Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Respir Crit Care Med ; 209(1): 48-58, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37934672

ABSTRACT

Rationale: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. Objectives: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and patients with COPD with varying degrees of emphysema. Methods: Lung sections from 40 patients with COPD and ever-smokers were used for LF proteomic and transcriptomic spatial profiling. Formalin- and O.C.T.-fixed lung samples obtained from biopsies or lung explants were assessed for LF presence. Emphysema measurements were obtained from clinical chest computed tomographic scans. High-confidence transcriptional target intersection analyses were conducted to resolve emphysema-induced transcriptional networks. Measurements and Main Results: Overall, 115 LFs from ever-smokers and Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 and GOLD 3-4 patients were analyzed. No LFs were found in never-smokers. Differential gene expression analysis revealed significantly increased expression of LF assembly and B cell marker genes in subjects with severe emphysema. High-confidence transcriptional analysis revealed activation of an abnormal B cell activity signature in LFs (q-value = 2.56E-111). LFs from patients with GOLD 1-2 COPD with emphysema showed significantly increased expression of genes associated with antigen presentation, inflammation, and B cell activation and proliferation. LFs from patients with GOLD 1-2 COPD without emphysema showed an antiinflammatory profile. The extent of centrilobular emphysema was significantly associated with genes involved in B cell maturation and antibody production. Protein-RNA network analysis showed that LFs in emphysema have a unique signature skewed toward chronic B cell activation. Conclusions: An off-targeted B cell activation within LFs is associated with autoimmune-mediated emphysema pathogenesis.


Subject(s)
Emphysema , Lymphadenopathy , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/genetics , Proteomics , Gene Expression Profiling
2.
Am J Respir Crit Care Med ; 209(9): 1091-1100, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38285918

ABSTRACT

Rationale: Quantitative interstitial abnormalities (QIAs) are early measures of lung injury automatically detected on chest computed tomography scans. QIAs are associated with impaired respiratory health and share features with advanced lung diseases, but their biological underpinnings are not well understood. Objectives: To identify novel protein biomarkers of QIAs using high-throughput plasma proteomic panels within two multicenter cohorts. Methods: We measured the plasma proteomics of 4,383 participants in an older, ever-smoker cohort (COPDGene [Genetic Epidemiology of Chronic Obstructive Pulmonary Disease]) and 2,925 participants in a younger population cohort (CARDIA [Coronary Artery Disease Risk in Young Adults]) using the SomaLogic SomaScan assays. We measured QIAs using a local density histogram method. We assessed the associations between proteomic biomarker concentrations and QIAs using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, and study center (Benjamini-Hochberg false discovery rate-corrected P ⩽ 0.05). Measurements and Main Results: In total, 852 proteins were significantly associated with QIAs in COPDGene and 185 in CARDIA. Of the 144 proteins that overlapped between COPDGene and CARDIA, all but one shared directionalities and magnitudes. These proteins were enriched for 49 Gene Ontology pathways, including biological processes in inflammatory response, cell adhesion, immune response, ERK1/2 regulation, and signaling; cellular components in extracellular regions; and molecular functions including calcium ion and heparin binding. Conclusions: We identified the proteomic biomarkers of QIAs in an older, smoking population with a higher prevalence of pulmonary disease and in a younger, healthier community cohort. These proteomics features may be markers of early precursors of advanced lung diseases.


Subject(s)
Biomarkers , Proteomics , Pulmonary Disease, Chronic Obstructive , Humans , Female , Male , Biomarkers/blood , Middle Aged , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/blood , Adult , Aged , Cohort Studies , Tomography, X-Ray Computed , Lung Diseases, Interstitial/genetics , Young Adult
3.
Article in English | MEDLINE | ID: mdl-38820122

ABSTRACT

RATIONALE: Quantitative interstitial abnormalities (QIA) are a computed tomography (CT) measure of early parenchymal lung disease associated with worse clinical outcomes including exercise capacity and symptoms. The presence of pulmonary vasculopathy in QIA and its role in the QIA-outcome relationship is unknown. OBJECTIVES: To quantify radiographic pulmonary vasculopathy in quantitative interstitial abnormalities (QIA) and determine if this vasculopathy mediates the QIA-outcome relationship. METHODS: Ever-smokers with QIA, outcome, and pulmonary vascular mediator data were identified from the COPDGene cohort. CT-based vascular mediators were: right ventricle-to-left ventricle ratio (RV/LV), pulmonary artery-to-aorta ratio (PA/Ao), and pre-acinar intraparenchymal arterial dilation (PA volume 5-20mm2 in cross-sectional area, normalized to total arterial volume). Outcomes were: six-minute walk distance (6MWD) and modified Medical Council Research Council (mMRC) Dyspnea score ≥2. Adjusted causal mediation analyses were used to determine if the pulmonary vasculature mediated the QIA effect on outcomes. Associations of pre-acinar arterial dilation with select plasma biomarkers of pulmonary vascular dysfunction were examined. MAIN RESULTS: Among 8,200 participants, QIA burden correlated positively with vascular damage measures including pre-acinar arterial dilation. Pre-acinar arterial dilation mediated 79.6% of the detrimental impact of QIA on 6MWD (56.2-100%, p<0.001). PA/Ao was a weak mediator and RV/LV was a suppressor. Similar results were observed in the QIA-mMRC relationship. Pre-acinar arterial dilation correlated with increased pulmonary vascular dysfunction biomarker levels including angiopoietin-2 and NT-proBNP. CONCLUSIONS: Parenchymal quantitative interstitial abnormalities (QIA) deleteriously impact outcomes primarily through pulmonary vasculopathy. Pre-acinar arterial dilation may be a novel marker of pulmonary vasculopathy in QIA.

4.
Radiology ; 311(1): e231801, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38687222

ABSTRACT

Background Acute respiratory disease (ARD) events are often thought to be airway-disease related, but some may be related to quantitative interstitial abnormalities (QIAs), which are subtle parenchymal abnormalities on CT scans associated with morbidity and mortality in individuals with a smoking history. Purpose To determine whether QIA progression at CT is associated with ARD and severe ARD events in individuals with a history of smoking. Materials and Methods This secondary analysis of a prospective study included individuals with a 10 pack-years or greater smoking history recruited from multiple centers between November 2007 and July 2017. QIA progression was assessed between baseline (visit 1) and 5-year follow-up (visit 2) chest CT scans. Episodes of ARD were defined as increased cough or dyspnea lasting 48 hours and requiring antibiotics or corticosteroids, whereas severe ARD episodes were those requiring an emergency room visit or hospitalization. Episodes were recorded via questionnaires completed every 3 to 6 months. Multivariable logistic regression and zero-inflated negative binomial regression models adjusted for comorbidities (eg, emphysema, small airway disease) were used to assess the association between QIA progression and episodes between visits 1 and 2 (intercurrent) and after visit 2 (subsequent). Results A total of 3972 participants (mean age at baseline, 60.7 years ± 8.6 [SD]; 2120 [53.4%] women) were included. Annual percentage QIA progression was associated with increased odds of one or more intercurrent (odds ratio [OR] = 1.29 [95% CI: 1.06, 1.56]; P = .01) and subsequent (OR = 1.26 [95% CI: 1.05, 1.52]; P = .02) severe ARD events. Participants in the highest quartile of QIA progression (≥1.2%) had more frequent intercurrent ARD (incidence rate ratio [IRR] = 1.46 [95% CI: 1.14, 1.86]; P = .003) and severe ARD (IRR = 1.79 [95% CI: 1.18, 2.73]; P = .006) events than those in the lowest quartile (≤-1.7%). Conclusion QIA progression was independently associated with higher odds of severe ARD events during and after radiographic progression, with higher frequency of intercurrent severe events in those with faster progression. Clinical trial registration no. NCT00608764 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Little in this issue.


Subject(s)
Disease Progression , Smoking , Tomography, X-Ray Computed , Humans , Female , Male , Tomography, X-Ray Computed/methods , Prospective Studies , Middle Aged , Smoking/adverse effects , Acute Disease , Aged , Lung Diseases, Interstitial/diagnostic imaging , Lung/diagnostic imaging
5.
Radiology ; 310(1): e231632, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38165244

ABSTRACT

Background CT attenuation is affected by lung volume, dosage, and scanner bias, leading to inaccurate emphysema progression measurements in multicenter studies. Purpose To develop and validate a method that simultaneously corrects volume, noise, and interscanner bias for lung density change estimation in emphysema progression at CT in a longitudinal multicenter study. Materials and Methods In this secondary analysis of the prospective Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) study, lung function data were obtained from participants who completed baseline and 5-year follow-up visits from January 2008 to August 2017. CT emphysema progression was measured with volume-adjusted lung density (VALD) and compared with the joint volume-noise-bias-adjusted lung density (VNB-ALD). Reproducibility was studied under change of dosage protocol and scanner model with repeated acquisitions. Emphysema progression was visually scored in 102 randomly selected participants. A stratified analysis of clinical characteristics was performed that considered groups based on their combined lung density change measured by VALD and VNB-ALD. Results A total of 4954 COPDGene participants (mean age, 60 years ± 9 [SD]; 2511 male, 2443 female) were analyzed (1329 with repeated reduced-dose acquisition in the follow-up visit). Mean repeatability coefficients were 30 g/L ± 0.46 for VALD and 14 g/L ± 0.34 for VNB-ALD. VALD measurements showed no evidence of differences between nonprogressors and progressors (mean, -5.5 g/L ± 9.5 vs -8.6 g/L ± 9.6; P = .11), while VNB-ALD agreed with visual readings and showed a difference (mean, -0.67 g/L ± 4.8 vs -4.2 g/L ± 5.5; P < .001). Analysis of progression showed that VNB-ALD progressors had a greater decline in forced expiratory volume in 1 second (-42 mL per year vs -32 mL per year; Tukey-adjusted P = .002). Conclusion Simultaneously correcting volume, noise, and interscanner bias for lung density change estimation in emphysema progression at CT improved repeatability analyses and agreed with visual readings. It distinguished between progressors and nonprogressors and was associated with a greater decline in lung function metrics. Clinical trial registration no. NCT00608764 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Goo in this issue.


Subject(s)
Emphysema , Pulmonary Emphysema , Female , Male , Humans , Middle Aged , Prospective Studies , Reproducibility of Results , Pulmonary Emphysema/diagnostic imaging , Lung/diagnostic imaging , Tomography, X-Ray Computed
6.
Article in English | MEDLINE | ID: mdl-38064378

ABSTRACT

RATIONALE: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. OBJECTIVE: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and COPD patients with varying degrees of emphysema. METHODS: Lung sections from 40 COPD patients and ever-smokers were used for LF proteomic and transcriptomic spatial profiling. Formalin and OCT-fixed lung samples obtained from biopsies or lung explants, were assessed for LF presence. Emphysema measurements were obtained from clinical chest CT scans. High confidence transcriptional (HCT) target intersection analyses were conducted to resolve emphysema-induced transcriptional networks. MEASUREMENTS AND MAIN RESULTS: Overall, 115 LFs from ever-smokers and GOLD 1-2 and GOLD 3-4 patients were analyzed. No LFs were found in never-smokers. Differential gene expression analysis revealed significantly increased expression of LF assembly and B cell markers genes in subjects with severe emphysema. HCT analysis revealed activation of abnormal B cell activity signature in LFs (q-value: 2.56E-111). LFs from GOLD 1-2 COPD patients with emphysema showed significantly increased expression of genes associated with antigen presentation, inflammation, and B cell activation and proliferation. LFs from GOLD 1-2 COPD patients without emphysema showed an anti-inflammatory profile. The extent of centrilobular emphysema was significantly associated with genes involved in B cell maturation and antibody production. Protein-RNA network analysis showed that LFs in emphysema have a unique signature skewed towards chronic B cell activation. CONCLUSIONS: An off-targeted B cell activation within LFs is associated with autoimmune-mediated emphysema pathogenesis.

7.
Ann Intern Med ; 176(10): 1340-1348, 2023 10.
Article in English | MEDLINE | ID: mdl-37782931

ABSTRACT

BACKGROUND: Bronchiectasis in adults with chronic obstructive pulmonary disease (COPD) is associated with greater mortality. However, whether suspected bronchiectasis-defined as incidental bronchiectasis on computed tomography (CT) images plus clinical manifestation-is associated with increased mortality in adults with a history of smoking with normal spirometry and preserved ratio impaired spirometry (PRISm) is unknown. OBJECTIVE: To determine the association between suspected bronchiectasis and mortality in adults with normal spirometry, PRISm, and obstructive spirometry. DESIGN: Prospective, observational cohort. SETTING: The COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) study. PARTICIPANTS: 7662 non-Hispanic Black or White adults, aged 45 to 80 years, with 10 or more pack-years of smoking history. Participants who were former and current smokers were stratified into normal spirometry (n = 3277), PRISm (n = 986), and obstructive spirometry (n = 3399). MEASUREMENTS: Bronchiectasis identified by CT was ascertained using artificial intelligence-based measurements of an airway-to-artery ratio (AAR) greater than 1 (AAR >1), a measure of bronchial dilatation. The primary outcome of "suspected bronchiectasis" was defined as an AAR >1 of greater than 1% plus 2 of the following: cough, phlegm, dyspnea, and history of 2 or more exacerbations. RESULTS: Among the 7662 participants (mean age, 60 years; 52% women), 1352 (17.6%) had suspected bronchiectasis. During a median follow-up of 11 years, 2095 (27.3%) died. Ten-year mortality risk was higher in participants with suspected bronchiectasis, compared with those without suspected bronchiectasis (normal spirometry: difference in mortality probability [Pr], 0.15 [95% CI, 0.09 to 0.21]; PRISm: Pr, 0.07 [CI, -0.003 to 0.15]; obstructive spirometry: Pr, 0.06 [CI, 0.03 to 0.09]). When only CT was used to identify bronchiectasis, the differences were attenuated in the normal spirometry (Pr, 0.04 [CI, -0.001 to 0.08]). LIMITATIONS: Only 2 racial groups were studied. Only 1 measurement was used to define bronchiectasis on CT. Symptoms of suspected bronchiectasis were nonspecific. CONCLUSION: Suspected bronchiectasis was associated with a heightened risk for mortality in adults with normal and obstructive spirometry. PRIMARY FUNDING SOURCE: National Heart, Lung, and Blood Institute.


Subject(s)
Bronchiectasis , Pulmonary Disease, Chronic Obstructive , Humans , Adult , Female , Middle Aged , Male , Cohort Studies , Prospective Studies , Artificial Intelligence , Pulmonary Disease, Chronic Obstructive/diagnosis , Lung/diagnostic imaging , Smoking/adverse effects , Bronchiectasis/complications , Spirometry/methods , Forced Expiratory Volume
8.
Radiology ; 307(4): e222786, 2023 05.
Article in English | MEDLINE | ID: mdl-37039685

ABSTRACT

Background Long-term studies of chronic obstructive pulmonary disease (COPD) can evaluate emphysema progression. Adjustment for differences in equipment and scanning protocols of individual CT examinations have not been studied extensively. Purpose To evaluate emphysema progression in current and former smokers in the COPDGene cohort over three imaging points obtained at 5-year intervals accounting for individual CT parameters. Materials and Methods Current and former cigarette smokers enrolled between 2008 and 2011 from the COPDGene study were prospectively followed for 10 years between 2008 and 2020. Extent of emphysema as adjusted lung density (ALD) from quantitative CT was measured at baseline and at 5- and 10-year follow-up. Linear mixed models adjusted for CT technical characteristics were constructed to evaluate emphysema progression. Mean annual changes in ALD over consecutive 5-year study periods were estimated by smoking status and baseline emphysema. Results Of 8431 participants at baseline (mean age, 60 years ± 9 [SD]; 3905 female participants), 4913 were at 5-year follow-up and 1544 participants were at 10-year follow-up. There were 4134 (49%) participants who were current smokers, and 4449 (53%) participants had more than trace emphysema at baseline. Current smokers with more than trace emphysema showed the largest decline in ALD, with mean annual decreases of 1.4 g/L (95% CI: 1.2, 1.5) in the first 5 years and 0.9 g/L (95% CI: 0.7, 1.2) in the second 5 years. Accounting for CT noise, field of view, and scanner model improved model fit for estimation of emphysema progression (P < .001 by likelihood ratio test). Conclusion Evaluation at CT of emphysema progression in the COPDGene study showed that, during the span of 10 years, participants with pre-existing emphysema who continued smoking had the largest decline in ALD. Adjusting for CT equipment and protocol factors improved these longitudinal estimates. Clinical trial registration no. NCT00608764 © RSNA, 2023 Supplemental material is available for this article. See the editorial by Parraga and Kirby in this issue.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Female , Middle Aged , Tomography, X-Ray Computed/methods , Pulmonary Emphysema/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Longitudinal Studies , Disease Progression , Lung
9.
Radiology ; 307(1): e221109, 2023 04.
Article in English | MEDLINE | ID: mdl-36511808

ABSTRACT

Background CT is the standard method used to assess bronchiectasis. A higher airway-to-artery diameter ratio (AAR) is typically used to identify enlarged bronchi and bronchiectasis; however, current imaging methods are limited in assessing the extent of this metric in CT scans. Purpose To determine the extent of AARs using an artificial intelligence-based chest CT and assess the association of AARs with exacerbations over time. Materials and Methods In a secondary analysis of ever-smokers from the prospective, observational, multicenter COPDGene study, AARs were quantified using an artificial intelligence tool. The percentage of airways with AAR greater than 1 (a measure of airway dilatation) in each participant on chest CT scans was determined. Pulmonary exacerbations were prospectively determined through biannual follow-up (from July 2009 to September 2021). Multivariable zero-inflated regression models were used to assess the association between the percentage of airways with AAR greater than 1 and the total number of pulmonary exacerbations over follow-up. Covariates included demographics, lung function, and conventional CT parameters. Results Among 4192 participants (median age, 59 years; IQR, 52-67 years; 1878 men [45%]), 1834 had chronic obstructive pulmonary disease (COPD). During a 10-year follow-up and in adjusted models, the percentage of airways with AARs greater than 1 (quartile 4 vs 1) was associated with a higher total number of exacerbations (risk ratio [RR], 1.08; 95% CI: 1.02, 1.15; P = .01). In participants meeting clinical and imaging criteria of bronchiectasis (ie, clinical manifestations with ≥3% of AARs >1) versus those who did not, the RR was 1.37 (95% CI: 1.31, 1.43; P < .001). Among participants with COPD, the corresponding RRs were 1.10 (95% CI: 1.02, 1.18; P = .02) and 1.32 (95% CI: 1.26, 1.39; P < .001), respectively. Conclusion In ever-smokers with chronic obstructive pulmonary disease, artificial intelligence-based CT measures of bronchiectasis were associated with more exacerbations over time. Clinical trial registration no. NCT00608764 © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Schiebler and Seo in this issue.


Subject(s)
Artificial Intelligence , Bronchiectasis , Pulmonary Disease, Chronic Obstructive , Tomography, Emission-Computed , Aged , Female , Humans , Male , Middle Aged , Bronchi/blood supply , Bronchi/diagnostic imaging , Bronchi/physiopathology , Bronchiectasis/complications , Bronchiectasis/diagnostic imaging , Bronchiectasis/physiopathology , Follow-Up Studies , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/genetics , Regression Analysis , Smokers , Tomography, Emission-Computed/methods , Cohort Studies
10.
Rheumatology (Oxford) ; 62(SI3): SI286-SI295, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37871923

ABSTRACT

OBJECTIVE: To investigate the prevalence and mortality impact of interstitial lung abnormalities (ILAs) in RA and non-RA comparators. METHODS: We analysed associations between ILAs, RA, and mortality in COPDGene, a multicentre prospective cohort study of current and past smokers, excluding known interstitial lung disease (ILD) or bronchiectasis. All participants had research chest high-resolution CT (HRCT) reviewed by a sequential reading method to classify ILA as present, indeterminate or absent. RA cases were identified by self-report RA and DMARD use; non-RA comparators had neither an RA diagnosis nor used DMARDs. We examined the association and mortality risk of RA and ILA using multivariable logistic regression and Cox regression. RESULTS: We identified 83 RA cases and 8725 non-RA comparators with HRCT performed for research purposes. ILA prevalence was 16.9% in RA cases and 5.0% in non-RA comparators. After adjusting for potential confounders, including genetics, current/past smoking and other lifestyle factors, ILAs were more common among those with RA compared with non-RA [odds ratio 4.76 (95% CI 2.54, 8.92)]. RA with ILAs or indeterminate for ILAs was associated with higher all-cause mortality compared with non-RA without ILAs [hazard ratio (HR) 3.16 (95% CI 2.11, 4.74)] and RA cases without ILA [HR 3.02 (95% CI 1.36, 6.75)]. CONCLUSIONS: In this cohort of smokers, RA was associated with ILAs and this persisted after adjustment for current/past smoking and genetic/lifestyle risk factors. RA with ILAs in smokers had a 3-fold increased all-cause mortality, emphasizing the importance of further screening and treatment strategies for preclinical ILD in RA.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Lung Diseases, Interstitial , Humans , Prospective Studies , Smokers , Prevalence , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/etiology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/epidemiology , Lung
11.
Respir Res ; 24(1): 265, 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37925418

ABSTRACT

BACKGROUND: Quantitative interstitial abnormalities (QIA) are an automated computed tomography (CT) finding of early parenchymal lung disease, associated with worse lung function, reduced exercise capacity, increased respiratory symptoms, and death. The metabolomic perturbations associated with QIA are not well known. We sought to identify plasma metabolites associated with QIA in smokers. We also sought to identify shared and differentiating metabolomics features between QIA and emphysema, another smoking-related advanced radiographic abnormality. METHODS: In 928 former and current smokers in the Genetic Epidemiology of COPD cohort, we measured QIA and emphysema using an automated local density histogram method and generated metabolite profiles from plasma samples using liquid chromatography-mass spectrometry (Metabolon). We assessed the associations between metabolite levels and QIA using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, pack-years, and inhaled corticosteroid use, at a Benjamini-Hochberg False Discovery Rate p-value of ≤ 0.05. Using multinomial regression models adjusted for these covariates, we assessed the associations between metabolite levels and the following CT phenotypes: QIA-predominant, emphysema-predominant, combined-predominant, and neither- predominant. Pathway enrichment analyses were performed using MetaboAnalyst. RESULTS: We found 85 metabolites significantly associated with QIA, with overrepresentation of the nicotinate and nicotinamide, histidine, starch and sucrose, pyrimidine, phosphatidylcholine, lysophospholipid, and sphingomyelin pathways. These included metabolites involved in inflammation and immune response, extracellular matrix remodeling, surfactant, and muscle cachexia. There were 75 metabolites significantly different between QIA-predominant and emphysema-predominant phenotypes, with overrepresentation of the phosphatidylethanolamine, nicotinate and nicotinamide, aminoacyl-tRNA, arginine, proline, alanine, aspartate, and glutamate pathways. CONCLUSIONS: Metabolomic correlates may lend insight to the biologic perturbations and pathways that underlie clinically meaningful quantitative CT measurements like QIA in smokers.


Subject(s)
Emphysema , Niacin , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Smokers , Lung , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/epidemiology , Niacinamide , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/epidemiology
12.
JAMA ; 329(21): 1832-1839, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37210745

ABSTRACT

Importance: Airway mucus plugs are common in patients with chronic obstructive pulmonary disease (COPD); however, the association of airway mucus plugging and mortality in patients with COPD is unknown. Objective: To determine whether airway mucus plugs identified on chest computed tomography (CT) were associated with increased all-cause mortality. Design, Setting, and Participants: Observational retrospective analysis of prospectively collected data of patients with a diagnosis of COPD in the Genetic Epidemiology of COPD cohort. Participants were non-Hispanic Black or White individuals, aged 45 to 80 years, who smoked at least 10 pack-years. Participants were enrolled at 21 centers across the US between November 2007 and April 2011 and were followed up through August 31, 2022. Exposures: Mucus plugs that completely occluded airways on chest CT scans, identified in medium- to large-sized airways (ie, approximately 2- to 10-mm lumen diameter) and categorized as affecting 0, 1 to 2, or 3 or more lung segments. Main Outcomes and Measures: The primary outcome was all-cause mortality, assessed with proportional hazard regression analysis. Models were adjusted for age, sex, race and ethnicity, body mass index, pack-years smoked, current smoking status, forced expiratory volume in the first second of expiration, and CT measures of emphysema and airway disease. Results: Among the 4483 participants with COPD, 4363 were included in the primary analysis (median age, 63 years [IQR, 57-70 years]; 44% were women). A total of 2585 (59.3%), 953 (21.8%), and 825 (18.9%) participants had mucus plugs in 0, 1 to 2, and 3 or more lung segments, respectively. During a median 9.5-year follow-up, 1769 participants (40.6%) died. The mortality rates were 34.0% (95% CI, 32.2%-35.8%), 46.7% (95% CI, 43.5%-49.9%), and 54.1% (95% CI, 50.7%-57.4%) in participants who had mucus plugs in 0, 1 to 2, and 3 or more lung segments, respectively. The presence of mucus plugs in 1 to 2 vs 0 and 3 or more vs 0 lung segments was associated with an adjusted hazard ratio of death of 1.15 (95% CI, 1.02-1.29) and 1.24 (95% CI, 1.10-1.41), respectively. Conclusions and Relevance: In participants with COPD, the presence of mucus plugs that obstructed medium- to large-sized airways was associated with higher all-cause mortality compared with patients without mucus plugging on chest CT scans.


Subject(s)
Airway Obstruction , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Female , Humans , Male , Middle Aged , Airway Obstruction/diagnostic imaging , Airway Obstruction/etiology , Airway Obstruction/mortality , Forced Expiratory Volume , Lung , Mucus , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/mortality , Retrospective Studies , Tomography, X-Ray Computed , Aged , Aged, 80 and over , Cigarette Smoking/adverse effects
13.
Radiology ; 304(3): 694-701, 2022 09.
Article in English | MEDLINE | ID: mdl-35638925

ABSTRACT

Background The clinical impact of interstitial lung abnormalities (ILAs) on poor prognosis has been reported in many studies, but risk stratification in ILA will contribute to clinical practice. Purpose To investigate the association of traction bronchiectasis/bronchiolectasis index (TBI) with mortality and clinical outcomes in individuals with ILA by using the COPDGene cohort. Materials and Methods This study was a secondary analysis of prospectively collected data. Chest CT scans of participants with ILA for traction bronchiectasis/bronchiolectasis were evaluated and outcomes were compared with participants without ILA from the COPDGene study (January 2008 to June 2011). TBI was classified as follows: TBI-0, ILA without traction bronchiectasis/bronchiolectasis; TBI-1, ILA with bronchiolectasis but without bronchiectasis or architectural distortion; TBI-2, ILA with mild to moderate traction bronchiectasis; and TBI-3, ILA with severe traction bronchiectasis and/or honeycombing. Clinical outcomes and overall survival were compared among the TBI groups and the non-ILA group by using multivariable linear regression model and Cox proportional hazards model, respectively. Results Overall, 5295 participants (median age, 59 years; IQR, 52-66 years; 2779 men) were included, and 582 participants with ILA and 4713 participants without ILA were identified. TBI groups were associated with poorer clinical outcomes such as quality of life scores in the multivariable linear regression model (TBI-0: coefficient, 3.2 [95% CI: 0.6, 5.7; P = .01]; TBI-1: coefficient, 3.3 [95% CI: 1.1, 5.6; P = .003]; TBI-2: coefficient, 7.6 [95% CI: 4.0, 11; P < .001]; TBI-3: coefficient, 32 [95% CI: 17, 48; P < .001]). The multivariable Cox model demonstrated that ILA without traction bronchiectasis (TBI-0-1) and with traction bronchiectasis (TBI-2-3) were associated with shorter overall survival (TBI-0-1: hazard ratio [HR], 1.4 [95% CI: 1.0, 1.9; P = .049]; TBI-2-3: HR, 3.8 [95% CI: 2.6, 5.6; P < .001]). Conclusion Traction bronchiectasis/bronchiolectasis was associated with poorer clinical outcomes compared with the group without interstitial lung abnormalities; TBI-2 and 3 were associated with shorter survival. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Lee and Im in this issue.


Subject(s)
Bronchiectasis , Lung Diseases , Bronchiectasis/diagnostic imaging , Humans , Male , Middle Aged , Quality of Life , Tomography, X-Ray Computed/methods , Traction
14.
Eur Respir J ; 60(2)2022 08.
Article in English | MEDLINE | ID: mdl-34996832

ABSTRACT

BACKGROUND: Cardiorespiratory fitness is not limited by pulmonary mechanical reasons in the majority of adults. However, the degree to which lung function contributes to exercise response patterns among ostensibly healthy individuals remains unclear. METHODS: We examined 2314 Framingham Heart Study participants who underwent cardiopulmonary exercise testing (CPET) and pulmonary function testing. We investigated the association of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC and diffusing capacity of the lung for carbon monoxide (D LCO) with the primary outcome of peak oxygen uptake (V'O2 ) along with other CPET parameters using multivariable linear regression. Finally, we investigated the association of total and peripheral pulmonary blood vessel volume with peak V'O2 . RESULTS: We found lower FEV1, FVC and D LCO were associated with lower peak V'O2 . For example, a 1 L lower FEV1 and FVC was associated with a 7.1% (95% CI 5.1-9.1%) and 6.0% (95% CI 4.3-7.7%) lower peak V'O2 , respectively. By contrast, FEV1/FVC was not associated with peak V'O2 . Lower lung function was associated with lower oxygen uptake efficiency slope, oxygen pulse slope, V'O2 at anaerobic threshold (AT), minute ventilation (V'E) at AT and breathing reserve. In addition, lower total and peripheral pulmonary blood vessel volume were associated with lower peak V'O2 . CONCLUSIONS: In a large, community-based cohort of adults, we found lower FEV1, FVC and D LCO were associated with lower exercise capacity, as well as oxygen uptake efficiency slope and ventilatory efficiency. In addition, lower total and peripheral pulmonary blood vessel volume were associated with lower peak V'O2 . These findings underscore the importance of lung function and blood vessel volume as contributors to overall exercise capacity.


Subject(s)
Cardiorespiratory Fitness , Adult , Exercise Test , Exercise Tolerance/physiology , Humans , Lung , Oxygen , Oxygen Consumption/physiology
15.
Eur Respir J ; 60(2)2022 08.
Article in English | MEDLINE | ID: mdl-35115336

ABSTRACT

BACKGROUND: Interstitial lung abnormalities (ILA) share many features with idiopathic pulmonary fibrosis; however, it is not known if ILA are associated with decreased mean telomere length (MTL). METHODS: Telomere length was measured with quantitative PCR in the Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) and Age Gene/Environment Susceptibility Reykjavik (AGES-Reykjavik) cohorts and Southern blot analysis was used in the Framingham Heart Study (FHS). Logistic and linear regression were used to assess the association between ILA and MTL; Cox proportional hazards models were used to assess the association between MTL and mortality. RESULTS: In all three cohorts, ILA were associated with decreased MTL. In the COPDGene and AGES-Reykjavik cohorts, after adjustment there was greater than twofold increase in the odds of ILA when comparing the shortest quartile of telomere length to the longest quartile (OR 2.2, 95% CI 1.5-3.4, p=0.0001, and OR 2.6, 95% CI 1.4-4.9, p=0.003, respectively). In the FHS, those with ILA had shorter telomeres than those without ILA (-767 bp, 95% CI 76-1584 bp, p=0.03). Although decreased MTL was associated with chronic obstructive pulmonary disease (OR 1.3, 95% CI 1.1-1.6, p=0.01) in COPDGene, the effect estimate was less than that noted with ILA. There was no consistent association between MTL and risk of death when comparing the shortest quartile of telomere length in COPDGene and AGES-Reykjavik (HR 0.82, 95% CI 0.4-1.7, p=0.6, and HR 1.2, 95% CI 0.6-2.2, p=0.5, respectively). CONCLUSION: ILA are associated with decreased MTL.


Subject(s)
Lung Diseases, Interstitial , Pulmonary Disease, Chronic Obstructive , Humans , Lung , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/genetics , Telomere/genetics , Tomography, X-Ray Computed
16.
Thorax ; 76(6): 554-560, 2021 06.
Article in English | MEDLINE | ID: mdl-33574123

ABSTRACT

OBJECTIVES: Muscle wasting is a recognised extra-pulmonary complication in chronic obstructive pulmonary disease and has been associated with increased risk of death. Acute respiratory exacerbations are associated with reduction of muscle function, but there is a paucity of data on their long-term effect. This study explores the relationship between acute respiratory exacerbations and long-term muscle loss using serial measurements of CT derived pectoralis muscle area (PMA). DESIGN AND SETTING: Participants were included from two prospective, longitudinal, observational, multicentre cohorts of ever-smokers with at least 10 pack-year history. PARTICIPANTS: The primary analysis included 1332 (of 2501) participants from Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) and 4384 (of 10 198) participants from Genetic Epidemiology of COPD (COPDGene) who had complete data from their baseline and follow-up visits. INTERVENTIONS: PMA was measured on chest CT scans at two timepoints. Self-reported exacerbation data were collected from participants in both studies through the use of periodic longitudinal surveys. MAIN OUTCOME MEASURES: Age-related and excess muscle loss over time. RESULTS: Age, sex, race and body mass index were associated with baseline PMA. Participants experienced age-related decline at the upper end of reported normal ranges. In ECLIPSE, the exacerbation rate over time was associated with an excess muscle area loss of 1.3% (95% CI 0.6 to 1.9, p<0.001) over 3 years and in COPDGene with an excess muscle area loss of 2.1% (95% CI 1.2 to 2.8, p<0.001) over 5 years. Excess muscle area decline was absent in 273 individuals who participated in pulmonary rehabilitation. CONCLUSIONS: Exacerbations are associated with accelerated skeletal muscle loss. Each annual exacerbation was associated with the equivalent of 6 months of age-expected decline in muscle mass. Ameliorating exacerbation-associated muscle loss represents an important therapeutic target.


Subject(s)
Muscular Atrophy/etiology , Population Surveillance , Pulmonary Disease, Chronic Obstructive/complications , Quality of Life , Smoking/adverse effects , Aged , Disease Progression , Female , Forced Expiratory Volume/physiology , Humans , Male , Middle Aged , Muscular Atrophy/physiopathology , Prognosis , Prospective Studies , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Severity of Illness Index , Tomography, X-Ray Computed
17.
Radiology ; 300(1): 190-196, 2021 07.
Article in English | MEDLINE | ID: mdl-33904771

ABSTRACT

Background Protective factors against the risk of bronchiectasis are unknown. A high level of cardiorespiratory fitness is associated with a lower risk of chronic obstructive pulmonary disease. But whether fitness relates to bronchiectasis remains, to the knowledge of the authors, unknown. Purpose To examine the association between cardiorespiratory fitness and bronchiectasis. Materials and Methods This was a secondary analysis of a prospective observational study: the Coronary Artery Risk Development in Young Adults cohort (from 1985-1986 [year 0] to 2015-2016 [year 30]). During a 30-year period, healthy participants (age at enrollment 18-30 years) underwent treadmill exercise testing at year 0 and year 20 visits. Cardiorespiratory fitness was determined according to the treadmill exercise duration. The 20-year difference in cardiorespiratory fitness was used as the fitness measurement. At year 25, chest CT was performed to assess bronchiectasis and was used as the primary outcome. Multivariable logistic models were performed to determine the association between cardiorespiratory fitness changes and bronchiectasis. Results Of 2177 selected participants (at year 0: mean age, 25 years ± 4 [standard deviation]; 1224 women), 209 (9.6%) had bronchiectasis at year 25. After adjusting for age, race-sex group, study site, body mass index, pack-years smoked, history of tuberculosis, pneumonia, asthma and myocardial infarction, peak lung function, and cardiorespiratory fitness at baseline, preservation of cardiorespiratory fitness was associated with lower odds of bronchiectasis at CT at year 25 (per 1-minute-longer treadmill duration from year 0 to year 20: odds ratio [OR], 0.88; 95% CI: 0.80, 0.98; P = .02). A consistent strong association was found when cough and phlegm were included in bronchiectasis (OR, 0.72; 95% CI: 0.59, 0.87; P < .001). Conclusion In a long-term follow-up, the preservation of cardiorespiratory fitness was associated with lower odds of bronchiectasis at CT. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Stojanovska in this issue.


Subject(s)
Bronchiectasis/diagnostic imaging , Cardiorespiratory Fitness , Tomography, X-Ray Computed , Adolescent , Adult , Bronchiectasis/epidemiology , Exercise Test , Female , Humans , Longitudinal Studies , Male , Prospective Studies , Risk Factors , United States/epidemiology , Young Adult
18.
Radiology ; 300(3): 706-714, 2021 09.
Article in English | MEDLINE | ID: mdl-34156303

ABSTRACT

Background Chronic obstructive pulmonary disease (COPD) and bronchiectasis can overlap and share pathologic features, such as small airway disease (SAD). Whether the presence of SAD and emphysema in smokers with CT-derived bronchiectasis is associated with exacerbations is unknown. Purpose To assess whether SAD and emphysema in smokers with CT-derived bronchiectasis are associated with future exacerbations. Materials and Methods SAD and emphysema were quantified using the parametric response map method in former and current heavy smokers with and without bronchiectasis at CT from the COPDGene Study (from July 2009 to July 2018). Exacerbations were prospectively assessed through biannual follow-up. An exacerbation was defined as an increase in or new onset of respiratory symptoms treated with antibiotics and/or corticosteroids. Severe exacerbations were defined as those that required hospitalization. The association of a high burden of SAD (≥15.6%) and high burden of emphysema (≥5%) at CT with exacerbations was assessed with generalized linear mixed models. Results Of 737 participants, 387 (median age, 64 years [interquartile range, 58-71 years]; 223 women) had CT-derived bronchiectasis. During a 9-year follow-up, after adjustment for age, sex, race, body mass index, current smoking status, pack-years, exacerbations before study entry, forced expiratory volume in 1 second, or FEV1, and bronchiectasis severity CT score, high burden of SAD and high burden of emphysema were associated with a higher number of exacerbations per year (relative risk [RR], 1.89 [95% CI: 1.54, 2.33] and 1.37 [95% CI: 1.13, 1.66], respectively; P ≤ .001 for both). Results were comparable among participants with bronchiectasis meeting criteria for COPD (n = 197) (RR, 1.67 [95% CI: 1.23, 2.27] for high burden of SAD and 1.51 [95% CI: 1.20, 1.91] for high burden of emphysema; P ≤ .001 for both). Conclusion In smokers with CT-derived bronchiectasis and chronic obstructive pulmonary disease, structural damage to lung parenchyma and small airways was associated with a higher number of exacerbations per year. Clinical trial registration no. NCT00608764 © RSNA, 2021.


Subject(s)
Bronchiectasis/diagnostic imaging , Bronchiectasis/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Symptom Flare Up , Tomography, X-Ray Computed , Aged , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , Smokers
19.
Radiology ; 299(1): 222-231, 2021 04.
Article in English | MEDLINE | ID: mdl-33591891

ABSTRACT

Background The relationship between emphysema progression and long-term outcomes is unclear. Purpose To determine the relationship between emphysema progression at CT and mortality among participants with emphysema. Materials and Methods In a secondary analysis of two prospective observational studies, COPDGene (clinicaltrials.gov, NCT00608764) and Evaluation of Chronic Obstructive Pulmonary Disease Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE; clinicaltrials.gov, NCT00292552), emphysema was measured at CT at two points by using the volume-adjusted lung density at the 15th percentile of the lung density histogram (hereafter, lung density perc15) method. The association between emphysema progression rate and all-cause mortality was analyzed by using Cox regression adjusted for ethnicity, sex, baseline age, pack-years, and lung density, baseline and change in smoking status, forced expiratory volume in 1 second, and 6-minute walk distance. In COPDGene, respiratory mortality was analyzed by using the Fine and Gray method. Results A total of 5143 participants (2613 men [51%]; mean age, 60 years ± 9 [standard deviation]) in COPDGene and 1549 participants (973 men [63%]; mean age, 62 years ± 8) in ECLIPSE were evaluated, of which 2097 (40.8%) and 1179 (76.1%) had emphysema, respectively. Baseline imaging was performed between January 2008 and December 2010 for COPDGene and January 2006 and August 2007 for ECLIPSE. Follow-up imaging was performed after 5.5 years ± 0.6 in COPDGene and 3.0 years ± 0.2 in ECLIPSE, and mortality was assessed over the ensuing 5 years in both. For every 1 g/L per year faster rate of decline in lung density perc15, all-cause mortality increased by 8% in COPDGene (hazard ratio [HR], 1.08; 95% CI: 1.01, 1.16; P = .03) and 6% in ECLIPSE (HR, 1.06; 95% CI: 1.00, 1.13; P = .045). In COPDGene, respiratory mortality increased by 22% (HR, 1.22; 95% CI: 1.13, 1.31; P < .001) for the same increase in the rate of change in lung density perc15. Conclusion In ever-smokers with emphysema, emphysema progression at CT was associated with increased all-cause and respiratory mortality. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Lee and Park in this issue.


Subject(s)
Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/mortality , Smokers , Tomography, X-Ray Computed/methods , Aged , Clinical Trials as Topic , Disease Progression , Female , Humans , Male , Middle Aged , United States/epidemiology
20.
Radiology ; 296(1): 208-215, 2020 07.
Article in English | MEDLINE | ID: mdl-32368963

ABSTRACT

Background Smokers with chronic obstructive pulmonary disease (COPD) have smaller left ventricles (LVs) due to reduced preload. Skeletal muscle wasting is also common in COPD, but less is known about its contribution to LV size. Purpose To explore the relationships between CT metrics of emphysema, venous vascular volume, and sarcopenia with the LV epicardial volume (LVEV) (myocardium and chamber) estimated from chest CT images in participants with COPD and then to determine the clinical relevance of the LVEV in multivariable models, including sex and anthropomorphic metrics. Materials and Methods The COPDGene study (ClinicalTrials.gov identifier: NCT00608764) is an ongoing prospective longitudinal observational investigation that began in 2006. LVEV, distal pulmonary venous blood volume for vessels smaller than 5 mm2 in cross section (BV5), CT emphysema, and pectoralis muscle area were retrospectively extracted from 3318 nongated, unenhanced COPDGene CT scans. Multivariable linear and Cox regression models were used to explore the association between emphysema, venous BV5, pectoralis muscle area, and LVEV as well as the association of LVEV with health status using the St George's Respiratory Questionnaire, 6-minute walk distance, and all-cause mortality. Results The median age of the cohort was 64 years (interquartile range, 57-70 years). Of the 2423 participants, 1806 were men and 617 were African American. The median LVEV between Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1 and GOLD 4 COPD was reduced by 13.9% in women and 17.7% in men (P < .001 for both). In fully adjusted models, higher emphysema percentage (ß = -4.2; 95% confidence interval [CI]: -5.0, -3.4; P < .001), venous BV5 (ß = 7.0; 95% CI: 5.7, 8.2; P < .001), and pectoralis muscle area (ß = 2.7; 95% CI: 1.2, 4.1; P < .001) were independently associated with reduced LVEV. Reductions in LVEV were associated with improved health status (ß = 0.3; 95% CI: 0.1, 0.4) and 6-minute walk distance (ß = -12.2; 95% CI: -15.2, -9.3). These effects were greater in women than in men. The effect of reduced LVEV on mortality (hazard ratio: 1.07; 95% CI: 1.05, 1.09) did not vary by sex. Conclusion In women more than men with chronic obstructive pulmonary disease, a reduction in the estimated left ventricle epicardial volume correlated with a loss of pulmonary venous vasculature, greater pectoralis muscle sarcopenia, and lower all-cause mortality. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/mortality , Tomography, X-Ray Computed/methods , Aged , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Pulmonary Disease, Chronic Obstructive/physiopathology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL