GAM) models were employed to explore relationships between abundances of potential competitors in mosquito assemblages and vegetation gradient (e.g., scrublands, mixed arboreal vegetation and dense ombrophilous forest). We tested hypotheses concerning mosquito species co-occurrence or spatial segregation employing binomial logistic regression models. RESULTS: Co-occurrences and spatial segregation of mosquito species showed evidences of three scales of coexistence mechanisms: 1) micro-habitat--scale 1: different behaviors in response to food availability in specific vertical strata within larval container; 2) habitat--scale 2: specialized strategies related to heterogeneity of resource availability among larval containers and 3) landscape--scale 3: asymmetrical competition dependent upon the context of abiotic and biotic variables. CONCLUSION: Results of the present work suggest that coexistence mechanisms can concomitantly work at multiple scales.


Subject(s)
Culicidae/physiology , Ecosystem , Animals , Brazil , Competitive Behavior , Culicidae/growth & development , Female , Larva/physiology , Population Dynamics
16.
Mem Inst Oswaldo Cruz ; 109(8): 1045-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25424445

ABSTRACT

Traps are widely employed for sampling and monitoring mosquito populations for surveillance, ecological and fauna studies. Considering the importance of assessing other technologies for sampling mosquitoes, we addressed the effectiveness of Mosquito Magnet® Independence (MMI) in comparison with those of the CDC trap with CO2 and Lurex3® (CDC-A) and the CDC light trap (CDC-LT). Field collections were performed in a rural area within the Atlantic Forest biome, southeastern state of São Paulo, Brazil. The MMI sampled 53.84% of the total number of mosquitoes, the CDC-A (26.43%) and CDC-LT (19.73%). Results of the Pearson chi-squared test (χ2) showed a positive association between CDC-LT and species of Culicini and Uranotaeniini tribes. Additionally, our results suggested a positive association between CDC-A and representatives of the Culicini and Aedini tribes, whereas the MMI was positively associated with the Mansoniini and Sabethini as well as with Anophelinae species. The MMI sampled a greater proportion (78.27%) of individuals of Anopheles than either the CDC-LT (0.82%) or the CDC-A traps (20.91%). Results of the present study showed that MMI performed better than CDC-LT or CDC-A in sampling mosquitoes in large numbers, medically important species and assessing diversity parameters in rural southeastern Atlantic Forest.


Subject(s)
Anopheles/classification , Insect Vectors/classification , Mosquito Control/instrumentation , Rainforest , Tropical Climate , Animals , Biodiversity , Brazil , Culex , Culicidae/classification , Ecosystem , Mosquito Control/methods , Ochlerotatus/classification , Population Density , Public Health , Rural Health
17.
J Med Entomol ; 61(1): 87-109, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38043587

ABSTRACT

Nyssorhynchus (Nyssorhynchus) ibiapabaensis (Sant'Ana & Sallum n. sp.) and Ny. (Nys.) untii (Sant'Ana & Sallum n. sp.) are new species of the Arthuri Complex of the Strodei Subgroup. The new species are described and validated using morphological characters of the male, female, and immature stages. The description of the male, female, fourth-instar larva and pupa of Ny. arthuri (Unti, 1941) and Ny. albertoi (Unti, 1941) are provided for the first time. To avoid nomenclature instability, neotypes are designated for both species. All life stages of Ny. strodei (Root, 1926) employing specimens collected in the Agua Limpa District, Juiz de Fora, Minas Gerais, Brazil are redescribed.


Subject(s)
Anopheles , Male , Female , Animals , Larva/anatomy & histology , Brazil , Pupa/anatomy & histology
18.
Lancet Reg Health Am ; 30: 100673, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38283942

ABSTRACT

In the Americas, one decade following its emergence in 2013, chikungunya virus (CHIKV) continues to spread and cause epidemics across the region. To date, 3.7 million suspected and laboratory-confirmed chikungunya cases have been reported in 50 countries or territories in the Americas. Here, we outline the current status and epidemiological aspects of chikungunya in the Americas and discuss prospects for future research and public health strategies to combat CHIKV in the region.

19.
Mem Inst Oswaldo Cruz ; 108(8): 1014-20, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24402154

ABSTRACT

In several countries, surveillance of insect vectors is accomplished with automatic traps. This study addressed the performance of Mosquito Magnet® Independence (MMI) in comparison with those of CDC with CO2 and lactic acid (CDC-A) and CDC light trap (CDC-LT). The collection sites were in a rural region located in a fragment of secondary tropical Atlantic rainforest, southeastern Brazil. Limatus durhami and Limatus flavisetosus were the dominant species in the MMI, whereas Ochlerotatus scapularis was most abundant in CDC-A. Culex ribeirensis and Culex sacchettae were dominant species in the CDC-LT. Comparisons among traps were based on diversity indices. Results from the diversity analyses showed that the MMI captured a higher abundance of mosquitoes and that the species richness estimated with it was higher than with CDC-LT. Contrasting, difference between MMI and CDC-A was not statistically significant. Consequently, the latter trap seems to be both an alternative for the MMI and complementary to it for ecological studies and entomological surveillance.


Subject(s)
Biodiversity , Culicidae/classification , Insect Vectors/classification , Mosquito Control/instrumentation , Rainforest , Animals , Brazil , Population Density , Rural Population
20.
Mem Inst Oswaldo Cruz ; 108 Suppl 1: 110-22, 2013.
Article in English | MEDLINE | ID: mdl-24473810

ABSTRACT

Sequences of the cytochrome c oxidase subunit I (COI) mitochondrial gene from adults of 22 Culex (Culex) species from Argentina and Brazil were employed to assess species identification and to test the usefulness of COI for barcoding using the best close match (BCM) algorithm. A pairwise Kimura two-parameter distance matrix including the mean intra and interspecific distances for 71 COI barcode sequences was constructed. Of the 12 COI lineages recovered in the Neighbour-joining topology, five confirmed recognised morphological species (Cx. acharistus, Cx. chidesteri, Cx. dolosus, Cx. lygrus and Cx. saltanensis) with intraspecific divergences lower than 1.75%. Cx. bilineatus is formally resurrected from the synonymy of Cx. dolosus. Cx. maxi , Cx. surinamensis and the Coronator group species included were clustered into an unresolved lineage. The intraspecific distance of Cx. pipiens (3%) was almost twice the interspecific between it and Cx. quinquefasciatus (1.6%). Regarding the BCM criteria, the COI barcode successfully identified 69% of all species. The rest of the sequences, approximately 10%, 18% and 3%, remained as ambiguously, mis and unidentified, respectively. The COI barcode does not contain enough information to distinguish Culex (Cux.) species.


Subject(s)
Animal Identification Systems/statistics & numerical data , Classification/methods , Culex/anatomy & histology , Culex/genetics , DNA Barcoding, Taxonomic/statistics & numerical data , Electron Transport Complex IV/genetics , Algorithms , Animals , Argentina , Brazil , Cluster Analysis , Culex/classification , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL