ABSTRACT
Human Cripto-1 is a member of the epidermal growth factor (EGF)-Cripto-FRL-1-Cryptic (CFC) family family and performs critical roles in cancer and various pathological and developmental processes. Recently we demonstrated that a soluble form of Cripto-1 suppresses the self-renewal and enhances the differentiation of cancer stem cells (CSCs). A functional form of soluble Cripto-1 was found to be difficult to obtain because of the 12Ā cysteine residues in the protein which impairs the folding process. Here, we optimized the protocol for a T7 expression system, purification from inclusion bodies under denatured conditions refolding of a His-tagged Cripto-1 protein. A concentrations of 0.2-0.4 mM isopropyl Ć-D-1-thiogalactopyranosideĀ (IPTG) at 37Ā°C was found to be the optimal concentration for Cripto-1 expression while imidazole at 0.5 M was the optimum concentration to elute the Cripto-1 protein from a Ni-column in the smallest volume. Cation exchange column chromatography of the Cripto-1 protein in the presence of 8 M urea exhibited sufficient elution profile at pH 5, which was more efficient at recovery. The recovery of the protein reached to more than 26.6% after refolding with arginine. The purified Cripto-1 exhibited high affinity to the anti-ALK-4 antibody and suppressed sphere forming ability of CSCsĀ at high dose and induced cell differentiation.
Subject(s)
Neoplasms , Neoplastic Stem Cells , Cell Differentiation , Epidermal Growth Factor/chemistry , Epidermal Growth Factor/pharmacology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Neoplasms/metabolism , Neoplastic Stem Cells/metabolismABSTRACT
There exists a set of factors termed oncofetal proteins that play key roles in ontogeny before they decline or disappear as the organism's tissues achieve homeostasis, only to then re-emerge in cancer. Although the unique therapeutic potential presented by such factors has been recognized for more than a century, their clinical utility has yet to be fully realized1. This review highlights the small signaling protein CRIPTO encoded by the tumor derived growth factor 1 (TDGF1/Tdgf1) gene, an oft cited oncofetal protein whose presence in the cancer literature as a tumor promoter, diagnostic marker and viable therapeutic target continues to grow. We touch lightly on features well established and well-reviewed since its discovery more than 30 years ago, including CRIPTO's early developmental roles and modulation of SMAD2/3 activation by a selected set of transforming growth factor Ć (TGF-Ć) family ligands. We predominantly focus instead on more recent and less well understood additions to the CRIPTO signaling repertoire, on its potential upstream regulators and on new conceptual ground for understanding its mode of action in the multicellular and often stressful contexts of neoplastic transformation and progression. We ask whence it re-emerges in cancer and where it 'hides' between the time of its fetal activity and its oncogenic reemergence. In this regard, we examine CRIPTO's restriction to rare cells in the adult, its potential for paracrine crosstalk, and its emerging role in inflammation and tissue regeneration-roles it may reprise in tumorigenesis, acting on subsets of tumor cells to foster cancer initiation and progression. We also consider critical gaps in knowledge and resources that stand between the recent, exciting momentum in the CRIPTO field and highly actionable CRIPTO manipulation for cancer therapy and beyond.
Subject(s)
Stem Cells/physiology , Animals , Humans , Signal Transduction/genetics , Signal Transduction/physiology , Stem Cells/metabolism , Transforming Growth Factor beta/metabolismABSTRACT
Metastasis is the primary cause of treatment failures and mortality in most cancers. Triple-negative breast cancer (TNBC) is refractory to treatment and rapidly progresses to disseminated disease. We utilized an orthotopic mouse model that molecularly and phenotypically resembles human TNBC to study the effects of exogenous, daily tissue inhibitor of metalloproteinase-2 (TIMP-2) treatment on tumor growth and metastasis. Our results demonstrated that TIMP-2 treatment maximally suppressed primary tumor growth by ~36-50% and pulmonary metastasis by >92%. Immunostaining assays confirmed disruption of the epithelial to mesenchymal transition (EMT) and promotion of vascular integrity in primary tumor tissues. Immunostaining and RNA sequencing analysis of lung tissue lysates from tumor-bearing mice identified significant changes associated with metastatic colony formation. Specifically, TIMP-2 treatment disrupts periostin localization and critical cell-signaling pathways, including canonical Wnt signaling involved in EMT, as well as PI3K signaling, which modulates proliferative and metastatic behavior through p27 phosphorylation/localization. In conclusion, our study provides evidence in support of a role for TIMP-2 in suppression of triple-negative breast cancer growth and metastasis through modulation of the epithelial to mesenchymal transition, vascular normalization, and signaling pathways associated with metastatic outgrowth. Our findings suggest that TIMP-2, a constituent of the extracellular matrix in normal tissues, may have both direct and systemic antitumor and metastasis suppressor effects, suggesting potential utility in the clinical management of breast cancer progression.
Subject(s)
Carcinogenesis/genetics , Cell Proliferation/genetics , Tissue Inhibitor of Metalloproteinase-2/genetics , Triple Negative Breast Neoplasms/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Disease Models, Animal , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Neoplasm Metastasis , Phosphatidylinositol 3-Kinases , Sequence Analysis, RNA , Triple Negative Breast Neoplasms/pathology , Wnt Signaling Pathway/genetics , Xenograft Model Antitumor AssaysABSTRACT
Cripto-1 is a glycophosphatidylinositol (GPI) anchored signaling protein of epidermal growth factor (EGF)-Cripto-1-FRL1-Cryptic (CFC) family and plays a significant role in the early developmental stages and in the different types of cancer cells, epithelial to mesenchymal transition and tumor angiogenesis. Previously, we have developed cancer stem cells (miPS-LLCcm) from mouse iPSCs by culturing them in the presence of conditioned medium of Lewis Lung Carcinoma (LLC) cells for four weeks. Nodal and Cripto-1 were confirmed to be expressed in miPS-LLCcm cells by quantitative reverse transcription PCR (rt-qPCR) implying that Cr-1 was required in maintaining stemness. To investigate the biological effect of adding exogenous soluble CR-1 to the cancer stem cells, we have prepared a C-terminally truncated soluble form of recombinant human CR-1 protein (rhsfCR-1), in which the GPI anchored moiety was removed by substitution of a stop codon through site-directed mutagenesis. rhsfCR-1 effectively suppressed the proliferation and sphere forming ability of miPS-LLCcm cells in a dose-dependent manner in the range of 0 to 5 Āµg/mL, due to the suppression of Nodal-Cripto-1/ALK4/Smad2 signaling pathway. Frequency of sphere-forming cells was dropped from 1/40 to 1/69 by rhsfCR-1 at 1 Āµg/mL. Moreover, rhsfCR-1 in the range of 0 to 1 Āµg/mL also limited the differentiation of miPS-LLCcm cells into vascular endothelial cells probably due to the suppression of self-renewal, which should reduce the number of cells with stemness property. As demonstrated by a soluble form of exogenous Cripto-1 in this study, the efficient blockade would be an attractive way to study Cripto-1 dependent cancer stem cell properties for therapeutic application.
Subject(s)
Cell Self Renewal , GPI-Linked Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/cytology , Animals , Cell Differentiation , Cell Line , Humans , Mice , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Recombinant Proteins/metabolism , Signal Transduction , Smad2 Protein/metabolismABSTRACT
Selenophosphate synthetase (SPS) was initially detected in bacteria and was shown to synthesize selenophosphate, the active selenium donor. However, mammals have two SPS paralogues, which are designated SPS1 and SPS2. Although it is known that SPS2 catalyses the synthesis of selenophosphate, the function of SPS1 remains largely unclear. To examine the role of SPS1 in mammals, we generated a Sps1-knockout mouse and found that systemic SPS1 deficiency led to embryos that were clearly underdeveloped by embryonic day (E)8.5 and virtually resorbed by E14.5. The knockout of Sps1 in the liver preserved viability, but significantly affected the expression of a large number of mRNAs involved in cancer, embryonic development and the glutathione system. Particularly notable was the extreme deficiency of glutaredoxin 1 (GLRX1) and glutathione transferase Omega 1 (GSTO1). To assess these phenotypes at the cellular level, we targeted the removal of SPS1 in F9 cells, a mouse embryonal carcinoma (EC) cell line, which affected the glutathione system proteins and accordingly led to the accumulation of hydrogen peroxide in the cell. Furthermore, we found that several malignant characteristics of SPS1-deficient F9 cells were reversed, suggesting that SPS1 played a role in supporting and/or sustaining cancer. In addition, the overexpression of mouse or human GLRX1 led to a reversal of observed increases in reactive oxygen species (ROS) in the F9 SPS1/GLRX1-deficient cells and resulted in levels that were similar to those in F9 SPS1-sufficient cells. The results suggested that SPS1 is an essential mammalian enzyme with roles in regulating redox homoeostasis and controlling cell growth.
Subject(s)
Phosphotransferases/metabolism , Animals , Cell Line , Glutaredoxins/genetics , Glutaredoxins/metabolism , Glutathione/metabolism , Glutathione Disulfide/metabolism , Homeostasis/genetics , Homeostasis/physiology , Humans , Liver/metabolism , Mice , Mice, Knockout , Oxidation-Reduction , Phosphotransferases/genetics , Pyridoxal Phosphate/metabolismABSTRACT
Cancer has been considered as temporal and spatial aberrations of normal development in tissues. Similarities between mammary embryonic development and cell transformation suggest that the underlying processes required for mammary gland development are also those perturbed during various stages of mammary tumorigenesis and breast cancer (BC) development. The master regulators of embryonic development Cripto-1, Notch/CSL, and Wnt/Ć-catenin play key roles in modulating mammary gland morphogenesis and cell fate specification in the embryo through fetal mammary stem cells (fMaSC) and in the adult organism particularly within the adult mammary stem cells (aMaSC), which determine mammary progenitor cell lineages that generate the basal/myoepithelial and luminal compartments of the adult mammary gland. Together with recognized transcription factors and embryonic stem cell markers, these embryonic regulatory molecules can be inappropriately augmented during tumorigenesis to support the tumor-initiating cell (TIC)/cancer stem cell (CSC) compartment, and the effects of their deregulation may contribute for the etiology of BC, in particular the most aggressive subtype of BC, triple-negative breast cancer (TNBC). This in depth review will present evidence of the involvement of Cripto-1, Notch/CSL, and Wnt/Ć-catenin in the normal mammary gland morphogenesis and tumorigenesis, from fMaSC/aMaSC regulation to TIC generation and maintenance in TNBC. Specific therapies for treating TNBC by targeting these embryonic pathways in TICs will be further discussed, providing new opportunities to destroy not only the bulk tumor, but also TICs that initiate and promote the metastatic spread and recurrence of this aggressive subtype of BC.
Subject(s)
Mammary Glands, Human/growth & development , Neoplastic Stem Cells/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/etiology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mammary Glands, Human/drug effects , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Neoplastic Stem Cells/drug effects , Signal Transduction/drug effects , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathologyABSTRACT
Cripto-1, a member of the epidermal growth factor-Cripto-1/FRL-1/Cryptic family, is critical for early embryonic development. Together with its ligand Nodal, Cripto-1 has been found to be associated with the undifferentiated status of mouse and human embryonic stem cells. Several studies have clearly shown that Cripto-1 is involved in regulating branching morphogenesis and epithelial-mesenchymal transition of the mammary gland both inĀ vitro and inĀ vivo and together with the cofactor GRP78 is critical for the maintenance of mammary stem cells exĀ vivo. Our previous studies showed that mammary-specific overexpression of human Cripto-1 exhibited dramatic morphological alterations in nulliparous mice mammary glands. The present study shows a novel mechanism for Cripto-1 regulation of mammary gland development through direct effects on progesterone receptor expression and pathways regulated by progesterone in the mammary gland. We demonstrate a strict temporal regulation of mouse Cripto-1 (mCripto-1) expression that occurs during mammary gland development and a stage-specific function of mCripto-1 signaling during mammary gland development. Our data suggest that Cripto-1, like the progesterone receptor, is not required for the initial ductal growth but is essential for subsequent side branching and alveologenesis during the initial stages of pregnancy. Dissection of the mechanism by which this occurs indicates that mCripto-1 activates receptor activator NF-κB/receptor activator NF-κB ligand, and NF-κB signaling pathways.
Subject(s)
Epidermal Growth Factor/metabolism , Membrane Glycoproteins/metabolism , NF-kappa B p50 Subunit/metabolism , Neoplasm Proteins/metabolism , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptors, Progesterone/metabolism , Signal Transduction , Animals , Cell Proliferation , Endoplasmic Reticulum Chaperone BiP , Epidermal Growth Factor/genetics , Epithelial Cells , Epithelial-Mesenchymal Transition , Female , Humans , Mammary Glands, Animal/cytology , Membrane Glycoproteins/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Models, Biological , NF-kappa B p50 Subunit/genetics , Neoplasm Proteins/genetics , Organ Specificity , Pregnancy , RANK Ligand/genetics , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptors, Progesterone/geneticsABSTRACT
Docetaxel comprises one of the most effective anti-cancer drugs despite of serious side effects. Liposomes encapsulation is practically feasible to deliver the drug. However, due to the significant hydrophobicity, docetaxel will be integrated into the lipid bilayer resulting in poor encapsulation capacity. Here, we evaluated a remote loading strategy using a solubility gradient made between the two solvents for 7-glucosyloxyacetyldocetaxel, which has enhanced water solubility of docetaxel with a coupled glucose moiety. Therefore, 7-glucosyloxyacetyldocetaxel was more effectively encapsulated into liposomes with 71.0% of encapsulation efficiency than docetaxel. While 7-glucosyloxyacetyldocetaxel exhibited 90.9% of tubulin stabilisation activity of docetaxel, 7-glucosyloxyacetyldocetaxel encapsulated in liposomes significantly inhibited the growth of tumour in vivo with side effects less than unencapsulated drug. Collectively, the encapsulation of 7-glucosyloxyacetyldocetaxel into liposomes by remote loading under the solubility gradient is considered to be a promising application to prepare practical drug delivery system.
Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Taxoids/administration & dosage , Taxoids/pharmacokinetics , Acetylation , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Docetaxel , Drug Compounding/methods , Glycosylation , Humans , Liposomes/chemistry , Mice, Inbred BALB C , Mice, Nude , Neoplasms/drug therapy , Neoplasms/pathology , Solubility , Taxoids/chemistry , Taxoids/therapeutic useABSTRACT
The self-renewal and differentiation properties of cancer stem cells (CSCs) are regulated and maintained by the CSC niche. However, the mechanism of this maintenance, especially the maintenance contributed by differentiated cancer cells, remains to be fully elucidated. Recently, we have established a model of CSCs, miPS-LLCcm, from mouse induced pluripotent stem cells (miPSCs). In vitro cultured miPS-LLCcm cells were autonomously balanced with stem-like cells and differentiated cells including vascular endothelial cells. Under these conditions, the CSC properties appeared to be stable in the presence of the factor(s) secreted by the differentiated cells. The factor(s) activated Notch signaling and promoted self-renewal of CSCs. In addition, the secreted factor(s) appeared to regulate the differentiation lineage of CSCs. Our results indicate that the differentiated progenies of CSCs containing vascular endothelium play important roles for regulating the CSC's properties. Therefore, miPS-LLCcm cells create their own in vitro niche to maintain themselves in the hierarchy of differentiating CSCs.
Subject(s)
Cell Differentiation/genetics , Induced Pluripotent Stem Cells/pathology , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Animals , Cell Line , Cell Lineage/genetics , Cell Proliferation , Endothelial Cells/pathology , Humans , Mice , Neoplasms/genetics , Signal Transduction/geneticsABSTRACT
Ectodermal appendages, such as the mammary gland (MG), are thought to have evolved from hair-associated apocrine glands to serve the function of milk secretion. Through the directed differentiation of mouse embryonic stem cells (mESCs), here, we report the generation of multilineage ESC-derived mammary organoids (MEMOs). We adapted the skin organoid model, inducing the dermal mesenchyme to transform into mammary-specific mesenchyme via the sequential activation of Bone Morphogenetic Protein 4 (BMP4) and Parathyroid Hormone-related Protein (PTHrP) and inhibition of hedgehog (HH) signaling. Using single-cell RNA sequencing, we identified gene expression profiles that demonstrate the presence of mammary-specific epithelial cells, fibroblasts, and adipocytes. MEMOs undergo ductal morphogenesis in Matrigel and can reconstitute the MG inĀ vivo. Further, we demonstrate that the loss of function in placode regulators LEF1 and TBX3 in mESCs results in impaired skin and MEMO generation. In summary, our MEMO model is a robust tool for studying the development of ectodermal appendages, and it provides a foundation for regenerative medicine and disease modeling.
Subject(s)
Hedgehog Proteins , Mouse Embryonic Stem Cells , Mice , Animals , Hedgehog Proteins/metabolism , Mammary Glands, Animal , Epithelial Cells , Cell Differentiation , OrganoidsABSTRACT
Human Cripto-1 (CR-1) plays an important role in regulating embryonic development while also regulating various stages of tumor progression. However, mechanisms that regulate CR-1 expression during embryogenesis and tumorigenesis are still not well defined. In the present study, we investigated the effects of two nuclear receptors, liver receptor homolog (LRH)-1 and germ cell nuclear factor receptor (GCNF) and epigenetic modifications on CR-1 gene expression in NTERA-2 human embryonal carcinoma cells and in breast cancer cells. CR-1 expression in NTERA-2 cells was positively regulated by LRH-1 through direct binding to a DR0 element within the CR-1 promoter, while GCNF strongly suppressed CR-1 expression in these cells. In addition, the CR-1 promoter was unmethylated in NTERA-2 cells, while T47D, ZR75-1, and MCF7 breast cancer cells showed high levels of CR-1 promoter methylation and low CR-1 mRNA and protein expression. Treatment of breast cancer cells with a demethylating agent and histone deacetylase inhibitors reduced methylation of the CR-1 promoter and reactivated CR-1 mRNA and protein expression in these cells, promoting migration and invasion of breast cancer cells. Analysis of a breast cancer tissue array revealed that CR-1 was highly expressed in the majority of human breast tumors, suggesting that CR-1 expression in breast cancer cell lines might not be representative of in vivo expression. Collectively, these findings offer some insight into the transcriptional regulation of CR-1 gene expression and its critical role in the pathogenesis of human cancer.
Subject(s)
Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Embryonal/metabolism , DNA Methylation , GPI-Linked Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/metabolism , Nuclear Receptor Subfamily 6, Group A, Member 1/metabolism , Promoter Regions, Genetic , Receptors, Cytoplasmic and Nuclear/metabolism , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Binding Sites , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , Carcinoma, Embryonal/genetics , Carcinoma, Embryonal/pathology , Cell Movement , DNA Methylation/drug effects , DNA Modification Methylases/antagonists & inhibitors , DNA Modification Methylases/metabolism , Decitabine , Dose-Response Relationship, Drug , Embryonal Carcinoma Stem Cells/metabolism , Embryonal Carcinoma Stem Cells/pathology , Female , GPI-Linked Proteins/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Genes, Reporter , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxamic Acids/pharmacology , Intercellular Signaling Peptides and Proteins/genetics , Luciferases/biosynthesis , Luciferases/genetics , MCF-7 Cells , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Nuclear Receptor Subfamily 6, Group A, Member 1/genetics , RNA Interference , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Time Factors , Tissue Array Analysis , Transcription, Genetic , Transfection , Tretinoin/pharmacology , Valproic Acid/pharmacologyABSTRACT
Epithelial-to-mesenchymal transition (EMT) is a critical multistep process that converts epithelial cells to more motile and invasive mesenchymal cells, contributing to body patterning and morphogenesis during embryonic development. In addition, both epithelial plasticity and increased motility and invasiveness are essential for the branching morphogenesis that occurs during development of the mammary gland and during tumor formation, allowing cancer cells to escape from the primary tumor. Cripto-1, a member of the epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF/CFC) gene family, together with the transforming growth factor (TGF)-Ć family ligand Nodal, regulates both cell movement and EMT during embryonic development. During postnatal development, Cripto-1 regulates the branching morphogenesis of the mouse mammary gland and enhances both the invasive and migratory properties of mammary epithelial cells in vitro. Furthermore, transgenic mouse models have shown that Cripto-1 promotes the formation of mammary tumors that display properties of EMT, including the down-regulation of the cell surface adherens junctional protein E-cadherin and the up-regulation of mesenchymal markers, such as vimentin, N-cadherin, and Snail. Interestingly, Cripto-1 is enriched in a subpopulation of embryonal, melanoma, prostate, and pancreatic cancer cells that possess stem-like characteristics. Therefore, Cripto-1 may play a role during developmental EMT, and it may also be involved in the reprogramming of differentiated tumor cells into cancer stem cells through the induction of an EMT program.
