Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Article in English | MEDLINE | ID: mdl-32447175

ABSTRACT

Sickle cell disease (SCD) is one of the most common inherited blood disorder among African Americans affecting 70,000-100,000 individuals in the United States. It is characterized by abnormal hemoglobin (HbS) which develops into severe hemolytic anemia and vaso-occlusive crisis. Therefore, patients with SCD suffer from a chronic state of inflammation, which is responsible for multiple organ damage, ischemic attacks, and premature death. Another major hallmark of SCD patients is the abnormally low levels of omega-3 fatty acids, especially docosahexaenoic acid (DHA) in their red blood cell membranes. Treatment with DHA can reduce red blood cell adhesion and enhance cerebral blood flow, thus, our main goal is to investigate the effect of SC411, which is a novel, highly purified DHA ethyl ester formulation with a proprietary delivery platform in SCD. Utilizing a transgenic mouse model of SCD (HbSS-Townes) and recurrent hypoxic challenges (10%O2, 0.5% CO2 and balance N2 for 3 h) to mimic ischemic-like conditions, our data suggest that SC411 can elevate blood DHA and eicosapentaenoic acid (EPA) levels after 8 weeks of treatment. SC411 can also decrease arachidonic acid (AA) and sickling of red blood cells. In addition, SC411-treated SCD mice showed presented with cerebral blood flow, alleviated neuroinflammation, and revived working memory which ultimately enhanced overall survival. In summary, this study suggests that treatment with SC411 improves cellular and functional outcomes in SCD mice. This finding may provide novel therapeutic opportunities in the treatment against ischemic injury elicited by SCD.


Subject(s)
Anemia, Sickle Cell/drug therapy , Docosahexaenoic Acids/chemistry , Esters/administration & dosage , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/psychology , Animals , Arachidonic Acid/blood , Cerebrovascular Circulation , Disease Models, Animal , Docosahexaenoic Acids/blood , Esters/chemistry , Esters/pharmacology , Humans , Male , Memory, Short-Term/drug effects , Mice , Mice, Transgenic , Survival Analysis , Treatment Outcome
2.
J Drug Deliv ; 2019: 1957360, 2019.
Article in English | MEDLINE | ID: mdl-31360551

ABSTRACT

Despite recent advances, the drug development process continues to face significant challenges to efficiently improve the poor solubility of active pharmaceutical ingredients (API) in aqueous media or to improve the bioavailability of lipid-based formulations. The inherent high intra- and interindividual variability of absorption of oral lipophilic drug leads to inconsistent and unpredictable bioavailability and magnitude of the therapeutic effect. For this reason, the development of lipid-based drugs remains a challenging endeavour with a high risk of failure. Therefore, effective strategies to assure a predictable, consistent, and reproducible bioavailability and therapeutic effect for lipid-based medications are needed. Different solutions to address this problem have been broadly studied, including the approaches of particle size reduction, prodrugs, salt forms, cocrystals, solid amorphous forms, cyclodextrin clathrates, and lipid-based drug delivery systems such as self-emulsifying systems and liposomes. Here, we provide a brief description of the current strategies commonly employed to increase the bioavailability of lipophilic drugs and present Advanced Lipid Technologies® (ALT®), a combination of different surfactants that has been demonstrated to improve the absorption of omega-3 fatty acids under various physiological and pathological states.

3.
Clin Ther ; 39(3): 581-591, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28189364

ABSTRACT

PURPOSE: The US Food and Drug Administration has approved several highly purified ω-3 fatty acid prescription drugs for the treatment of severe hypertriglyceridemia. These differ in the amounts and forms of docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). This study compared the bioavailability of SC401 (1530 mg EPA-ethyl esters [EEs] and DHA-EEs plus Advanced Lipid Technologies⁎ [ALT†], a proprietary lipid-delivery platform to improve absorption), with. Lovaza‡ (3600 mg ω-3, primarily EPA-EEs and DHA-EEs) under low-fat feeding conditions. METHODS: This was a Phase I, randomized, open-label, single-dose, 2-way crossover study in healthy participants housed from day -3 to day 2 in each treatment period. Blood samples for pharmacokinetic measurements were collected before and after dosing, and safety profile and tolerability were assessed. FINDINGS: In unadjusted analyses, SC401 had 5% lower Cmax and approximately the same AUC0-last of EPA + DHA total lipids compared with Lovaza. When adjusted for baseline, SC401 had ~6% higher Cmax and 18% higher AUC0-last for EPA + DHA total lipids, and dose- and baseline-adjusted analyses found that SC401 had ~149% higher Cmax and 178% higher AUC0-last than Lovaza for EPA + DHA total lipids. The Tmax was also substantially longer with Lovaza (~10 hours) than with SC401 (~6 hours). IMPLICATIONS: These results indicate that SC401, an ω-3 acid EE formulation containing ALT† achieved high bioavailability of EPA and DHA, at a lower dose (1530 mg) than Lovaza (3600 mg), under low-fat feeding conditions.


Subject(s)
Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Fatty Acids, Omega-3/administration & dosage , Hypolipidemic Agents/administration & dosage , Adult , Biological Availability , Chemistry, Pharmaceutical , Cross-Over Studies , Docosahexaenoic Acids/pharmacokinetics , Drug Combinations , Eicosapentaenoic Acid/pharmacokinetics , Fatty Acids, Omega-3/therapeutic use , Female , Humans , Hypertriglyceridemia/drug therapy , Hypolipidemic Agents/therapeutic use , Male , Middle Aged , Young Adult
4.
Clin Ther ; 39(3): 652-658, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28189365

ABSTRACT

The US Food and Drug Administration (FDA) draft guidance for establishing bioequivalence (BE) of ω-3 acid ethyl esters (containing both eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA] as ethyl esters), used to treat severe hypertriglyceridemia, recommends the conduct of 2 studies: one with participants in the fasting state and one with participants in the fed state. For the fasting study, the primary measures of BE are baseline-adjusted EPA and DHA levels in total plasma lipids. For the fed study, the primary measures of BE are EPA and DHA ethyl esters in plasma. This guidance differs from that established for icosapent ethyl (EPA ethyl esters) in which the primary measure of BE is baseline-adjusted total EPA in plasma lipids for both the fasting and fed states. The FDA guidance for ω-3 acid ethyl esters is not supported by their physiologic characteristics and triglyceride-lowering mechanisms because EPA and DHA ethyl esters are best characterized as pro-drugs. This article presents an argument for amending the FDA draft guidance for ω-3 acid ethyl esters to use baseline-adjusted EPA and DHA in total plasma lipids as the primary measures of BE for both fasting and fed conditions. This change would harmonize the approaches for demonstration of BE for ω-3 acid ethyl esters and icosapent ethyl (EPA ethyl esters) products for future development programs and is the most physiologically rational approach to BE testing.


Subject(s)
Docosahexaenoic Acids/pharmacokinetics , Eicosapentaenoic Acid/analogs & derivatives , Fatty Acids, Omega-3/pharmacokinetics , Eicosapentaenoic Acid/pharmacokinetics , Fatty Acids, Omega-3/therapeutic use , Humans , Hypertriglyceridemia/drug therapy , Hypolipidemic Agents/therapeutic use , Prodrugs/therapeutic use , Therapeutic Equivalency , Triglycerides/blood
5.
J Clin Lipidol ; 11(2): 394-405, 2017.
Article in English | MEDLINE | ID: mdl-28502496

ABSTRACT

BACKGROUND: The absorption of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) omega-3-acid ethyl esters (EEs) is influenced by food. There is a need for a formulation of EE that is less impacted by food effect. SC401 is a novel Advanced Lipid Technologies-based formulation of EPA-EE and DHA-EE. In the presence of an aqueous medium, Advanced Lipid Technologies forms stable micelles in situ independent of bile salt secretion. This effect is hypothesized to improve EPA-EE and DHA-EE bioavailability while it helps mitigate the food effect associated with their consumption. OBJECTIVE: The aim of the article was to assess the effect of food on the bioavailability of DHA and EPA after a single oral dose of 1530 mg omega-3 fatty acids EE (SC401) in 24 healthy subjects under fasted and low-fat (9% of total calories from fat) and high-fat (50% of total calories from fat) meal conditions. METHODS: This was a randomized, open-label, single-dose, 3-period, 3-way crossover study. Blood samples for pharmacokinetic analyses were taken at predose and at 0.5, 1, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 10, 12 and 24 hours postdose. To assess the safety of the intervention, active monitoring of adverse events, physical examinations, vital signs, clinical laboratory assessments (chemistry, hematology, and urinalysis), and 12-lead electrocardiograms were conducted. RESULTS: SC401 showed high bioavailability of both EPA and DHA in fasted, low-fat meal, and high-fat meal conditions. No differences were found in SC401 DHA AUC0-t (t = 24 hours) among the 3 conditions (91.69% high-fat/fasted, 97.12% low-fat/fasted, and 105.92% low-fat/high-fat; P > .05 in all cases). In contrast, SC401 EPA AUC0-t was affected by food intake (179.06% high-fat/fasted, P < .0001; 150.05% low-fat/fasted, P < .0001) and the amount of fat taken with SC401 (83.80% low-fat/high-fat; P = .0009). SC401 was safe and well tolerated. CONCLUSIONS: A single dose of SC401 resulted in high levels of EPA and DHA total lipids in plasma in fasting and fed conditions. SC401 overcame the food effect for DHA and partially ameliorated it for EPA. SC401 represents a convenient option for treatment of severe hypertriglyceridemia, especially for patients under a restricted intake of dietary fat.


Subject(s)
Docosahexaenoic Acids/chemistry , Docosahexaenoic Acids/pharmacokinetics , Drug Compounding , Eicosapentaenoic Acid/chemistry , Eicosapentaenoic Acid/pharmacokinetics , Esters/chemistry , Food , Adult , Biological Availability , Diet, High-Fat , Docosahexaenoic Acids/adverse effects , Eicosapentaenoic Acid/adverse effects , Fasting , Female , Humans , Male
6.
J Pharm Sci ; 91(12): 2481-8, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12434391

ABSTRACT

Prior to this study, cilostazol, an antithrombotic drug, was thought to exist as a single crystalline phase with a melting point of approximately 159 degrees C (Form A). On cooling, melts often form a glass that, when heated, may crystallize as additional crystalline polymorphic forms. Cilostazol, when reheated, subsequently forms polymorphs that melt at approximately 136 degrees C (Form B) and 146 degrees C (Form C). Free-energy temperature diagrams estimated from calorimetry data reveal that each pair of the cilostazol polymorphs (A-B, B-C, and A-C) is monotropic. Essentially pure samples of suitable crystalline shape and size permitted single crystal structural analysis of Forms A and C. Theoretical solubility ratios calculated using calorimetry data indicate that at 37 degrees C, Form B should be more than four times more soluble and Form C should be more than two times more soluble than Form A. Forms B and C could not be crystallized from solvents. Metastable forms from super cooled melts analyzed by intrinsic dissolution and Fourier transform-Raman experiments demonstrated that Forms B and C undergo a rapid, solvent-mediated recrystallization to Form A, making dissolution rate measurements difficult.


Subject(s)
Tetrazoles/chemical synthesis , Calorimetry/methods , Chemistry, Pharmaceutical , Cilostazol , Differential Thermal Analysis/methods , Hot Temperature , Tetrazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL