Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Genomics ; 22(1): 114, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33568057

ABSTRACT

BACKGROUND: Processing and analyzing whole genome sequencing (WGS) is computationally intense: a single Illumina MiSeq WGS run produces ~ 1 million 250-base-pair reads for each of 24 samples. This poses significant obstacles for smaller laboratories, or laboratories not affiliated with larger projects, which may not have dedicated bioinformatics staff or computing power to effectively use genomic data to protect public health. Building on the success of the cloud-based Galaxy bioinformatics platform ( http://galaxyproject.org ), already known for its user-friendliness and powerful WGS analytical tools, the Center for Food Safety and Applied Nutrition (CFSAN) at the U.S. Food and Drug Administration (FDA) created a customized 'instance' of the Galaxy environment, called GalaxyTrakr ( https://www.galaxytrakr.org ), for use by laboratory scientists performing food-safety regulatory research. The goal was to enable laboratories outside of the FDA internal network to (1) perform quality assessments of sequence data, (2) identify links between clinical isolates and positive food/environmental samples, including those at the National Center for Biotechnology Information sequence read archive ( https://www.ncbi.nlm.nih.gov/sra/ ), and (3) explore new methodologies such as metagenomics. GalaxyTrakr hosts a variety of free and adaptable tools and provides the data storage and computing power to run the tools. These tools support coordinated analytic methods and consistent interpretation of results across laboratories. Users can create and share tools for their specific needs and use sequence data generated locally and elsewhere. RESULTS: In its first full year (2018), GalaxyTrakr processed over 85,000 jobs and went from 25 to 250 users, representing 53 different public and state health laboratories, academic institutions, international health laboratories, and federal organizations. By mid-2020, it has grown to 600 registered users and processed over 450,000 analytical jobs. To illustrate how laboratories are making use of this resource, we describe how six institutions use GalaxyTrakr to quickly analyze and review their data. Instructions for participating in GalaxyTrakr are provided. CONCLUSIONS: GalaxyTrakr advances food safety by providing reliable and harmonized WGS analyses for public health laboratories and promoting collaboration across laboratories with differing resources. Anticipated enhancements to this resource will include workflows for additional foodborne pathogens, viruses, and parasites, as well as new tools and services.


Subject(s)
Metagenomics , Public Health , Computational Biology , High-Throughput Nucleotide Sequencing , Humans , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL