Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mar Drugs ; 21(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38132957

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancer types worldwide. Chemotherapy is toxic to normal cells, and combinatory treatment with natural well-tolerated products is being explored. Some omega-3 polyunsaturated fatty acids (n-3 PUFAs) and marine fish oils have anti-cancer effects on CRC cells. The salmon oil OmeGo (Hofseth BioCare) contains a spectrum of fatty acids, including the n-3 PUFAs docosahexaenoic acid (DHA) and eicosahexaenoic acid (EPA). We explored a potential anti-cancer effect of OmeGo on the four CRC cell lines DLD-1, HCT-8, LS411N, and LS513, alone and in combination with the chemotherapeutic agent 5-Fluorouracil (5-FU). Screening indicated a time- and dose-dependent effect of OmeGo on the viability of the DLD-1 and LS513 CRC cell lines. Treatment with 5-FU and OmeGo (IC20-IC30) alone indicated a significant reduction in viability. A combinatory treatment with OmeGo and 5-FU resulted in a further reduction in viability in DLD-1 and LS513 cells. Treatment of CRC cells with DHA + EPA in a concentration corresponding to the content in OmeGo alone or combined with 5-FU significantly reduced viability of all four CRC cell lines tested. The lowest concentration of OmeGo reduced viability to a higher degree both alone and in combination with 5-FU compared to the corresponding concentrations of DHA + EPA in three of the cell lines. Results suggest that a combination of OmeGo and 5-FU could have a potential as an alternative anti-cancer therapy for patients with CRC.


Subject(s)
Colorectal Neoplasms , Fatty Acids, Omega-3 , Humans , Fish Oils , Fatty Acids, Omega-3/pharmacology , Docosahexaenoic Acids , Fluorouracil/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Eicosapentaenoic Acid
2.
Biomedicines ; 9(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802022

ABSTRACT

Cancer patient-derived xenografts (PDXs) better preserve tumor characteristics and microenvironment than traditional cancer cell line derived xenografts and are becoming a valuable model in translational cancer research and personalized medicine. We have established a PDX model for colorectal cancer (CRC) in CIEA NOG mice with a 50% engraftment rate. Tumor fragments from patients with CRC (n = 5) were engrafted in four mice per tumor (n = 20). Mice with established PDXs received a liquid diet enriched with fish oil or placebo, and fatty acid profiling was performed to measure fatty acid content in whole blood. Moreover, a biobank consisting of tissue and blood samples from patients was established. Histology, immunohistochemistry and in situ hybridization procedures were used for staining of tumor and xenograft tissue slides. Results demonstrate that key histological characteristics of the patients' tumors were retained in the established PDXs, and the liquid diets were consumed as intended by the mice. Some of the older mice developed lymphomas that originated from human Ki67+, CD45+, and EBV+ lymphoid cells. We present a detailed description of the process and methodology, as well as possible issues that may arise, to refine the method and improve PDX engraftment rate for future studies. The established PDX model for CRC can be used for exploring different cancer treatment regimes, and liquid diets enriched with fish oil may be successfully delivered to the mice through the drinking flasks.

3.
Sci Rep ; 11(1): 18952, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556693

ABSTRACT

Proper regulation of the cell cycle is necessary for normal growth and development of all organisms. Conversely, altered cell cycle regulation often underlies proliferative diseases such as cancer. Long non-coding RNAs (lncRNAs) are recognized as important regulators of gene expression and are often found dysregulated in diseases, including cancers. However, identifying lncRNAs with cell cycle functions is challenging due to their often low and cell-type specific expression. We present a highly effective method that analyses changes in promoter activity, transcription, and RNA levels for identifying genes enriched for cell cycle functions. Specifically, by combining RNA sequencing with ChIP sequencing through the cell cycle of synchronized human keratinocytes, we identified 1009 genes with cell cycle-dependent expression and correlated changes in RNA polymerase II occupancy or promoter activity as measured by histone 3 lysine 4 trimethylation (H3K4me3). These genes were highly enriched for genes with known cell cycle functions and included 57 lncRNAs. We selected four of these lncRNAs-SNHG26, EMSLR, ZFAS1, and EPB41L4A-AS1-for further experimental validation and found that knockdown of each of the four lncRNAs affected cell cycle phase distributions and reduced proliferation in multiple cell lines. These results show that many genes with cell cycle functions have concomitant cell-cycle dependent changes in promoter activity, transcription, and RNA levels and support that our multi-omics method is well suited for identifying lncRNAs involved in the cell cycle.


Subject(s)
Cell Cycle/genetics , Cell Proliferation/genetics , RNA Polymerase II/metabolism , RNA, Long Noncoding/metabolism , Chromatin Immunoprecipitation Sequencing , Gene Knockdown Techniques , HaCaT Cells , Humans , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , RNA-Seq
4.
FEBS J ; 285(13): 2446-2467, 2018 07.
Article in English | MEDLINE | ID: mdl-29723445

ABSTRACT

The omega-3 fatty acid docosahexaenoic acid (DHA) is known as an anticancer agent. Colorectal cancer (CRC) cells exhibit different sensitivity toward DHA, but the mechanisms involved are still unclear. Gene expression profiling of 10 CRC cell lines demonstrated a correlation between the level of DHA sensitivity and different biological stress responses, such as endoplasmic reticulum (ER) stress, oxidative stress, and autophagy. The basal level of autophagy and MAP1LC3B-II protein correlated with DHA sensitivity in the cell lines studied. DHA induced oxidative stress, ER stress, and autophagy in DHA-sensitive DLD-1 cells, while the less sensitive LS411N cells were affected to a much lesser extent. Co-treatment with DHA and the autophagy inducer rapamycin reduced DHA sensitivity in DLD-1 and HCT-8 cells, while co-treatment with DHA and the autophagy inhibitors chloroquine and 3-methyladenine increased the DHA sensitivity in LS411N and LS513 cells. Differentially expressed genes correlating with DHA sensitivity and the level of autophagy demonstrated an overlap in biological pathways involved. Results indicate the basal level of autophagy and MAP1LC3B-II protein as potential biomarkers for DHA sensitivity in CRC cells. DATABASES: Protocol and data for gene expression experiments have been submitted to ArrayExpress with accession number E-MTAB-5750.


Subject(s)
Autophagy/genetics , Biomarkers, Tumor/genetics , Docosahexaenoic Acids/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Microtubule-Associated Proteins/genetics , Apoptosis/drug effects , Apoptosis/genetics , Biomarkers, Tumor/metabolism , Caco-2 Cells , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Gene Expression Profiling/methods , HT29 Cells , Humans , Microtubule-Associated Proteins/metabolism , Oxidative Stress/drug effects , Oxidative Stress/genetics
5.
Free Radic Biol Med ; 90: 158-72, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26585906

ABSTRACT

Polyunsaturated fatty acids (PUFAs) are important constituents of the diet and health benefits of omega-3/n-3 PUFAs, especially eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) have been well documented in relation to several diseases. Increasing evidence suggests that n-3 PUFAs may have anticancer activity and improve the effect of conventional cancer therapy. The mechanisms behind these effects are still unclear and need to be elucidated. We have examined the DHA-induced stress response in two human colon cancer cell lines, SW620 and Caco-2. SW620 cells are growth-inhibited at early time points by DHA, while the growth of Caco-2 cells almost remains unaffected by the same treatment. Gene expression analysis of SW620 cells treated with DHA revealed changes at early time points; transcripts involved in oxidative stress and autophagy were among the first to be differentially expressed. We find that oxidative stress is induced in both cell lines, although at different time points and to different extent. DHA induced nuclear translocation of the oxidative stress sensor NFE2L2 in both cell lines, indicating an induction of an anti-oxidative response. However, vitamin E did not counteract ROS-production or the translocation of NFE2L2 to the nucleus. Neither vitamin E nor the antioxidants butylated hydoxyanisole (BHA) and butylated hydoxytoluene (BHT) did affect the growth inhibition in SW620 cells after DHA-treatment. Also, siRNA-mediated down-regulation of NFE2L2 did not sensitize SW620 and Caco-2 cells to DHA. These results indicate that oxidative stress response is not the cause of DHA-induced cytotoxicity in SW620 cells. Using biochemical and imaging based functional assays, we found a low basal level of autophagy and no increase in autophagic flux after adding DHA to the SW620 cells. However, Caco-2 cells displayed a higher level of autophagy, both in the absence and presence of DHA. Inhibition of autophagy by siRNA mediated knock down of ATG5 and ATG7 sensitized both SW620 and Caco-2 cells to DHA. Stimulation of autophagy by rapamycin in SW620 and Caco-2 cells resulted in decreased DHA-sensitivity and inhibition of autophagy in Caco-2 cells by chloroquine resulted in increased DHA-sensitivity. These results suggest that autophagy is important for the DHA sensitivity of colon cancer cells and imply possible therapeutic effects of this fatty acid against cancer cells with low autophagy.


Subject(s)
Autophagy/drug effects , Colonic Neoplasms/drug therapy , Docosahexaenoic Acids/pharmacology , Oxidative Stress/drug effects , Caco-2 Cells , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , NF-E2-Related Factor 2/physiology , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL