Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 106(2): 234-245, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31928709

ABSTRACT

Germline pathogenic variants in chromatin-modifying enzymes are a common cause of pediatric developmental disorders. These enzymes catalyze reactions that regulate epigenetic inheritance via histone post-translational modifications and DNA methylation. Cytosine methylation (5-methylcytosine [5mC]) of DNA is the quintessential epigenetic mark, yet no human Mendelian disorder of DNA demethylation has yet been delineated. Here, we describe in detail a Mendelian disorder caused by the disruption of DNA demethylation. TET3 is a methylcytosine dioxygenase that initiates DNA demethylation during early zygote formation, embryogenesis, and neuronal differentiation and is intolerant to haploinsufficiency in mice and humans. We identify and characterize 11 cases of human TET3 deficiency in eight families with the common phenotypic features of intellectual disability and/or global developmental delay; hypotonia; autistic traits; movement disorders; growth abnormalities; and facial dysmorphism. Mono-allelic frameshift and nonsense variants in TET3 occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity. TET3 deficiency and other Mendelian disorders of the epigenetic machinery show substantial phenotypic overlap, including features of intellectual disability and abnormal growth, underscoring shared disease mechanisms.


Subject(s)
DNA Demethylation , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Dioxygenases/deficiency , Adult , Amino Acid Sequence , Autistic Disorder/genetics , Autistic Disorder/pathology , Child , Child, Preschool , Dioxygenases/chemistry , Dioxygenases/genetics , Embryonic Development , Female , Gene Expression Regulation, Developmental , Growth Disorders/genetics , Growth Disorders/pathology , Humans , Infant , Male , Middle Aged , Movement Disorders/genetics , Movement Disorders/pathology , Pedigree , Protein Conformation , Sequence Homology , Young Adult
2.
J Med Genet ; 58(7): 442-452, 2021 07.
Article in English | MEDLINE | ID: mdl-32709676

ABSTRACT

BACKGROUND: Otitis media (OM) susceptibility has significant heritability; however, the role of rare variants in OM is mostly unknown. Our goal is to identify novel rare variants that confer OM susceptibility. METHODS: We performed exome and Sanger sequencing of >1000 DNA samples from 551 multiethnic families with OM and unrelated individuals, RNA-sequencing and microbiome sequencing and analyses of swabs from the outer ear, middle ear, nasopharynx and oral cavity. We also examined protein localisation and gene expression in infected and healthy middle ear tissues. RESULTS: A large, intermarried pedigree that includes 81 OM-affected and 53 unaffected individuals cosegregates two known rare A2ML1 variants, a common FUT2 variant and a rare, novel pathogenic variant c.1682A>G (p.Glu561Gly) within SPINK5 (LOD=4.09). Carriage of the SPINK5 missense variant resulted in increased relative abundance of Microbacteriaceae in the middle ear, along with occurrence of Microbacteriaceae in the outer ear and oral cavity but not the nasopharynx. Eight additional novel SPINK5 variants were identified in 12 families and individuals with OM. A role for SPINK5 in OM susceptibility is further supported by lower RNA counts in variant carriers, strong SPINK5 localisation in outer ear skin, faint localisation to middle ear mucosa and eardrum and increased SPINK5 expression in human cholesteatoma. CONCLUSION: SPINK5 variants confer susceptibility to non-syndromic OM. These variants potentially contribute to middle ear pathology through breakdown of mucosal and epithelial barriers, immunodeficiency such as poor vaccination response, alteration of head and neck microbiota and facilitation of entry of opportunistic pathogens into the middle ear.


Subject(s)
Microbiota , Otitis Media/genetics , Otitis Media/microbiology , Serine Peptidase Inhibitor Kazal-Type 5/genetics , Adult , Animals , Bacteria/classification , Bacteria/genetics , Child , Disease Susceptibility/microbiology , Ear, External/microbiology , Ear, Middle/microbiology , Exome , Female , Genetic Predisposition to Disease , Humans , Male , Mice , Mouth/microbiology , Nasopharynx/microbiology , Pedigree , Sequence Analysis, DNA , Sequence Analysis, RNA
3.
Am J Hum Genet ; 103(5): 679-690, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30401457

ABSTRACT

Non-secretor status due to homozygosity for the common FUT2 variant c.461G>A (p.Trp154∗) is associated with either risk for autoimmune diseases or protection against viral diarrhea and HIV. We determined the role of FUT2 in otitis media susceptibility by obtaining DNA samples from 609 multi-ethnic families and simplex case subjects with otitis media. Exome and Sanger sequencing, linkage analysis, and Fisher exact and transmission disequilibrium tests (TDT) were performed. The common FUT2 c.604C>T (p.Arg202∗) variant co-segregates with otitis media in a Filipino pedigree (LOD = 4.0). Additionally, a rare variant, c.412C>T (p.Arg138Cys), is associated with recurrent/chronic otitis media in European-American children (p = 1.2 × 10-5) and US trios (TDT p = 0.01). The c.461G>A (p.Trp154∗) variant was also over-transmitted in US trios (TDT p = 0.01) and was associated with shifts in middle ear microbiota composition (PERMANOVA p < 10-7) and increased biodiversity. When all missense and nonsense variants identified in multi-ethnic US trios with CADD > 20 were combined, FUT2 variants were over-transmitted in trios (TDT p = 0.001). Fut2 is transiently upregulated in mouse middle ear after inoculation with non-typeable Haemophilus influenzae. Four FUT2 variants-namely p.Ala104Val, p.Arg138Cys, p.Trp154∗, and p.Arg202∗-reduced A antigen in mutant-transfected COS-7 cells, while the nonsense variants also reduced FUT2 protein levels. Common and rare FUT2 variants confer susceptibility to otitis media, likely by modifying the middle ear microbiome through regulation of A antigen levels in epithelial cells. Our families demonstrate marked intra-familial genetic heterogeneity, suggesting that multiple combinations of common and rare variants plus environmental factors influence the individual otitis media phenotype as a complex trait.


Subject(s)
Fucosyltransferases/genetics , Genetic Variation/genetics , Otitis Media/genetics , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Ear, Middle/microbiology , Exome/genetics , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Microbiota/physiology , Otitis Media/microbiology , Pedigree , Galactoside 2-alpha-L-fucosyltransferase
4.
Hum Mutat ; 40(1): 53-72, 2019 01.
Article in English | MEDLINE | ID: mdl-30303587

ABSTRACT

Consanguineous Pakistani pedigrees segregating deafness have contributed decisively to the discovery of 31 of the 68 genes associated with nonsyndromic autosomal recessive hearing loss (HL) worldwide. In this study, we utilized genome-wide genotyping, Sanger and exome sequencing to identify 163 DNA variants in 41 previously reported HL genes segregating in 321 Pakistani families. Of these, 70 (42.9%) variants identified in 29 genes are novel. As expected from genetic studies of disorders segregating in consanguineous families, the majority of affected individuals (94.4%) are homozygous for HL-associated variants, with the other variants being compound heterozygotes. The five most common HL genes in the Pakistani population are SLC26A4, MYO7A, GJB2, CIB2 and HGF, respectively. Our study provides a profile of the genetic etiology of HL in Pakistani families, which will allow for the development of more efficient genetic diagnostic tools, aid in accurate genetic counseling, and guide application of future gene-based therapies. These findings are also valuable in interpreting pathogenicity of variants that are potentially associated with HL in individuals of all ancestries. The Pakistani population, and its infrastructure for studying human genetics, will continue to be valuable to gene discovery for HL and other inherited disorders.


Subject(s)
Chromosome Segregation/genetics , Consanguinity , Hearing Loss/genetics , Family , Female , Genes, Recessive , Genetic Predisposition to Disease , Humans , Male , Mutation/genetics , Pakistan , Pedigree
5.
Hum Genet ; 138(6): 593-600, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30982135

ABSTRACT

Postaxial polydactyly (PAP) is a common limb malformation that often leads to cosmetic and functional complications. Molecular evaluation of polydactyly can serve as a tool to elucidate genetic and signaling pathways that regulate limb development, specifically, the anterior-posterior specification of the limb. To date, only five genes have been identified for nonsyndromic PAP: FAM92A, GLI1, GLI3, IQCE and ZNF141. In this study, two Pakistani multiplex consanguineous families with autosomal recessive nonsyndromic PAP were clinically and molecularly evaluated. From both pedigrees, a DNA sample from an affected member underwent exome sequencing. In each family, we identified a segregating frameshift (c.591dupA [p.(Q198Tfs*21)]) and nonsense variant (c.2173A > T [p.(K725*)]) in KIAA0825 (also known as C5orf36). Although KIAA0825 encodes a protein of unknown function, it has been demonstrated that its murine ortholog is expressed during limb development. Our data contribute to the establishment of a catalog of genes important in limb patterning, which can aid in diagnosis and obtaining a better understanding of the biology of polydactyly.


Subject(s)
Fingers/abnormalities , Genes, Recessive/genetics , Genetic Predisposition to Disease/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Polydactyly/genetics , Toes/abnormalities , Animals , Consanguinity , Family Health , Female , Fingers/pathology , Genotype , Humans , Male , Mice, Inbred C57BL , Pedigree , Phenotype , Polydactyly/pathology , Toes/pathology , Exome Sequencing/methods
6.
Am J Hum Genet ; 98(2): 331-8, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26805784

ABSTRACT

The sphingosine-1-phosphate receptors (S1PRs) are a well-studied class of transmembrane G protein-coupled sphingolipid receptors that mediate multiple cellular processes. However, S1PRs have not been previously reported to be involved in the genetic etiology of human traits. S1PR2 lies within the autosomal-recessive nonsyndromic hearing impairment (ARNSHI) locus DFNB68 on 19p13.2. From exome sequence data we identified two pathogenic S1PR2 variants, c.323G>C (p.Arg108Pro) and c.419A>G (p.Tyr140Cys). Each of these variants co-segregates with congenital profound hearing impairment in consanguineous Pakistani families with maximum LOD scores of 6.4 for family DEM4154 and 3.3 for family PKDF1400. Neither S1PR2 missense variant was reported among ∼120,000 chromosomes in the Exome Aggregation Consortium database, in 76 unrelated Pakistani exomes, or in 720 Pakistani control chromosomes. Both DNA variants affect highly conserved residues of S1PR2 and are predicted to be damaging by multiple bioinformatics tools. Molecular modeling predicts that these variants affect binding of sphingosine-1-phosphate (p.Arg108Pro) and G protein docking (p.Tyr140Cys). In the previously reported S1pr2(-/-) mice, stria vascularis abnormalities, organ of Corti degeneration, and profound hearing loss were observed. Additionally, hair cell defects were seen in both knockout mice and morphant zebrafish. Family PKDF1400 presents with ARNSHI, which is consistent with the lack of gross malformations in S1pr2(-/-) mice, whereas family DEM4154 has lower limb malformations in addition to hearing loss. Our findings suggest the possibility of developing therapies against hair cell damage (e.g., from ototoxic drugs) through targeted stimulation of S1PR2.


Subject(s)
Genes, Recessive , Hearing Loss/genetics , Receptors, Lysosphingolipid/genetics , Amino Acid Sequence , Asian People/genetics , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 19/metabolism , Exome , Hearing Loss/diagnosis , Humans , Lod Score , Logistic Models , Lysophospholipids/genetics , Lysophospholipids/metabolism , Models, Molecular , Molecular Sequence Data , Mutation, Missense , Pedigree , Phenotype , Receptors, Lysosphingolipid/metabolism , Sphingosine/analogs & derivatives , Sphingosine/genetics , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors
7.
Hum Genet ; 137(9): 735-752, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30167849

ABSTRACT

Identification of Mendelian genes for neurodevelopmental disorders using exome sequencing to study autosomal recessive (AR) consanguineous pedigrees has been highly successful. To identify causal variants for syndromic and non-syndromic intellectual disability (ID), exome sequencing was performed using DNA samples from 22 consanguineous Pakistani families with ARID, of which 21 have additional phenotypes including microcephaly. To aid in variant identification, homozygosity mapping and linkage analysis were performed. DNA samples from affected family member(s) from every pedigree underwent exome sequencing. Identified rare damaging exome variants were tested for co-segregation with ID using Sanger sequencing. For seven ARID families, variants were identified in genes not previously associated with ID, including: EI24, FXR1 and TET3 for which knockout mouse models have brain defects; and CACNG7 and TRAPPC10 where cell studies suggest roles in important neural pathways. For two families, the novel ARID genes CARNMT1 and GARNL3 lie within previously reported ID microdeletion regions. We also observed homozygous variants in two ID candidate genes, GRAMD1B and TBRG1, for which each has been previously reported in a single family. An additional 14 families have homozygous variants in established ID genes, of which 11 variants are novel. All ARID genes have increased expression in specific structures of the developing and adult human brain and 91% of the genes are differentially expressed in utero or during early childhood. The identification of novel ARID candidate genes and variants adds to the knowledge base that is required to further understand human brain function and development.


Subject(s)
Genes, Recessive , Genetic Markers , Intellectual Disability/genetics , Mutation , Neurodevelopmental Disorders/genetics , Adult , Consanguinity , Family , Female , Humans , Intellectual Disability/complications , Male , Middle Aged , Neurodevelopmental Disorders/complications , Pedigree
8.
J Hum Genet ; 63(11): 1099-1107, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30177809

ABSTRACT

LHFPL5, the gene for DFNB67, underlies autosomal recessive nonsyndromic hearing impairment. We identified seven Pakistani families that mapped to 6p21.31, which includes the LHFPL5 gene. Sanger sequencing of LHFPL5 using DNA samples from hearing impaired and unaffected members of these seven families identified four variants. Among the identified variants, two were novel: one missense c.452 G > T (p.Gly151Val) and one splice site variant (c.*16 + 1 G > A) were each identified in two families. Two known variants: c.250delC (p.Leu84*) and c.380 A > G (p.Tyr127Cys) were also observed in two families and a single family, respectively. Nucleotides c.452G and c.*16 + 1G and amino-acid residue p.Gly151 are under strong evolutionary conservation. In silico bioinformatics analyses predicted these variants to be damaging. The splice site variant (c.*16 + 1 G > A) is predicted to affect pre-mRNA splicing and a loss of the 5' donor splice site in the 3'-untranslated region (3'-UTR). Further analysis supports the activation of a cryptic splice site approximately 357-bp downstream, leading to an extended 3'-UTR with additional regulatory motifs. In conclusion, we identified two novel variants in LHFPL5, including a unique 3'-UTR splice site variant that is predicted to impact pre-mRNA splicing and regulation through an extended 3'-UTR.


Subject(s)
3' Untranslated Regions , Genes, Recessive , Genetic Diseases, Inborn/genetics , Hearing Loss/genetics , Membrane Proteins/genetics , RNA Splice Sites , Female , Humans , Male
9.
Circ Res ; 118(6): 928-34, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26838787

ABSTRACT

RATIONALE: Mutations in several genes have been identified that are responsible for 25% of families with familial thoracic aortic aneurysms and dissections. However, the causative gene remains unknown in 75% of families. OBJECTIVES: To identify the causative mutation in families with autosomal dominant inheritance of thoracic aortic aneurysms and dissections. METHODS AND RESULTS: Exome sequencing was used to identify the mutation responsible for a large family with thoracic aortic aneurysms and dissections. A heterozygous rare variant, c.839G>T (p.Ser280Arg), was identified in LOX, encoding a lysyl oxidase, that segregated with disease in the family. Sanger and exome sequencing was used to investigate mutations in LOX in an additional 410 probands from unrelated families. Additional LOX rare variants that segregated with disease in families were identified, including c.125G>A (p.Trp42*), c.604G>T (p.Gly202*), c.743C>T (p.Thr248Ile), c.800A>C (p.Gln267Pro), and c.1044T>A (p.Ser348Arg). The altered amino acids cause haploinsufficiency for LOX or are located at a highly conserved LOX catalytic domain, which is relatively invariant in the population. Expression of the LOX variants p.Ser280Arg and p.Ser348Arg resulted in significantly lower lysyl oxidase activity when compared with the wild-type protein. Individuals with LOX variants had fusiform enlargement of the root and ascending thoracic aorta, leading to ascending aortic dissections. CONCLUSIONS: These data, along with previous studies showing that the deficiency of LOX in mice or inhibition of lysyl oxidases in turkeys and rats causes aortic dissections, support the conclusion that rare genetic variants in LOX predispose to thoracic aortic disease.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Aortic Dissection/genetics , Mutation/genetics , Protein-Lysine 6-Oxidase/genetics , Adult , Aged , Amino Acid Sequence , Aortic Dissection/diagnosis , Aortic Aneurysm, Thoracic/diagnosis , Female , Genetic Variation/genetics , Humans , Male , Middle Aged , Molecular Sequence Data , Pedigree
10.
Am J Hum Genet ; 94(1): 33-46, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24360806

ABSTRACT

Many population-based rare-variant (RV) association tests, which aggregate variants across a region, have been developed to analyze sequence data. A drawback of analyzing population-based data is that it is difficult to adequately control for population substructure and admixture, and spurious associations can occur. For RVs, this problem can be substantial, because the spectrum of rare variation can differ greatly between populations. A solution is to analyze parent-child trio data, by using the transmission disequilibrium test (TDT), which is robust to population substructure and admixture. We extended the TDT to test for RV associations using four commonly used methods. We demonstrate that for all RV-TDT methods, using proper analysis strategies, type I error is well-controlled even when there are high levels of population substructure or admixture. For trio data, unlike for population-based data, RV allele-counting association methods will lead to inflated type I errors. However type I errors can be properly controlled by obtaining p values empirically through haplotype permutation. The power of the RV-TDT methods was evaluated and compared to the analysis of case-control data with a number of genetic and disease models. The RV-TDT was also used to analyze exome data from 199 Simons Simplex Collection autism trios and an association was observed with variants in ABCA7. Given the problem of adequately controlling for population substructure and admixture in RV association studies and the growing number of sequence-based trio studies, the RV-TDT is extremely beneficial to elucidate the involvement of RVs in the etiology of complex traits.


Subject(s)
Autistic Disorder/genetics , Exome , Genetic Association Studies/methods , Genetic Variation , Linkage Disequilibrium , Alleles , Computer Simulation , Gene Frequency , Genetic Predisposition to Disease , Haplotypes , Humans , Models, Genetic , Phenotype , Sequence Analysis, DNA
11.
Am J Hum Genet ; 94(1): 144-52, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24387994

ABSTRACT

Inherited deafness is clinically and genetically heterogeneous. We recently mapped DFNB86, a locus associated with nonsyndromic deafness, to chromosome 16p. In this study, whole-exome sequencing was performed with genomic DNA from affected individuals from three large consanguineous families in which markers linked to DFNB86 segregate with profound deafness. Analyses of these data revealed homozygous mutation c.208G>T (p.Asp70Tyr) or c.878G>C (p.Arg293Pro) in TBC1D24 as the underlying cause of deafness in the three families. Sanger sequence analysis of TBC1D24 in an additional large family in which deafness segregates with DFNB86 identified the c.208G>T (p.Asp70Tyr) substitution. These mutations affect TBC1D24 amino acid residues that are conserved in orthologs ranging from fruit fly to human. Neither variant was observed in databases of single-nucleotide variants or in 634 chromosomes from ethnically matched control subjects. TBC1D24 in the mouse inner ear was immunolocalized predominantly to spiral ganglion neurons, indicating that DFNB86 deafness might be an auditory neuropathy spectrum disorder. Previously, six recessive mutations in TBC1D24 were reported to cause seizures (hearing loss was not reported) ranging in severity from epilepsy with otherwise normal development to epileptic encephalopathy resulting in childhood death. Two of our four families in which deafness segregates with mutant alleles of TBC1D24 were available for neurological examination. Cosegregation of epilepsy and deafness was not observed in these two families. Although the causal relationship between genotype and phenotype is not presently understood, our findings, combined with published data, indicate that recessive alleles of TBC1D24 can cause either epilepsy or nonsyndromic deafness.


Subject(s)
Carrier Proteins/genetics , Epilepsy/genetics , Mutation , Alleles , Amino Acid Sequence , Chromosomes, Human, Pair 16/genetics , Consanguinity , Deafness/genetics , Exome , Exons , Female , GTPase-Activating Proteins , Genes, Recessive , Genetic Loci , Genome-Wide Association Study , Heterozygote , Homozygote , Humans , Male , Membrane Proteins , Molecular Sequence Data , Nerve Tissue Proteins , Pakistan , Pedigree , Phenotype , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, DNA
12.
Hum Mutat ; 37(10): 991-1003, 2016 10.
Article in English | MEDLINE | ID: mdl-27375115

ABSTRACT

Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal-recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here. These mutations are distributed uniformly across MYO15A with one enigmatic exception; the alternatively spliced giant exon 2, encoding 1,233 residues, has 17 truncating mutations but no convincing deafness-causing missense mutations. MYO15A encodes three distinct isoform classes, one of which is 395 kDa (3,530 residues), the largest member of the myosin superfamily of molecular motors. Studies of Myo15 mouse models that recapitulate DFNB3 revealed two different pathogenic mechanisms of hearing loss. In the inner ear, myosin 15 is necessary both for the development and the long-term maintenance of stereocilia, mechanosensory sound-transducing organelles that extend from the apical surface of hair cells. The goal of this Mutation Update is to provide a comprehensive review of mutations and functions of MYO15A.


Subject(s)
Deafness/genetics , Deafness/pathology , Mutation , Myosins/genetics , Myosins/metabolism , Alternative Splicing , Animals , Deafness/metabolism , Disease Models, Animal , Ear, Inner/growth & development , Ear, Inner/metabolism , Ear, Inner/pathology , Exons , Gene Expression Regulation, Developmental , Humans , Mice , Stereocilia/metabolism , Stereocilia/pathology
13.
Hum Mol Genet ; 23(12): 3289-98, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24482543

ABSTRACT

Cyclic AMP (cAMP) production, which is important for mechanotransduction within the inner ear, is catalyzed by adenylate cyclases (AC). However, knowledge of the role of ACs in hearing is limited. Previously, a novel autosomal recessive non-syndromic hearing impairment locus DFNB44 was mapped to chromosome 7p14.1-q11.22 in a consanguineous family from Pakistan. Through whole-exome sequencing of DNA samples from hearing-impaired family members, a nonsense mutation c.3112C>T (p.Arg1038*) within adenylate cyclase 1 (ADCY1) was identified. This stop-gained mutation segregated with hearing impairment within the family and was not identified in ethnically matched controls or within variant databases. This mutation is predicted to cause the loss of 82 amino acids from the carboxyl tail, including highly conserved residues within the catalytic domain, plus a calmodulin-stimulation defect, both of which are expected to decrease enzymatic efficiency. Individuals who are homozygous for this mutation had symmetric, mild-to-moderate mixed hearing impairment. Zebrafish adcy1b morphants had no FM1-43 dye uptake and lacked startle response, indicating hair cell dysfunction and gross hearing impairment. In the mouse, Adcy1 expression was observed throughout inner ear development and maturation. ADCY1 was localized to the cytoplasm of supporting cells and hair cells of the cochlea and vestibule and also to cochlear hair cell nuclei and stereocilia. Ex vivo studies in COS-7 cells suggest that the carboxyl tail of ADCY1 is essential for localization to actin-based microvilli. These results demonstrate that ADCY1 has an evolutionarily conserved role in hearing and that cAMP signaling is important to hair cell function within the inner ear.


Subject(s)
Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Cyclic AMP/metabolism , Ear, Inner/metabolism , Hair Cells, Auditory/metabolism , Hearing Loss/pathology , Adenylyl Cyclases/chemistry , Animals , COS Cells , Chlorocebus aethiops , Codon, Nonsense , Cytoplasm/metabolism , Ear, Inner/growth & development , Female , Hearing Loss/enzymology , Humans , Labyrinth Supporting Cells/metabolism , Male , Mice , Zebrafish/genetics
14.
Am J Hum Genet ; 93(1): 132-40, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23768514

ABSTRACT

Previously, DFNB89, a locus associated with autosomal-recessive nonsyndromic hearing impairment (ARNSHI), was mapped to chromosomal region 16q21-q23.2 in three unrelated, consanguineous Pakistani families. Through whole-exome sequencing of a hearing-impaired individual from each family, missense mutations were identified at highly conserved residues of lysyl-tRNA synthetase (KARS): the c.1129G>A (p.Asp377Asn) variant was found in one family, and the c.517T>C (p.Tyr173His) variant was found in the other two families. Both variants were predicted to be damaging by multiple bioinformatics tools. The two variants both segregated with the nonsyndromic-hearing-impairment phenotype within the three families, and neither mutation was identified in ethnically matched controls or within variant databases. Individuals homozygous for KARS mutations had symmetric, severe hearing impairment across all frequencies but did not show evidence of auditory or limb neuropathy. It has been demonstrated that KARS is expressed in hair cells of zebrafish, chickens, and mice. Moreover, KARS has strong localization to the spiral ligament region of the cochlea, as well as to Deiters' cells, the sulcus epithelium, the basilar membrane, and the surface of the spiral limbus. It is hypothesized that KARS variants affect aminoacylation in inner-ear cells by interfering with binding activity to tRNA or p38 and with tetramer formation. The identification of rare KARS variants in ARNSHI-affected families defines a gene that is associated with ARNSHI.


Subject(s)
Hearing Loss/enzymology , Hearing Loss/genetics , Lysine-tRNA Ligase/genetics , Mutation, Missense , Animals , Case-Control Studies , Chickens , Cochlea/metabolism , Cochlea/pathology , Computational Biology/methods , Consanguinity , Female , Genetic Linkage , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Haplotypes , Homozygote , Humans , Lysine-tRNA Ligase/metabolism , Male , Mice , Pedigree , Transfer RNA Aminoacylation , Zebrafish/embryology , Zebrafish/metabolism
15.
BMC Med Genet ; 17: 13, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26880286

ABSTRACT

BACKGROUND: Nonphotosensitive trichothiodystrophy (TTDN) is a rare autosomal recessive disorder of neuroectodermal origin. The condition is marked by hair abnormalities, intellectual impairment, nail dystrophies and susceptibility to infections but with no UV sensitivity. METHODS: We identified three consanguineous Pakistani families with varied TTDN features and used homozygosity mapping, linkage analysis, and Sanger and exome sequencing in order to identify pathogenic variants. Haplotype analysis was performed and haplotype age estimated. A splicing assay was used to validate the effect of the MPLKIP splice variant on expression. RESULTS: Affected individuals from all families exhibit several TTDN features along with a heart-specific feature, i.e. mitral regurgitation. Exome sequencing in the probands from families ED168 and ED241 identified a homozygous splice mutation c.339 + 1G > A within MPLKIP. The same splice variant co-segregates with TTDN in a third family ED210. The MPLKIP splice variant was not found in public databases, e.g. the Exome Aggregation Consortium, and in unrelated Pakistani controls. Functional analysis of the splice variant confirmed intron retention, which leads to protein truncation and loss of a phosphorylation site. Haplotype analysis identified a 585.1-kb haplotype which includes the MPLKIP variant, supporting the existence of a founder haplotype that is estimated to be 25,900 years old. CONCLUSION: This study extends the allelic and phenotypic spectra of MPLKIP-related TTDN, to include a splice variant that causes cardiomyopathy as part of the TTDN phenotype.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Mitral Valve Insufficiency/genetics , RNA Splicing , Trichothiodystrophy Syndromes/genetics , Adolescent , Adult , Alleles , Asian People/genetics , Child , Cloning, Molecular , Exome , Female , Genetic Linkage , HEK293 Cells , Haplotypes , Homozygote , Humans , Introns , Male , Pakistan , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Young Adult
16.
J Med Genet ; 52(10): 676-80, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26160856

ABSTRACT

BACKGROUND: Woolly hair (WH) is a hair abnormality that is primarily characterised by tightly curled hair with abnormal growth. METHODS: In two unrelated consanguineous Pakistani families with non-syndromic autosomal recessive (AR) WH, homozygosity mapping and linkage analysis identified a locus within 17q21.1-q22, which contains the type I keratin gene cluster. A DNA sample from an affected individual from each family underwent exome sequencing. RESULTS: A homozygous missense variant c.950T>C (p.(Leu317Pro)) within KRT25 segregated with ARWH in both families, and has a combined maximum two-point LOD score of 7.9 at Ï´=0. The KRT25 variant is predicted to result in disruption of the second α-helical rod domain and the entire protein structure, thus possibly interfering with heterodimerisation of K25 with type II keratins within the inner root sheath (IRS) of the hair follicle and the medulla of the hair shaft. CONCLUSIONS: Our findings implicate a novel gene involved in human hair abnormality, and are consistent with the curled, fragile hair found in mice with Krt25 mutations, and further support the role of IRS-specific type I keratins in hair follicle development and maintenance of hair texture.


Subject(s)
Hair Diseases/genetics , Hair/abnormalities , Keratins, Type I/genetics , Mutation, Missense , Child , Child, Preschool , Consanguinity , Humans , Male , Pakistan , Pedigree , Sequence Analysis, DNA
17.
Hum Genet ; 134(9): 941-50, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26063662

ABSTRACT

Achromatopsia (ACHM) is an early-onset retinal dystrophy characterized by photophobia, nystagmus, color blindness and severely reduced visual acuity. Currently mutations in five genes CNGA3, CNGB3, GNAT2, PDE6C and PDE6H have been implicated in ACHM. We performed homozygosity mapping and linkage analysis in a consanguineous Pakistani ACHM family and mapped the locus to a 15.12-Mb region on chromosome 1q23.1-q24.3 with a maximum LOD score of 3.6. A DNA sample from an affected family member underwent exome sequencing. Within the ATF6 gene, a single-base insertion variant c.355_356dupG (p.Glu119Glyfs*8) was identified, which completely segregates with the ACHM phenotype within the family. The frameshift variant was absent in public variant databases, in 130 exomes from unrelated Pakistani individuals, and in 235 ethnically matched controls. The variant is predicted to result in a truncated protein that lacks the DNA binding and transmembrane domains and therefore affects the function of ATF6 as a transcription factor that initiates the unfolded protein response during endoplasmic reticulum (ER) stress. Immunolabeling with anti-ATF6 antibodies showed localization throughout the mouse neuronal retina, including retinal pigment epithelium, photoreceptor cells, inner nuclear layer, inner and outer plexiform layers, with a more prominent signal in retinal ganglion cells. In contrast to cytoplasmic expression of wild-type protein, in heterologous cells ATF6 protein with the p.Glu119Glyfs*8 variant is mainly confined to the nucleus. Our results imply that response to ER stress as mediated by the ATF6 pathway is essential for color vision in humans.


Subject(s)
Activating Transcription Factor 6/genetics , Color Vision Defects/genetics , Frameshift Mutation , Activating Transcription Factor 6/metabolism , Adolescent , Animals , Asian People/genetics , Color Vision Defects/physiopathology , Consanguinity , DNA Mutational Analysis , Exome , Female , Genotyping Techniques , Homozygote , Humans , Limit of Detection , Male , Mice , Mice, Inbred C57BL , Pakistan , Pedigree , Phenotype , Retina/physiopathology , Signal Transduction
18.
Stroke ; 45(11): 3200-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25278557

ABSTRACT

BACKGROUND AND PURPOSE: Moyamoya disease (MMD) is a rare, genetically heterogeneous cerebrovascular disease resulting from occlusion of the distal internal carotid arteries. A variant in the Ring Finger 213 gene (RNF213), altering arginine at position 4810 (p.R4810K), is associated with MMD in Asian populations. However, there are a lack of data on the role of RNF213 in patients with MMD of additional ethnicities and diasporic Asian populations. We investigate the contribution of RNF213 alterations to MMD in an ethnically diverse population based in the United States. METHODS: We initially sequenced RNF213 exons 43, 44, and 45 (encoding the eponymous RING finger domain) and exon 60 (encoding p.R4810K) in 86 ethnically diverse patients with MMD. Comprehensive exome sequencing data from 24 additional patients with MMD was then analyzed to identify RNF213 variants globally. Segregation of variants with MMD and other vascular diseases was assessed in families. RESULTS: RNF213 p.R4810K was identified in 56% (9/16) of patients with MMD of Asian descent and not in 94 patients of non-Asian descent. 3.6% (4/110) of patients had variants in the exons encoding the RING finger domain. Seven additional variants were identified in 29% (7/24) of patients with MMD who underwent exome sequencing. Segregation analysis supported an association with MMD for 2 variants and a lack of association with disease for 1 variant. CONCLUSIONS: These results confirm that alterations in RNF213 predispose patients of diverse ethnicities to MMD, and that the p.R4810K variant predisposes individuals of Asian descent in the United States to MMD.


Subject(s)
Ethnicity/genetics , Genetic Variation/genetics , Moyamoya Disease/genetics , Population Surveillance , Ubiquitin-Protein Ligases/genetics , Adenosine Triphosphatases , Adolescent , Adult , Child , Cohort Studies , Ethnicity/ethnology , Female , Humans , Male , Moyamoya Disease/diagnosis , Moyamoya Disease/ethnology , Population Surveillance/methods , Young Adult
20.
Biomedicines ; 12(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39062005

ABSTRACT

Genetic factors contribute significantly to congenital hearing loss, with non-syndromic cases being more prevalent and genetically heterogeneous. Currently, 150 genes have been associated with non-syndromic hearing loss, and their identification has improved our understanding of auditory physiology and potential therapeutic targets. Hearing loss gene panels offer comprehensive genetic testing for hereditary hearing loss, and advancements in sequencing technology have made genetic testing more accessible and affordable. Currently, genetic panel tests available at a relatively lower cost are offered to patients who face financial barriers. In this study, clinical and audiometric data were collected from six pediatric patients who underwent genetic panel testing. Known pathogenic variants in MYO15A, GJB2, and USH2A were most likely to be causal of hearing loss. Novel pathogenic variants in the MYO7A and TECTA genes were also identified. Variable hearing phenotypes and inheritance patterns were observed amongst individuals with different pathogenic variants. The identification of these variants contributes to the continually expanding knowledge base on genetic hearing loss and lays the groundwork for personalized treatment options in the future.

SELECTION OF CITATIONS
SEARCH DETAIL