Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemistry ; 27(19): 5871-5879, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33274788

ABSTRACT

Strain relief of oxetanes offers a plethora of opportunities for the synthesis of chiral alcohols and ethers. In this context, enantioselective desymmetrization has been identified as a powerful tool to construct molecular complexity and this has led to the development of elegant strategies on the basis of transition metal, Lewis acid, and Brønsted acid catalysis. This review highlights recent examples that harness the inherent reactivity of prochiral oxetanes and offers an outlook on the immense possibilities for synthetic application.

2.
Org Lett ; 25(31): 5795-5799, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37503963

ABSTRACT

A variety of cyclic alcohols are found to undergo nitrogen insertion by subjection to O-mesitylsulfonylhydroxylamine. Critical to a successful process is the use of fluorinated alcoholic solvents, which ensures sufficient substrate activation to allow engagement with the ambiphilic aminating agent. This transition-metal-free nitrogen insertion provides access to a variety of medicinally relevant heterocycles such as pyrrolidenes, quinolines, and benzazepines (24 examples). Furthermore, combination with a photochemical Norrish-Yang-type cyclization allows an unprecedented access to indoles from ortho-substituted acetophenones.

3.
Adv Mater ; 35(13): e2210997, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36740777

ABSTRACT

Aryl propiolic acids are introduced as a new class of monomers in the field of on-surface chemistry to build up poly(arylenebutadiynylenes) through decarboxylative Glaser coupling. As compared to aryl alkynes that are routinely used in the on-surface Glaser coupling, it is found that the decarboxylative coupling occurs at slightly lower temperature and with excellent selectivity. Activation occurs through decarboxylation for the propiolic acids, whereas the classical Glaser coupling is achieved through alkyne CH activation, and this process shows poor selectivity. The efficiency of the decarboxylative coupling is documented by the successful polymerization of bis(propiolic acids) as monomers. It is also found that the new activation mode is compatible with aryl bromide functionalities, which allows the formation of unsymmetric metal-organic polymers on the surface by chemoselective sequential reactions. All transformations are analyzed by a scanning tunneling microscope and are further studied by density functional theory calculations.

4.
Chem Sci ; 13(21): 6297-6302, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35733901

ABSTRACT

Identification of an electron poor trifluoroacetophenone allows the formation of uniquely stable hemiketals from prochiral oxetanols. When exposed to a cobalt(ii) catalyst, efficient ring-opening to densely functionalized dioxolanes is observed. Mechanistic studies suggest an unprecedented redox process between the cobalt(ii) catalyst and the hemiketal that initiates the oxetane-opening. Based on this observation, a dynamic kinetic resolution of the transient hemiketals is explored that uses a Katsuki-type ligand for stereoinduction (up to 99 : 1 dr and 96 : 4 er) and allows a variety of 1,3-dioxolanes to be accessed (20 examples up to 98% yield).

SELECTION OF CITATIONS
SEARCH DETAIL