Subject(s)
Breast Neoplasms/metabolism , Cell Transformation, Neoplastic/metabolism , Embryonic Development/physiology , Epithelial-Mesenchymal Transition/physiology , GPI-Linked Proteins/physiology , Intercellular Signaling Peptides and Proteins/physiology , Mammary Neoplasms, Experimental/metabolism , Neoplasm Proteins/physiology , Animals , Cell Transformation, Neoplastic/pathology , Female , GPI-Linked Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mammary Glands, Animal/embryology , Mammary Glands, Animal/growth & development , Mice , Neoplasm Proteins/genetics , Signal Transduction/physiologyABSTRACT
Prior to gastrulation, the Wnt signaling pathway through stabilized Ć-catenin enhances the differentiation of mouse ES cell into cardiomyocytes. We have recently shown that cardiomyocyte differentiation is enhanced by eosinophil cationic protein (ECP) through accelerated expression of marker genes of early cardiac differentiation. Furthermore, ECP enhanced the expression of Wnt3a in P19CL6 cells which were stimulated to differentiate into cardiomyocytes by DMSO. Following these findings, we evaluated in this study the potential of ECP to activate the Wnt/Ć-catenin signaling pathway during cardiomyocyte differentiation. Analysis by real time qPCR revealed that ECP increased the expression of Frizzled genes such as Frizzled-1, -2, -4 and -10 in P19CL6 cells in the presence of DMSO. The increased expression of those Wnt receptors was found to inhibit the phosphorylation of Ć-catenin resulting in the stabilization and translocation of Ć-catenin into the nucleus of P19CL6 cells during the early stages of cardiomyocyte differentiation. When assessed for Ć-catenin/TCF transcriptional activity with a TCF-luciferase (TOP/FOP) assay, ECP enhanced luciferase activity in P19CL6 cells during 48 h after transfection with TOP/FOP flash reporter in a stoichiometric manner. Collectively, this suggests that ECP can activate a canonical Wnt/Ć-catenin signaling pathway by enhancing the stabilization of Ć-catenin during cardiomyocyte differentiation.
Subject(s)
Cell Differentiation/genetics , Eosinophil Cationic Protein/genetics , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Embryonal Carcinoma Stem Cells , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Gene Expression Regulation, Developmental , Humans , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , beta Catenin/geneticsABSTRACT
Induced pluripotent stem cells (iPSCs) are useful tools for modeling diseases and developing personalized medicine. We have been developing cancer stem cells (CSCs) from iPSCs with conditioned medium (CM) of cancer-derived cells as the mimicry of the microenvironment of tumor initiation. However, the conversion of human iPSCs has not always been efficient with only CM. In this study, human iPSCs reprogrammed from monocytes of healthy volunteers were cultured in a media containing 50% of the CM from human pancreatic cancer derived BxPC3 cells supplemented with a MEK inhibitor (AZD6244) and a GSK-3α/Ć inhibitor (CHIR99021). The survived cells were assessed for the characteristics of CSCs in vitro and in vivo. As a result, they exhibited CSC phenotypes of self-renewal, differentiation, and malignant tumorigenicity. Primary culture of the malignant tumors of the converted cells exhibited the elevated expression of CSC related genes CD44, CD24 and EPCAM maintaining the expression of stemness genes. In conclusion, the inhibition of GSK-3α/Ć and MEK and the microenvironment of tumor initiation mimicked by the CM can convert human normal stem cells into CSCs. This study could provide insights into establishing potentially novel personalized cancer models which could help investigate the tumor initiation and screening of personalized therapies on CSCs. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00575-1.
ABSTRACT
The heterogeneous cell population in the stromal microenvironment is considered to be attributed to the multiple sources from which the cells originate. Tumor associated myoepithelial cells (TAMEs) are one of the most important populations in the tumor microenvironment (TME) especially in breast cancer. On the other hand, cancer stem cells (CSCs) have previously been described to be the origin of tumor-associated cellular components in the TME. We prepared a cancer stem cell model converting mouse-induced pluripotent stem cells (miPSCs) in the presence of conditioned medium of breast cancer cell line MDA-MB-231Ā cells. The converted cells developed tumors progressing into invasive carcinoma with ductal carcinoma in situ (DCIS) like structure when transplanted into mouse mammary fat pads. The primary cultured cells from the tumor further exhibited markers of CSC such as Sox2, Oct3/4, - CD133 and EpCAM, and mammary gland-related TAME markers such as α-smooth muscle actin, cytokeratin 8, whey acidic protein, prolactin receptor and progesterone receptor as well. These results indicated that the CSCs could be an origin of TAMEs contributing to mammary gland epithelial cell differentiation and the progression to invasive carcinoma during tumor development. The gene expression profiles confirmed the enhanced signaling pathways of PI3K/AKT and MAPK, which have been demonstrated to be enriched in the CSC models, together with the estrogen receptor signaling which was peculiar to mammary gland-derived character.
Subject(s)
Carcinoma, Intraductal, Noninfiltrating , Mice , Animals , Carcinoma, Intraductal, Noninfiltrating/pathology , Tumor Microenvironment , Phosphatidylinositol 3-Kinases , Biomarkers, Tumor , Neoplastic Stem Cells/pathologyABSTRACT
Over the past few decades, our understanding of the embryonic gene Cripto-1 has considerably advanced through biochemical, cell biology, and animal studies. Cripto-1 performs key functions during embryonic development, while it dramatically disappears in adult tissues, except possibly in adult tissue stem cells. Cripto-1 is re-expressed in human tumors promoting cell proliferation, migration, invasion, epithelial to mesenchymal transition, and tumor angiogenesis. This diversity of biological effects is dependent upon interaction of Cripto-1 with an extensive array of signaling molecules. In fact, Cripto-1 modulates signaling of transforming growth factor-Ć family members, including Nodal, GDF-1/-3, Activin, and TGF-Ć1, activates c-src/MAPK/Protein Kinase B (AKT) pathway in a Glypican-1 and GRP78-dependent manner, and cross-talks with erbB4, Wnt/Ć-catenin, Notch, Caveolin-1, and Apelin/putative receptor protein related to Angiotensin-type I receptor (APJ) pathways. This article provides an updated survey of the various signaling pathways modulated by Cripto-1 with a focus on mechanistic insights in our understanding of the biological function of Cripto-1 in eukaryotic cells.
Subject(s)
Embryonic Development/drug effects , GPI-Linked Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/pharmacology , Neoplasms/physiopathology , Signal Transduction/drug effects , Animals , Cricetinae , Endoplasmic Reticulum Chaperone BiP , GPI-Linked Proteins/metabolism , Gene Expression Regulation , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Mice , Neoplasm Proteins/metabolism , Neoplasms/metabolismABSTRACT
We investigated the functional role of eosinophil cationic protein (ECP) in regulating cardiomyogenesis using mouse P19CL6 embryonic carcinoma cells. ECP was confirmed to accelerate the cardiomyocyte differentiation of P19CL6 cells by enhancing the rate and area size of beating of cardiomyocyte and by facilitating the expression of cardiomyocyte-specific genes, such as GATA4 and α-MHC. Since cardiomyocyte differentiation in vivo is considered to follow mesoderm induction, the induction of Brachyury, a marker of mesoderm, was assessed. Brachyury expression was found to be enhanced after the addition of ECP. This enhancement was due to the stimulation of extracellular signal-regulated kinase (ERK)1/2 phosphorylation by ECP. In this context, treatment with SU5402, an inhibitor of fibroblast growth factor (FGF) receptor 1, suppressed Brachyury expression, phosphorylation of ERK1/2, and cardiomyocyte differentiation induced by ECP. We concluded that ECP might induce mesoderm differentiation through FGF signaling pathway and enhance subsequent cardiomyocyte differentiation in concert with dimethyl sulfoxide in P19CL6 cells. ECP may be a novel factor for cardiomyocyte differentiation, which should be very useful to prepare adequate numbers of cardiomyocytes for therapeutic cell transplantation.
Subject(s)
Embryonal Carcinoma Stem Cells/cytology , Eosinophil Cationic Protein/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Animals , Cell Differentiation , Cell Line, Tumor , Dimethyl Sulfoxide/pharmacology , Embryonal Carcinoma Stem Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fetal Proteins/biosynthesis , GATA4 Transcription Factor/biosynthesis , Mice , Myosin Heavy Chains/biosynthesis , Phosphorylation , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrroles/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Signal Transduction , T-Box Domain Proteins/biosynthesisABSTRACT
BACKGROUND: Cancer stem cells (CSCs) are generated under irregular microenvironment in vivo, of which mimic is quite difficult due to the lack of enough information of the factors responsible for cancer initiation. Here, we demonstrated that mouse induced pluripotent cells (miPSCs) reprogrammed from normal embryonic fibroblasts were susceptible to the microenvironment affected by cancer cells to convert into CSCs in vivo. METHODS: Three different pancreatic cancer line cells, BxPC3, PANC1, and PK8 cells were mixed with miPSCs and subcutaneously injected into immunodeficient mice. Tumors were evaluated by histological analysis and cells derived from iPSCs were isolated and selected from tumors. The isolated cells were characterized for cancer stem cell characters in vitro and in vivo as well as their responses to anticancer drugs. The impact of co-injection of iPSCs with cancer cells on transcriptome and signaling pathways of iPSCs was investigated. RESULTS: The injection of miPSCs mixed with human pancreatic cancer cells into immunodeficient mice maintained the stemness of miPSCs and changed their phenotype. The miPSCs acquired CSC characteristics of tumorigenicity and self-renewal. The drug responses and the metastatic ability of CSCs converted from miPSCs varied depending on the microenvironment of cancer cells. Interestingly, transcriptome profiles of these cells indicated that the pathways related with aggressiveness and energy production were upregulated from the levels of miPSCs. CONCLUSIONS: Our result suggests that cancer-inducing microenvironment in vivo could rewire the cell signaling and metabolic pathways to convert normal stem cells into CSCs.
Subject(s)
Gene Expression/genetics , Induced Pluripotent Stem Cells/metabolism , Metabolic Networks and Pathways/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Female , Humans , Mice , Mice, Inbred NOD , Tumor MicroenvironmentABSTRACT
Cripto-1 is critical for early embryonic development and, together with its ligand Nodal, has been found to be associated with the undifferentiated status of mouse and human embryonic stem cells. Like other embryonic genes, Cripto-1 performs important roles in the formation and progression of several types of human tumors, stimulating cell proliferation, migration, epithelial to mesenchymal transition, and tumor angiogenesis. Several studies have demonstrated that cell fate regulation during embryonic development and cell transformation during oncogenesis share common signaling pathways, suggesting that uncontrolled activation of embryonic signaling pathways might drive cell transformation and tumor progression in adult tissues. Here we review our current understanding of how Cripto-1 controls stem cell biology and how it integrates with other major embryonic signaling pathways. Because many cancers are thought to derive from a subpopulation of cancer stem-like cells, which may re-express embryonic genes, Cripto-1 signaling may drive tumor growth through the generation or expansion of tumor initiating cells bearing stem-like characteristics. Therefore, the Cripto-1/Nodal signaling may represent an attractive target for treatment in cancer, leading to the elimination of undifferentiated stem-like tumor initiating cells.
Subject(s)
Disease Progression , Epidermal Growth Factor/metabolism , Membrane Glycoproteins/metabolism , Neoplasm Proteins/metabolism , Neoplasms/pathology , Stem Cells/physiology , Animals , Embryonic Development , Epidermal Growth Factor/genetics , Epithelial-Mesenchymal Transition , GPI-Linked Proteins , Humans , Hypoxia , Intercellular Signaling Peptides and Proteins , Membrane Glycoproteins/genetics , Neoplasm Proteins/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nodal Protein/genetics , Nodal Protein/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction/physiology , Wnt Proteins/genetics , Wnt Proteins/metabolismABSTRACT
Deregulation of stem cells is associated with the generation and progression of malignant tumors. In addition, genes that are associated with early embryogenesis are frequently expressed in cancer. Cripto-1 (CR-1), a glycosylphosphatidylinositol-linked glycoprotein, is expressed during early embryogenesis and in various human carcinomas. We demonstrated that human embryonal carcinoma (EC) cells are heterogeneous for CR-1 expression and consist of two distinct subpopulations: a CR-1(High) and a CR-1(Low) population. By segregating CR-1(High) and CR-1(Low) populations of NTERA2/D1 EC cells by fluorescence-activated cell sorting, we demonstrated that CR-1(High) cells were more tumorigenic than CR-1(Low) cells by an in vitro tumor sphere assay and by in vivo xenograft formation. The CR-1(High) population was enriched in mRNA expression for the pluripotent embryonic stem (ES) cell genes Oct4, Sox2, and Nanog. CR-1 expression in NTERA2/D1 cells was regulated by a Smad2/3-dependent autocrine loop, by the ES cell-related transcription factors Oct4/Nanog, and partially by the DNA methylation status of the promoter region. These results demonstrate that CR-1 expression is enriched in an undifferentiated, tumorigenic subpopulation and is regulated by key regulators of pluripotent stem cells.