Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Chemistry ; 30(5): e202303146, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37967023

ABSTRACT

Nickel-based layered hydroxides (LHs) are a family of efficient electrocatalysts for the alkaline oxygen evolution reaction (OER). Nevertheless, fundamental aspects such as the influence of the crystalline structure and the role of lattice distortion of the catalytic sites remain poorly understood and typically muddled. Herein, we carried out a comprehensive investigation on ɑ-LH, ß-LH and layered double hydroxide (LDH) phases by means of structural, spectroscopical, in-silico and electrochemical studies, which suggest the key aspect exerted by Ni-vacancies in the ɑ-LH structure. Density functional theory (DFT) calculations and X-ray absorption spectroscopy (XAS) confirm that the presence of Ni-vacancies produces acute distortions of the electroactive Ni sites (reflected as the shortening of the Ni-O distances and changes in the O-Ni-O angles), triggering the appearance of Ni localised electronic states on the Fermi level, reducing the Egap, and consequently, increasing the reactivity of the electroactive sites in the ɑ-LH structure. Furthermore, post-mortem Raman and XAS measurements unveil its transformation into a highly reactive oxyhydroxide-like phase that remains stable under ambient conditions. Hence, this work pinpoints the critical role of the crystalline structure as well as the electronic properties of LH structures on their inherent electrochemical reactivity towards OER catalysis. We envision Ni-based ɑ-LH as a perfect platform for hosting trivalent cations, closing the gap toward the next generation of benchmark efficient earth-abundant electrocatalysts.

2.
J Am Chem Soc ; 142(41): 17572-17580, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32938174

ABSTRACT

Chirality-induced spin selectivity (CISS), whereby helical molecules polarize the spin of electrical current, is an intriguing effect with potential applications in nanospintronics. In this nascent field, the study of the CISS effect using paramagnetic chiral molecules, which could introduce another degree of freedom in controlling the spin transport, remains so far unexplored. To address this challenge, herein we propose the use of self-assembled monolayers (SAMs) of helical lanthanide-binding peptides. To elucidate the effect of the paramagnetic nuclei, monolayers of the peptide coordinating paramagnetic or diamagnetic ions are prepared. By means of spin-dependent electrochemistry, the CISS effect is demonstrated by cyclic voltammetry and electrochemical impedance measurements for both samples. Additionally, an implementation of the standard liquid-metal drop electron transport setup has been carried out, and this process helped to demonstrate the peptides' suitability for solid-state devices. Remarkably, the inclusion of a paramagnetic center in the peptide increases the spin polarization as was independently proved by different techniques. These findings permit the inclusion of magnetic biomolecules in the CISS field and pave the way to their implementation in a new generation of (bio)spintronic nanodevices.


Subject(s)
Organometallic Compounds/chemistry , Peptides/chemistry , Amino Acid Sequence , Electrochemistry , Electron Spin Resonance Spectroscopy , Electron Transport , Gold/chemistry , Lanthanoid Series Elements/chemistry , Models, Chemical , Stereoisomerism , Surface Properties , Temperature
4.
Nat Commun ; 15(1): 790, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278792

ABSTRACT

Electric fields have been highlighted as a smart reagent in nature's enzymatic machinery, as they can directly trigger or accelerate chemical processes with stereo- and regio-specificity. In enzymatic catalysis, controlled mass transport of chemical species is also key in facilitating the availability of reactants in the active reaction site. However, recent progress in developing a clean catalysis that profits from oriented electric fields is limited to theoretical and experimental studies at the single molecule level, where both the control over mass transport and scalability cannot be tested. Here, we quantify the electrostatic catalysis of a prototypical Huisgen cycloaddition in a large-area electrode surface and directly compare its performance to the conventional Cu(I) catalysis. Our custom-built microfluidic cell enhances reagent transport towards the electrified reactive interface. This continuous-flow microfluidic electrostatic reactor is an example of an electric-field driven platform where clean large-scale electrostatic catalytic processes can be efficiently implemented and regulated.


Subject(s)
Microfluidics , Static Electricity , Catalysis , Catalytic Domain
5.
ACS Catal ; 13(15): 10351-10363, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37560192

ABSTRACT

Cobalt-based layered hydroxides (LHs) stand out as one of the best families of electroactive materials for the alkaline oxygen evolution reaction (OER). However, fundamental aspects such as the influence of the crystalline structure and its connection with the geometry of the catalytic sites remain poorly understood. Thus, to address this topic, we have conducted a thorough experimental and in silico study on the most important divalent Co-based LHs (i.e., α-LH, ß-LH, and LDH), which allows us to understand the role of the layered structure and coordination environment of divalent Co atoms on the OER performance. The α-LH, containing both octahedral and tetrahedral sites, behaves as the best OER catalyst in comparison to the other phases, pointing out the role of the chemical nature of the crystalline structure. Indeed, density functional theory (DFT) calculations confirm the experimental results, which can be explained in terms of the more favorable reconstruction into an active Co(III)-based oxyhydroxide-like phase (dehydrogenation process) as well as the significantly lower calculated overpotential across the OER mechanism for the α-LH structure (exhibiting lower Egap). Furthermore, ex situ X-ray diffraction and absorption spectroscopy reveal the permanent transformation of the α-LH phase into a highly reactive oxyhydroxide-like stable structure under ambient conditions. Hence, our findings highlight the key role of tetrahedral sites on the electronic properties of the LH structure as well as their inherent reactivity toward OER catalysis, paving the way for the rational design of more efficient and low-maintenance electrocatalysts.

6.
Nanoscale ; 15(36): 14800-14808, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37646185

ABSTRACT

Piezoelectric nanomaterials have become increasingly popular in the field of biomedical applications due to their high biocompatibility and ultrasound-mediated piezocatalytic properties. In addition, the ability of these nanomaterials to disaggregate amyloid proteins, which are responsible for a range of diseases resulting from the accumulation of these proteins in body tissues and organs, has recently gained considerable attention. However, the use of nanoparticles in biomedicine poses significant challenges, including targeting and uncontrolled aggregation. To address these limitations, our study proposes to load these functional nanomaterials on a multifunctional mobile microrobot (PiezoBOT). This microrobot is designed by coating magnetic and piezoelectric barium titanate nanoparticles on helical biotemplates, allowing for the combination of magnetic navigation and ultrasound-mediated piezoelectric effects to target amyloid disaggregation. Our findings demonstrate that acoustically actuated PiezoBOTs can effectively reduce the size of aggregated amyloid proteins by over 80% in less than 10 minutes by shortening and dissociating constituent amyloid fibrils. Moreover, the PiezoBOTs can be easily magnetically manipulated to actuate the piezocatalytic nanoparticles to specific amyloidosis-affected tissues or organs, minimizing side effects. These biocompatible PiezoBOTs offer a promising non-invasive therapeutic approach for amyloidosis diseases by targeting and breaking down protein aggregates at specific organ or tissue sites.


Subject(s)
Amyloidosis , Drug-Related Side Effects and Adverse Reactions , Nanoparticles , Humans , Amyloidogenic Proteins , Magnetic Phenomena
7.
Nanoscale ; 13(29): 12676-12686, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34477618

ABSTRACT

Prussian blue analogues (PBAs) have been proven as excellent Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) in acidic, neutral and alkaline media. Further improvements can be achieved by increasing their electrical conductivity, but scarce attention has been paid to quantify the electroactive sites of the electrocatalyst when this enhancement occurs. In this work, we have studied how the chemical design influences the specific density of electroactive sites in different Au-PBA nanostructures. Thus, we have first obtained and fully characterized a variety of monodisperse core@shell hybrid nanoparticles of Au@PBA (PBA of NiIIFeII and CoIIFeII) with different shell sizes. Their catalytic activity is evaluated by studying the OER, which is compared to pristine PBAs and other Au-PBA heterostructures. By using the coulovoltammetric technique, we have demonstrated that the introduction of 5-10% of Au in weight in the core@shell leads to an increase in the electroactive mass and thus, to a higher density of active sites capable of taking part in the OER. This increase leads to a significant decrease in the onset potential (up to 100 mV) and an increase (up to 420%) in the current density recorded at an overpotential of 350 mV. However, the Tafel slope remains unchanged, suggesting that Au reduces the limiting potential of the catalyst with no variation in the reaction kinetics. These improvements are not observed in other Au-PBA nanostructures mainly due to a lower contact between both compounds and the Au oxidation. Hence, an Au core activates the PBA shell and increases the conductivity of the resulting hybrid, while the PBA shell prevents Au oxidation. The strong synergistic effect existing in the core@shell structure evidences the importance of the chemical design for preparing PBA-based nanostructures exhibiting better electrocatalytic performances and higher electrochemical stabilities.

8.
J Mater Chem C Mater ; 9(33): 10811-10818, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-35360440

ABSTRACT

Herein we report the design of core@shell nanoparticles formed by a metallic Au nanostar core and a spin-crossover shell based on the coordination polymer [Fe(Htrz)2(trz)](BF4). This procedure is general and has been extended to other metallic morphologies (nanorods, nanotriangles). Thanks to the photothermal effect arising from the plasmonic properties of the Au nanostar, 60% of iron centers undergo a thermal spin transition inside the thermal hysteresis triggered by a 808 nm laser low intensity irradiation. Compared to other Au morphologies, the great advantage of the nanostar shape arises from the hot spots created at the branches of the nanostar. These hot spots give rise to large NIR absorptions, making them ideal nanostructures for efficiently converting light into heat using low energy light, like that provided by a 808 nm laser.

9.
Chem Commun (Camb) ; 57(15): 1903-1906, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33491696

ABSTRACT

We have developed a general protocol for the preparation of hybrid nanostructures formed by nanoparticles (NPs) of molecule-based magnets based on Prussian Blue Analogues (PBAs) decorated with plasmonic Au NPs of different shapes. By adjusting the pH, Au NPs can be attached preferentially along the edges of the PBA or randomly on the surface. The protocol allows tuning the plasmonic properties of the hybrids in the whole visible spectrum.

10.
Adv Mater ; 31(27): e1900039, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30998264

ABSTRACT

A simple chemical protocol to prepare core-shell gold@spin-crossover (Au@SCO) nanoparticles (NPs) based on the 1D spin-crossover [Fe(Htrz)2 (trz)](BF4 ) coordination polymer is reported. The synthesis relies on a two-step approach consisting of a partial surface ligand substitution of the citrate-stabilized Au NPs followed by the controlled growth of a very thin layer of the SCO polymer. As a result, colloidally stable core@shell spherical NPs with a Au core of ca. 12 nm and a thin SCO shell 4 nm thick, are obtained, exhibiting a narrow distribution in sizes. Differential scanning calorimetry proves that a cooperative spin transition in the range 340-360 K is maintained in these Au@SCO NPs, in full agreement with the values reported for pristine 4 nm SCO NPs. Temperature-dependent charge-transport measurements of an electrical device based on assemblies of these Au@SCO NPs also support this spin transition. Thus, a large change in conductance upon spin state switching, as compared with other memory devices based on the pristine SCO NPs, is detected. This results in a large improvement in the sensitivity of the device to the spin transition, with values for the ON/OFF ratio which are an order of magnitude better than the best ones obtained in previous SCO devices.

11.
Chem Commun (Camb) ; 55(23): 3315-3318, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30756105

ABSTRACT

Direct exfoliation of a carbonate layered double hydroxide (LDH) has been achieved by using a novel horn-probe sonic tip, avoiding the development of time-consuming anion-exchange reactions. The most suitable solvents were chosen based on the Hildebrand solubility parameters and the thickness of the exfoliated nanosheets confirmed unambiguously the successful delamination.

SELECTION OF CITATIONS
SEARCH DETAIL