Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Language
Publication year range
1.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-20111310

ABSTRACT

BackgroundCoronaviruses (CoV) are a large family of viruses that are common in people and many animal species. Animal coronaviruses rarely infect humans with the exceptions of the Middle East Respiratory Syndrome (MERS-CoV), the Severe acute respiratory syndrome coronavirus (SARS-CoV), and now SARS-CoV-2, which is the cause of the ongoing pandemic of coronavirus disease 2019 (COVID-19). Many studies suggested that genetic variants in ACE2 gene may influence the host susceptibility/resistance to SARS-CoV-2 virus according to the functional role of ACE2 in human pathophysiology. However, all these studies have been conducted in silico based on epidemiological and population data. We therefore investigated the occurrence of ACE2 variants in a cohort of 99 Italian unrelated individuals clinically diagnosed with coronavirus disease 19 (COVID-19) to experimental demonstrate allelic association with disease severity. MethodsBy whole-exome sequencing we analysed 99 DNA samples of severely and extremely severely COVID-19 patients hospitalized at the University Hospital of Rome "Tor Vergata" and Bambino Gesu Hospital in Rome. ResultsWe identified three different germline variants, one intronic (c.439+4G>A) and two missense (c.2158A>G, p.Asn720Asp; c.1888G>C, p.Asp630His), in 26 patients with a similar frequency between male and female and a not statistically different frequency, except for c.1888G>C, (p.Asp630His) with the ethnically matched populations (EUR). ConclusionsOur results suggest that there is not any ACE2 exonic allelic association with disease severity. It is possible that rare susceptibility alleles are located in the non-coding region of the gene able to control ACE2 gene activity. It is therefore of interest, to explore the existence of ACE2 susceptibility alleles to SARS-Co-V2 in these regulatory regions. In addition, we found no significant evidence that ACE2 alleles is associated with disease severity/sex bias in the Italian population.

2.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-20137141

ABSTRACT

SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focussed on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. In order to understand the basis of the protective immune response in COVID-19, we performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in 64 adults with a spectrum of clinical presentations: 28 healthy SARS-CoV-2-negative contacts of COVID-19 cases; 20 asymptomatic SARS-CoV-2-infected cases; 8 patients with Mild COVID-19 disease and 8 cases of Severe COVID-19 disease. Our data show that high frequency of NK cells and early and transient increase of specific IgA, IgM and, to a lower extent, IgG are associated to asymptomatic SARS-CoV-2 infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response.

3.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-21263836

ABSTRACT

BackgroundImmunizations among vulnerable population, including solid organ transplant recipients (SOT), present suboptimal responses at vaccination and over time. We investigated safety and immunogenicity of the BNT162B2 mRNA COVID-19 vaccine in 34 SOT young adults as compared to 36 healthy controls (HC). Methodsimmunogenicity was measured through the analysis of anti SARS-CoV2 IgG Antibodies and antigen specific CD4 T cells (CD40L+), detected by flow cytometry before vaccination, 21 days after priming (T21), 7 days after booster dose (T28) and 2-4 months after priming (T120). Baseline T and B cell immune phenotype was deeply investigated. The safety profile was investigated by close monitoring and self-reported diary. ResultsAnti-S and anti-Trimeric Ab responses were significantly lower in SOT vs HC at T21 (p<0.0001) and at T28 (p<0.0001). Ten out of 34 SOT (29%) at T28 and 3 out of 33 (9%) at T120 had undetectable SARS-CoV-2 IgG. The analysis of SARS-CoV-2 specific CD4 T cells showed lower CD40L expression after in vitro stimulation in SOT compared to HC. Lower frequencies of memory B cells were found in patients not responding to vaccination. Lack of seroconversion was higher in patients treated with mycophenolate (p=0.0005). The vaccination was safe and well tolerated. Only short-term adverse events, were reported and no hospitalization or graft rejection were observed after vaccinations. ConclusionsThese data show that SOT have a suboptimal immune response following mRNA vaccinations as compared to HC. Alternative strategies should be investigated to improve the immunization against SARS-CoV-2 in these patients.

4.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-21259130

ABSTRACT

BackgroundPatients with Primary Antibody Deficiencies (PAD) represent a potential at-risk group in the current COVID-19 pandemic. However, unexpectedly low cumulative incidence, low infection-fatality rate, and mild COVID-19 or asymptomatic SARS-CoV-2 infections were frequently reported in PAD. The discrepancy between clinical evidence and impaired antibody production requires in-depth studies on patients immune responses. MethodsForty-one patients with Common Variable Immune Deficiencies (CVID), 6 patients with X-linked Agammaglobulinemia (XLA), and 28 healthy age-matched controls (HD) were analyzed for anti-Spike and anti-RBD antibody production, generation of low and high affinity Spike-specific memory B-cells, Spike-specific T-cells before and one week after the second dose of BNT162b2 vaccine. ResultsHD produced antibodies, and generated memory B-cells with high affinity for Trimeric Spike. In CVID, the vaccine induced poor Spike-specific antibodies, and atypical B-cells with low affinity for Trimeric Spike, possibly by extra-follicular reactions or incomplete germinal center reactions. In HD, among Spike positive memory B-cells, we identified receptor-binding-domain-specific cells that were undetectable in CVID, indicating the incapability to generate this new specificity. Specific T-cell responses toward Spike-protein were evident in HD and defective in CVID. Due to the absence of B-cells, patients with XLA responded to immunization by specific T-cell responses only. ConclusionsWe present detailed data on early non-canonical immune responses in PAD to a vaccine against an antigen never encountered before by humans. From our data, we expect that after BNT162b2 immunization, XLA patients might be protected by specific T-cells, while CVID patients might not be protected by immunization.

5.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-21258284

ABSTRACT

Specific memory B cells and antibodies are reliable read-out of vaccine efficacy. We analyzed these biomarkers after one and two doses of BNT162b2 vaccine. The second dose significantly increases the level of highly-specific memory B cells and antibodies. Two months after the second dose, specific antibody levels decline, but highly specific memory B cells continue to increase thus predicting a sustained protection from COVID-19. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=112 SRC="FIGDIR/small/21258284v1_ufig1.gif" ALT="Figure 1"> View larger version (28K): org.highwire.dtl.DTLVardef@1700325org.highwire.dtl.DTLVardef@deb172org.highwire.dtl.DTLVardef@53f056org.highwire.dtl.DTLVardef@c7a98d_HPS_FORMAT_FIGEXP M_FIG Graphical Abstract C_FIG

SELECTION OF CITATIONS
SEARCH DETAIL