Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
J Biol Chem ; 298(3): 101670, 2022 03.
Article in English | MEDLINE | ID: mdl-35120929

ABSTRACT

Xylan is the most common hemicellulose in plant cell walls, though the structure of xylan polymers differs between plant species. Here, to gain a better understanding of fungal xylan degradation systems, which can enhance enzymatic saccharification of plant cell walls in industrial processes, we conducted a comparative study of two glycoside hydrolase family 3 (GH3) ß-xylosidases (Bxls), one from the basidiomycete Phanerochaete chrysosporium (PcBxl3), and the other from the ascomycete Trichoderma reesei (TrXyl3A). A comparison of the crystal structures of the two enzymes, both with saccharide bound at the catalytic center, provided insight into the basis of substrate binding at each subsite. PcBxl3 has a substrate-binding pocket at subsite -1, while TrXyl3A has an extra loop that contains additional binding subsites. Furthermore, kinetic experiments revealed that PcBxl3 degraded xylooligosaccharides faster than TrXyl3A, while the KM values of TrXyl3A were lower than those of PcBxl3. The relationship between substrate specificity and degree of polymerization of substrates suggested that PcBxl3 preferentially degrades xylobiose (X2), while TrXyl3A degrades longer xylooligosaccharides. Moreover, docking simulation supported the existence of extended positive subsites of TrXyl3A in the extra loop located at the N-terminus of the protein. Finally, phylogenetic analysis suggests that wood-decaying basidiomycetes use Bxls such as PcBxl3 that act efficiently on xylan structures from woody plants, whereas molds use instead Bxls that efficiently degrade xylan from grass. Our results provide added insights into fungal efficient xylan degradation systems.


Subject(s)
Ascomycota , Phanerochaete , Xylans , Xylosidases , Ascomycota/enzymology , Ascomycota/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Phanerochaete/enzymology , Phanerochaete/genetics , Phylogeny , Substrate Specificity , Xylans/metabolism , Xylosidases/chemistry , Xylosidases/genetics , Xylosidases/metabolism
2.
Proc Natl Acad Sci U S A ; 117(33): 19896-19903, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32747547

ABSTRACT

Cellulose is the most abundant biomass on Earth, and many microorganisms depend on it as a source of energy. It consists mainly of crystalline and amorphous regions, and natural degradation of the crystalline part is highly dependent on the degree of processivity of the degrading enzymes (i.e., the extent of continuous hydrolysis without detachment from the substrate cellulose). Here, we report high-speed atomic force microscopic (HS-AFM) observations of the movement of four types of cellulases derived from the cellulolytic bacteria Cellulomonas fimi on various insoluble cellulose substrates. The HS-AFM images clearly demonstrated that two of them (CfCel6B and CfCel48A) slide on crystalline cellulose. The direction of processive movement of CfCel6B is from the nonreducing to the reducing end of the substrate, which is opposite that of processive cellulase Cel7A of the fungus Trichoderma reesei (TrCel7A), whose movement was first observed by this technique, while CfCel48A moves in the same direction as TrCel7A. When CfCel6B and TrCel7A were mixed on the same substrate, "traffic accidents" were observed, in which the two cellulases blocked each other's progress. The processivity of CfCel6B was similar to those of fungal family 7 cellulases but considerably higher than those of fungal family 6 cellulases. The results indicate that bacteria utilize family 6 cellulases as high-processivity enzymes for efficient degradation of crystalline cellulose, whereas family 7 enzymes have the same function in fungi. This is consistent with the idea of convergent evolution of processive cellulases in fungi and bacteria to achieve similar functionality using different protein foldings.


Subject(s)
Bacterial Proteins/chemistry , Cellulases/chemistry , Cellulomonas/enzymology , Fungal Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Biological Evolution , Cellulases/genetics , Cellulases/metabolism , Cellulomonas/chemistry , Cellulomonas/genetics , Cellulomonas/metabolism , Cellulose/chemistry , Cellulose/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Kinetics , Microscopy, Atomic Force
3.
J Biol Chem ; 295(52): 18539-18552, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33093171

ABSTRACT

Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo-ß-1,3-galactanase is a glycoside hydrolase from the basidiomycete Phanerochaete chrysosporium (Pc1,3Gal43A), which specifically cleaves AGPs. However, its structure is not known in relation to its mechanism bypassing side chains. In this study, we solved the apo and liganded structures of Pc1,3Gal43A, which reveal a glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a carbohydrate-binding module family 35 (CBM35) binding domain. GH43_sub24 is known to lack the catalytic base Asp conserved among other GH43 subfamilies. Our structure in combination with kinetic analyses reveals that the tautomerized imidic acid group of Gln263 serves as the catalytic base residue instead. Pc1,3Gal43A has three subsites that continue from the bottom of the catalytic pocket to the solvent. Subsite -1 contains a space that can accommodate the C-6 methylol of Gal, enabling the enzyme to bypass the ß-1,6-linked galactan side chains of AGPs. Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction mechanism from other sugar-binding CBM35s, including those that bind galactomannan. Specifically, we noted a Gly → Trp substitution, which affects pyranose stacking, and an Asp → Asn substitution in the binding pocket, which recognizes ß-linked rather than α-linked Gal residues. These findings should facilitate further structural analysis of AGPs and may also be helpful in engineering designer enzymes for efficient biomass utilization.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/metabolism , Galactans/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Mannans/metabolism , Phanerochaete/enzymology , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , Galactose/analogs & derivatives , Sequence Homology , Substrate Specificity
4.
J Biol Chem ; 293(23): 8812-8828, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29678880

ABSTRACT

ß-1,2-Glucans are bacterial carbohydrates that exist in cyclic or linear forms and play an important role in infections and symbioses involving Gram-negative bacteria. Although several ß-1,2-glucan-associated enzymes have been characterized, little is known about how ß-1,2-glucan and its shorter oligosaccharides (Sop n s) are captured and imported into the bacterial cell. Here, we report the biochemical and structural characteristics of the Sop n -binding protein (SO-BP, Lin1841) associated with the ATP-binding cassette (ABC) transporter from the Gram-positive bacterium Listeria innocua Calorimetric analysis revealed that SO-BP specifically binds to Sop n s with a degree of polymerization of 3 or more, with Kd values in the micromolar range. The crystal structures of SO-BP in an unliganded open form and in closed complexes with tri-, tetra-, and pentaoligosaccharides (Sop3-5) were determined to a maximum resolution of 1.6 Å. The binding site displayed shape complementarity to Sop n , which adopted a zigzag conformation. We noted that water-mediated hydrogen bonds and stacking interactions play a pivotal role in the recognition of Sop3-5 by SO-BP, consistent with its binding thermodynamics. Computational free-energy calculations and a mutational analysis confirmed that interactions with the third glucose moiety of Sop n s are significantly responsible for ligand binding. A reduction in unfavorable changes in binding entropy that were in proportion to the lengths of the Sop n s was explained by conformational entropy changes. Phylogenetic and sequence analyses indicated that SO-BP ABC transporter homologs, glycoside hydrolases, and other related proteins are co-localized in the genomes of several bacteria. This study may improve our understanding of bacterial ß-1,2-glucan metabolism and promote the discovery of unidentified ß-1,2-glucan-associated proteins.


Subject(s)
Bacterial Proteins/metabolism , Listeria/metabolism , Polysaccharides, Bacterial/metabolism , beta-Glucans/metabolism , Bacterial Proteins/chemistry , Binding Sites , Crystallography, X-Ray , Listeria/chemistry , Molecular Dynamics Simulation , Polysaccharides, Bacterial/chemistry , Protein Binding , Protein Conformation , Thermodynamics , beta-Glucans/chemistry
5.
Appl Environ Microbiol ; 85(24)2019 12 15.
Article in English | MEDLINE | ID: mdl-31604769

ABSTRACT

Pyrroloquinoline quinone (PQQ) was discovered as a redox cofactor of prokaryotic glucose dehydrogenases in the 1960s, and subsequent studies have demonstrated its importance not only in bacterial systems but also in higher organisms. We have previously reported a novel eukaryotic quinohemoprotein that exhibited PQQ-dependent catalytic activity in a eukaryote. The enzyme, pyranose dehydrogenase (PDH), from the filamentous fungus Coprinopsis cinerea (CcPDH) of the Basidiomycete division, is composed of a catalytic PQQ-dependent domain classified as a member of the novel auxiliary activity family 12 (AA12), an AA8 cytochrome b domain, and a family 1 carbohydrate-binding module (CBM1), as defined by the Carbohydrate-Active Enzymes (CAZy) database. Here, we present the crystal structures of the AA12 domain in its apo- and holo-forms and the AA8 domain of this enzyme. The crystal structures of the holo-AA12 domain bound to PQQ provide direct evidence that eukaryotes have PQQ-dependent enzymes. The AA12 domain exhibits a six-blade ß-propeller fold that is also present in other known PQQ-dependent glucose dehydrogenases in bacteria. A loop structure around the active site and a calcium ion binding site are unique among the known structures of bacterial quinoproteins. The AA8 cytochrome domain has a positively charged area on its molecular surface, which is partly due to the propionate group of the heme interacting with Arg181; this feature differs from the characteristics of cytochrome b in the AA8 domain of the fungal cellobiose dehydrogenase and suggests that this difference may affect the pH dependence of electron transfer.IMPORTANCE Pyrroloquinoline quinone (PQQ) is known as the "third coenzyme" following nicotinamide and flavin. PQQ-dependent enzymes have previously been found only in prokaryotes, and the existence of a eukaryotic PQQ-dependent enzyme was in doubt. In 2014, we found an enzyme in mushrooms that catalyzes the oxidation of various sugars in a PQQ-dependent manner and that was a PQQ-dependent enzyme found in eukaryotes. This paper presents the X-ray crystal structures of this eukaryotic PQQ-dependent quinohemoprotein, which show the active site, and identifies the amino acid residues involved in the binding of the cofactor PQQ. The presented X-ray structures reveal that the AA12 domain is in a binary complex with the coenzyme, clearly proving that PQQ-dependent enzymes exist in eukaryotes as well as prokaryotes. Because no biosynthetic system for PQQ has been reported in eukaryotes, future research on the symbiotic systems is expected.


Subject(s)
Cytochromes b/chemistry , Eukaryota/enzymology , Glucose Dehydrogenases/metabolism , Oxidoreductases/chemistry , PQQ Cofactor/chemistry , Agaricales/enzymology , Agaricales/genetics , Amino Acid Sequence , Bacteria/enzymology , Binding Sites , Carbohydrate Dehydrogenases/metabolism , Catalysis , Cytochromes b/metabolism , Electron Transport , Eukaryota/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/enzymology , Models, Molecular , Oxidation-Reduction , Oxidoreductases/metabolism , PQQ Cofactor/metabolism , Protein Conformation , Protein Domains , X-Ray Diffraction
6.
Phys Rev Lett ; 122(9): 098102, 2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30932525

ABSTRACT

The microscopic kinetics of enzymes at the single-molecule level often deviate considerably from those expected from bulk biochemical experiments. Here, we propose a coarse-grained-model approach to bridge this gap, focusing on the unexpectedly slow bulk hydrolysis of crystalline cellulose by cellulase, which constitutes a major obstacle to mass production of biofuels and biochemicals. Building on our previous success in tracking the movements of single molecules of cellulase on crystalline cellulose, we develop a mathematical description of the collective motion and function of enzyme molecules hydrolyzing the surface of cellulose. Model simulations robustly explained the experimental findings at both the microscopic and macroscopic levels and revealed a hitherto-unknown mechanism causing a considerable slowdown of the reaction, which we call the crowding-out effect. The size of the cellulase molecule impacted significantly on the collective dynamics, whereas the rate of molecular motion on the surface did not.


Subject(s)
Cellulase/chemistry , Models, Chemical , Cellulose/chemistry , Cellulose 1,4-beta-Cellobiosidase/chemistry , Hydrolysis , Kinetics , Trichoderma/enzymology
7.
J Sci Food Agric ; 99(2): 529-535, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-29931755

ABSTRACT

BACKGROUND: Mushrooms have been widely considered as health foods as their extracts have anti-hypertensive and anti-tumor activities. After a thorough literature survey, we hypothesized that enzymes in mushroom extracts play an important role in synthesizing functional molecules. Therefore, in this study, proteins extracted from reishi mushroom (Ganoderma lucidum), which is used in oriental medicine, were identified by the proteomic approach, and appropriate extraction methods for improving angiotensin-converting enzyme (ACE) inhibitory activities were investigated. RESULTS: Various glycoside hydrolases (GHs), such as ß-N-acetylhexosaminidase (GH family 20), α-1,2-mannosidase (GH family 47), endo-ß-1,3-glucanase (GH family 128), and ß-1,3-glucanase (GH152), that degrade glycans in the fruiting body were identified. The residual glucanase activities generated ß-oligosaccharides. Additionally, the glutamic acid protease of the peptidase G1 family was determined as the major protein in the extract, and the residual peptidase activity of the extracts was found to improve ACE inhibitory activities. Finally, it was observed that extraction at 50 °C is suitable for yielding functional molecules with high ACE inhibitory activities. CONCLUSION: Water extraction is generally believed to extract only functional macromolecules that exist in mushroom fruiting bodies. This study proposed a new concept that describes how functional molecules are produced by enzymes, including proteases and GHs, during extraction. © 2018 Society of Chemical Industry.


Subject(s)
Plant Proteins/metabolism , Reishi/chemistry , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/isolation & purification , Glycoside Hydrolases/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/isolation & purification , Peptide Hydrolases/metabolism , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Proteomics , Reishi/enzymology
8.
J Biol Chem ; 291(43): 22404-22413, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27609516

ABSTRACT

Trichoderma reesei Cel6A (TrCel6A) is a cellobiohydrolase that hydrolyzes crystalline cellulose into cellobiose. Here we directly observed the reaction cycle (binding, surface movement, and dissociation) of single-molecule intact TrCel6A, isolated catalytic domain (CD), cellulose-binding module (CBM), and CBM and linker (CBM-linker) on crystalline cellulose Iα The CBM-linker showed a binding rate constant almost half that of intact TrCel6A, whereas those of the CD and CBM were only one-tenth of intact TrCel6A. These results indicate that the glycosylated linker region largely contributes to initial binding on crystalline cellulose. After binding, all samples showed slow and fast dissociations, likely caused by the two different bound states due to the heterogeneity of cellulose surface. The CBM showed much higher specificity to the high affinity site than to the low affinity site, whereas the CD did not, suggesting that the CBM leads the CD to the hydrophobic surface of crystalline cellulose. On the cellulose surface, intact molecules showed slow processive movements (8.8 ± 5.5 nm/s) and fast diffusional movements (30-40 nm/s), whereas the CBM-Linker, CD, and a catalytically inactive full-length mutant showed only fast diffusional movements. These results suggest that both direct binding and surface diffusion contribute to searching of the hydrolysable point of cellulose chains. The duration time constant for the processive movement was 7.7 s, and processivity was estimated as 68 ± 42. Our results reveal the role of each domain in the elementary steps of the reaction cycle and provide the first direct evidence of the processive movement of TrCel6A on crystalline cellulose.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/chemistry , Cellulose/chemistry , Fungal Proteins/chemistry , Trichoderma/enzymology , Cellulose 1,4-beta-Cellobiosidase/genetics , Fungal Proteins/genetics , Protein Domains , Trichoderma/genetics
9.
Appl Environ Microbiol ; 83(20)2017 10 15.
Article in English | MEDLINE | ID: mdl-28802264

ABSTRACT

Acetyl xylan esterase (AXE) catalyzes the hydrolysis of the acetyl bonds present in plant cell wall polysaccharides. Here, we determined the crystal structure of AXE from Aspergillus luchuensis (AlAXEA), providing the three-dimensional structure of an enzyme in the Esterase_phb family. AlAXEA shares its core α/ß-hydrolase fold structure with esterases in other families, but it has an extended central ß-sheet at both its ends and an extra loop. Structural comparison with a ferulic acid esterase (FAE) from Aspergillus niger indicated that AlAXEA has a conserved catalytic machinery: a catalytic triad (Ser119, His259, and Asp202) and an oxyanion hole (Cys40 and Ser120). Near the catalytic triad of AlAXEA, two aromatic residues (Tyr39 and Trp160) form small pockets at both sides. Homology models of fungal FAEs in the same Esterase_phb family have wide pockets at the corresponding sites because they have residues with smaller side chains (Pro, Ser, and Gly). Mutants with site-directed mutations at Tyr39 showed a substrate specificity similar to that of the wild-type enzyme, whereas those with mutations at Trp160 acquired an expanded substrate specificity. Interestingly, the Trp160 mutants acquired weak but significant type B-like FAE activity. Moreover, the engineered enzymes exhibited ferulic acid-releasing activity from wheat arabinoxylan.IMPORTANCE Hemicelluloses in the plant cell wall are often decorated by acetyl and ferulic acid groups. Therefore, complete and efficient degradation of plant polysaccharides requires the enzymes for cleaving the side chains of the polymer. Since the Esterase_phb family contains a wide array of fungal FAEs and AXEs from fungi and bacteria, our study will provide a structural basis for the molecular mechanism of these industrially relevant enzymes in biopolymer degradation. The structure of the Esterase_phb family also provides information for bacterial polyhydroxyalkanoate depolymerases that are involved in biodegradation of thermoplastic polymers.


Subject(s)
Acetylesterase/chemistry , Aspergillus/enzymology , Fungal Proteins/chemistry , Acetylesterase/genetics , Acetylesterase/metabolism , Aspergillus/chemistry , Aspergillus/genetics , Crystallography, X-Ray , Fungal Proteins/genetics , Fungal Proteins/metabolism , Models, Molecular , Protein Conformation, alpha-Helical , Protein Domains , Substrate Specificity
10.
PLoS Genet ; 10(12): e1004759, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25474575

ABSTRACT

Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.


Subject(s)
Basidiomycota/growth & development , Basidiomycota/genetics , Basidiomycota/metabolism , Fungal Proteins/metabolism , Genome, Fungal , Wood/microbiology , Cell Wall/genetics , Cell Wall/metabolism , Cellulose/metabolism , Gene Expression Regulation, Fungal , Lignin/metabolism , Molecular Sequence Annotation , Transcriptome , Wood/metabolism
11.
Biochem Biophys Res Commun ; 477(3): 369-73, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27338639

ABSTRACT

A pyranose dehydrogenase from Coprinopsis cinerea (CcPDH) is an extracellular quinohemoeprotein, which consists a b-type cytochrome domain, a pyrroloquinoline-quinone (PQQ) domain, and a family 1-type carbohydrate-binding module. The electron transfer reaction of CcPDH was studied using some electron acceptors and a carbon electrode at various pH levels. Phenazine methosulfate (PMS) reacted directly at the PQQ domain, whereas cytochrome c (cyt c) reacted via the cytochrome domain of intact CcPDH. Thus, electrons are transferred from reduced PQQ in the catalytic domain of CcPDH to heme b in the N-terminal cytochrome domain, which acts as a built-in mediator and transfers electron to a heterogenous electron transfer protein. The optimal pH values of the PMS reduction (pH 6.5) and the cyt c reduction (pH 8.5) differ. The catalytic currents for the oxidation of l-fucose were observed within a range of pH 4.5 to 11. Bioelectrocatalysis of CcPDH based on direct electron transfer demonstrated that the pH profile of the biocatalytic current was similar to the reduction activity of cyt c characters.


Subject(s)
Hydrogen-Ion Concentration , Biocatalysis , Electrochemical Techniques , Electron Transport
12.
J Bacteriol ; 197(8): 1322-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25645559

ABSTRACT

A gene encoding an enzyme similar to a pyrroloquinoline quinone (PQQ)-dependent sugar dehydrogenase from filamentous fungi, which belongs to new auxiliary activities (AA) family 12 in the CAZy database, was cloned from Pseudomonas aureofaciens. The deduced amino acid sequence of the cloned enzyme showed only low homology to previously characterized PQQ-dependent enzymes, and multiple-sequence alignment analysis showed that the enzyme lacks one of the three conserved arginine residues that function as PQQ-binding residues in known PQQ-dependent enzymes. The recombinant enzyme was heterologously expressed in an Escherichia coli expression system for further characterization. The UV-visible (UV-Vis) absorption spectrum of the oxidized form of the holoenzyme, prepared by incubating the apoenzyme with PQQ and CaCl2, revealed a broad peak at approximately 350 nm, indicating that the enzyme binds PQQ. With the addition of 2-keto-d-glucose (2KG) to the holoenzyme solution, a sharp peak appeared at 331 nm, attributed to the reduction of PQQ bound to the enzyme, whereas no effect was observed upon 2KG addition to authentic PQQ. Enzymatic assay showed that the recombinant enzyme specifically reacted with 2KG in the presence of an appropriate electron acceptor, such as 2,6-dichlorophenol indophenol, when PQQ and CaCl2 were added. (1)H nuclear magnetic resonance ((1)H-NMR) analysis of reaction products revealed 2-keto-d-gluconic acid (2KGA) as the main product, clearly indicating that the recombinant enzyme oxidizes the C-1 position of 2KG. Therefore, the enzyme was identified as a PQQ-dependent 2KG dehydrogenase (Pa2KGDH). Considering the high substrate specificity, the physiological function of Pa2KGDH may be for production of 2KGA.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/physiology , Glucose Dehydrogenases/metabolism , PQQ Cofactor/metabolism , Pseudomonas/enzymology , Amino Acid Sequence , Bacterial Proteins/genetics , Base Sequence , Cloning, Molecular , Glucose Dehydrogenases/genetics , Molecular Sequence Data , Phylogeny
13.
J Biol Chem ; 289(15): 10843-10852, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24570006

ABSTRACT

Termites and their symbiotic protists have established a prominent dual lignocellulolytic system, which can be applied to the biorefinery process. One of the major components of lignocellulose from conifers is glucomannan, which comprises a heterogeneous combination of ß-1,4-linked mannose and glucose. Mannanases are known to hydrolyze the internal linkage of the glucomannan backbone, but the specific mechanism by which they recognize and accommodate heteropolysaccharides is currently unclear. Here, we report biochemical and structural analyses of glycoside hydrolase family 26 mannanase C (RsMan26C) from a symbiotic protist of the termite Reticulitermes speratus. RsMan26C was characterized based on its catalytic efficiency toward glucomannan, compared with pure mannan. The crystal structure of RsMan26C complexed with gluco-manno-oligosaccharide(s) explained its specificities for glucose and mannose at subsites -5 and -2, respectively, in addition to accommodation of both glucose and mannose at subsites -3 and -4. RsMan26C has a long open cleft with a hydrophobic platform of Trp(94) at subsite -5, facilitating enzyme binding to polysaccharides. Notably, a unique oxidized Met(85) specifically interacts with the equatorial O-2 of glucose at subsite -3. Our results collectively indicate that specific recognition and accommodation of glucose at the distal negative subsites confers efficient degradation of the heteropolysaccharide by mannanase.


Subject(s)
Isoptera/microbiology , Mannans/metabolism , Mannosidases/metabolism , Symbiosis , beta-Mannosidase/metabolism , Animals , Biomass , Catalysis , Catalytic Domain , Chromatography, Thin Layer , Eukaryota/enzymology , Glucose/metabolism , Hydrolysis , Intestines/microbiology , Lignin/metabolism , Mannose/metabolism , Polysaccharides/metabolism , Protein Conformation , Substrate Specificity
14.
J Biol Chem ; 289(20): 14056-65, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24692563

ABSTRACT

Trichoderma reesei cellobiohydrolase I (TrCel7A) is a molecular motor that directly hydrolyzes crystalline celluloses into water-soluble cellobioses. It has recently drawn attention as a tool that could be used to convert cellulosic materials into biofuel. However, detailed mechanisms of action, including elementary reaction steps such as binding, processive hydrolysis, and dissociation, have not been thoroughly explored because of the inherent challenges associated with monitoring reactions occurring at the solid/liquid interface. The crystalline cellulose Iα and IIII were previously reported as substrates with different crystalline forms and different susceptibilities to hydrolysis by TrCel7A. In this study, we observed that different susceptibilities of cellulose Iα and IIII are highly dependent on enzyme concentration, and at nanomolar enzyme concentration, TrCel7A shows similar rates of hydrolysis against cellulose Iα and IIII. Using single-molecule fluorescence microscopy and high speed atomic force microscopy, we also determined kinetic constants of the elementary reaction steps for TrCel7A against cellulose Iα and IIII. These measurements were performed at picomolar enzyme concentration in which density of TrCel7A on crystalline cellulose was very low. Under this condition, TrCel7A displayed similar binding and dissociation rate constants for cellulose Iα and IIII and similar fractions of productive binding on cellulose Iα and IIII. Furthermore, once productively bound, TrCel7A processively hydrolyzes and moves along cellulose Iα and IIII with similar translational rates. With structural models of cellulose Iα and IIII, we propose that different susceptibilities at high TrCel7A concentration arise from surface properties of substrate, including ratio of hydrophobic surface and number of available lanes.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/metabolism , Cellulose/chemistry , Cellulose/metabolism , Microscopy, Atomic Force , Microscopy, Fluorescence , Trichoderma/enzymology , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Kinetics
15.
Proc Natl Acad Sci U S A ; 109(14): 5458-63, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22434909

ABSTRACT

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


Subject(s)
Basidiomycota/genetics , Genomics , Lignin/metabolism , Basidiomycota/classification , Hydrolysis , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , Species Specificity
16.
J Biol Chem ; 288(19): 13503-10, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23532843

ABSTRACT

BACKGROUND: Mutation of Trp-40 in the Cel7A cellobiohydrolase from Trichoderma reesei (TrCel7A) causes a loss of crystalline cellulose-degrading ability. RESULTS: Mutant W40A showed reduced specific activity for crystalline cellulose and diffused the cellulose chain from the entrance of the active site tunnel. CONCLUSION: Trp-40 is essential for chain end loading to initiate processive hydrolysis of TrCel7A. SIGNIFICANCE: The mechanisms of crystalline polysaccharide degradation are clarified. The glycoside hydrolase family 7 cellobiohydrolase Cel7A from Trichoderma reesei is one of the best studied cellulases with the ability to degrade highly crystalline cellulose. The catalytic domain and the cellulose-binding domain (CBD) are both necessary for full activity on crystalline substrates. Our previous high-speed atomic force microscopy studies showed that mutation of Trp-40 at the entrance of the catalytic tunnel drastically decreases the ability to degrade crystalline cellulose. Here, we examined the activities of the WT enzyme and mutant W40A (with and without the CBD) for various substrates. Evaluation and comparison of the specific activities of the enzymes (WT, W40A, and the corresponding catalytic subunits (WTcat and W40Acat)) adsorbed on crystalline cellulose indicated that Trp-40 is involved in recruiting individual substrate chains into the active site tunnel to initiate processive hydrolysis. This was supported by molecular dynamics simulation study, i.e. the reducing end glucose unit was effectively loaded into the active site of WTcat, but not into that of W40Acat, when the simulation was started from subsite -7. However, when similar simulations were carried out starting from subsite -5, both enzymes held the substrate for 50 ns, indicating that the major difference between WTcat and W40Acat is the length of the free chain end of the substrate required to allow initiation of processive movements; this also reflects the difference between crystalline and amorphous celluloses. The CBD is important for enhancing the enzyme population on crystalline substrate, but it also decreases the specific activity of the adsorbed enzyme, possibly by attaching the enzyme to non-optimal places on the cellulose surface and/or hindering processive hydrolysis.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/chemistry , Cellulose/chemistry , Fungal Proteins/chemistry , Trichoderma/enzymology , Tryptophan/chemistry , Amino Acid Substitution , Catalytic Domain , Cellulose 1,4-beta-Cellobiosidase/genetics , Fungal Proteins/genetics , Hydrolysis , Kinetics , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Tryptophan/genetics
17.
J Biol Chem ; 288(18): 12828-39, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23525113

ABSTRACT

Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain.


Subject(s)
Copper/chemistry , Fungal Proteins/chemistry , Mixed Function Oxygenases/chemistry , Phanerochaete/enzymology , Catalytic Domain , Cellobiose/chemistry , Cellobiose/metabolism , Copper/metabolism , Crystallography, X-Ray , Fungal Proteins/metabolism , Mixed Function Oxygenases/metabolism
18.
Proteins ; 82(10): 2857-67, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25066066

ABSTRACT

Feruloyl esterase (FAE) catalyzes the hydrolysis of the ferulic and diferulic acids present in plant cell wall polysaccharides, and tannase catalyzes the hydrolysis of tannins to release gallic acid. The fungal tannase family in the ESTHER database contains various enzymes, including FAEs and tannases. Despite the importance of FAEs and tannases in bioindustrial applications, three-dimensional structures of the fungal tannase family members have been unknown. Here, we determined the crystal structure of FAE B from Aspergillus oryzae (AoFaeB), which belongs to the fungal tannase family, at 1.5 Å resolution. AoFaeB consists of a catalytic α/ß-hydrolase fold domain and a large lid domain, and the latter has a novel fold. To estimate probable binding models of substrates in AoFaeB, an automated docking analysis was performed. In the active site pocket of AoFaeB, residues responsible for the substrate specificity of the FAE activity were identified. The catalytic triad of AoFaeB comprises Ser203, Asp417, and His457, and the serine and histidine residues are directly connected by a disulfide bond of the neighboring cysteine residues, Cys202 and Cys458. This structural feature, the "CS-D-HC motif," is unprecedented in serine hydrolases. A mutational analysis indicated that the novel structural motif plays essential roles in the function of the active site.


Subject(s)
Aspergillus oryzae/enzymology , Carboxylic Ester Hydrolases/chemistry , Cystine/chemistry , Fungal Proteins/chemistry , Models, Molecular , Amino Acid Sequence , Amino Acid Substitution , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Catalytic Domain , Conserved Sequence , Databases, Protein , Fungal Proteins/genetics , Fungal Proteins/metabolism , Ligands , Molecular Docking Simulation , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Conformation , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Substrate Specificity
19.
J Am Chem Soc ; 136(12): 4584-92, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24571226

ABSTRACT

Analysis of heterogeneous catalysis at an interface is difficult because of the variety of reaction sites and the difficulty of observing the reaction. Enzymatic hydrolysis of cellulose by cellulases is a typical heterogeneous reaction at a solid/liquid interface, and a key parameter of such reactions on polymeric substrates is the processivity, i.e., the number of catalytic cycles that can occur without detachment of the enzyme from the substrate. In this study, we evaluated the reactions of three closely related glycoside hydrolase family 7 cellobiohydrolases from filamentous fungi at the molecular level by means of high-speed atomic force microscopy to investigate the structure-function relationship of the cellobiohydrolases on crystalline cellulose. We found that high moving velocity of enzyme molecules on the surface is associated with a high dissociation rate constant from the substrate, which means weak interaction between enzyme and substrate. Moreover, higher values of processivity were associated with more loop regions covering the subsite cleft, which may imply higher binding affinity. Loop regions covering the subsites result in stronger interaction, which decreases the velocity but increases the processivity. These results indicate that there is a trade-off between processivity and hydrolytic velocity among processive cellulases.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/metabolism , Cellulose/chemistry , Cellulose/metabolism , Cellulose 1,4-beta-Cellobiosidase/chemistry , Hydrolysis , Kinetics , Models, Molecular , Movement , Phanerochaete/enzymology , Protein Conformation , Surface Properties , Trichoderma/enzymology
20.
Biochem Biophys Res Commun ; 452(3): 520-5, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25173929

ABSTRACT

Symbiotic protists in the gut of termites are prominent natural resources for enzymes involved in lignocellulose degradation. Here we report expression, purification, and biochemical characterization of a glycoside hydrolase family 26 mannanase RsMan26H from the symbiotic protist of the lower termite, Reticulitermes speratus. Biochemical analysis of RsMan26H demonstrates that this enzyme is an endo-processive mannobiohydrolase producing mannobiose from oligo- and polysaccharides, followed by a minor accumulation of oligosaccharides larger than mannobiose. To our knowledge, this is the first report describing the unique mannobiohydrolase enzyme from the eukaryotic origin.


Subject(s)
Mannans/chemistry , Oligosaccharides/chemistry , Parabasalidea/chemistry , Polysaccharides/chemistry , Protozoan Proteins/chemistry , beta-Mannosidase/chemistry , Animals , Gene Expression , Isoptera/physiology , Kinetics , Mannans/metabolism , Oligosaccharides/metabolism , Parabasalidea/enzymology , Pichia/genetics , Pichia/metabolism , Polysaccharides/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Symbiosis , beta-Mannosidase/genetics , beta-Mannosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL