Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Hum Evol ; 163: 103136, 2022 02.
Article in English | MEDLINE | ID: mdl-35033736

ABSTRACT

The living guenons (Cercopithecini, Cercopithecidae) are speciose and widely distributed across sub-Saharan Africa but are poorly represented in the fossil record. In addition, the craniodental and skeletal similarity of the guenons has hampered the identification of fragmentary material, likely obscuring the taxonomic diversity represented in the fossil record. Here, we describe a new fossil guenon specimen (LAET 75-3703) from the Lower Ngaloba Beds, Laetoli in Tanzania, dated to ∼1.7-1.2 Ma and preserving the lower face and mandible. Comparison to 278 extant guenon specimens, representing all six extant genera, identified several informative traits for distinguishing between the morphologically similar Chlorocebus and Cercopithecus, and these support the attribution of LAET 75-3703 to Chlorocebus. A discriminant function analysis of seven craniodental indices on a subsample of Chlorocebus and Cercopithecus was robust with an overall correct classification rate of 80.4%, and it classified LAET 75-3703 as a member of Chlorocebus with a posterior probability of 92.7%. LAET 75-3703 shares with Chlorocebus the presence of small 'thumbprint' depressions on the maxilla; a tall, narrow, and diamond-shaped nasal aperture; a relatively longer and shallower face; relatively buccolingually broader molars; and a shallow mandible that decreases in depth posteriorly. In addition, LAET 75-3703 is distinguished from all extant guenons, including other species of Chlorocebus, in having a very small P3 relative to M1 area. As such, LAET 75-3703 is assigned to a new species, Chlorocebus ngedere sp. nov. This specimen represents the first cercopithecin from Laetoli, as well as the oldest fossil cercopithecin confidently attributed to a modern genus.


Subject(s)
Cercopithecinae , Fossils , Animals , Cercopithecidae/anatomy & histology , Cercopithecus , Tanzania
2.
Am J Phys Anthropol ; 176(3): 361-389, 2021 11.
Article in English | MEDLINE | ID: mdl-33931848

ABSTRACT

OBJECTIVES: The little known guenon Cercopithecus dryas has a controversial taxonomic history with some recognizing two taxa (C. dryas and C. salongo) instead of one. New adult specimens from the TL2 region of the central Congo Basin allow further assessment of C. dryas morphology and, along with CT scans of the juvenile holotype, provide ontogenetically stable comparisons across all C. dryas and "C. salongo" specimens for the first time. MATERIALS AND METHODS: The skins and skulls of two newly acquired C. dryas specimens, male YPM MAM 16890 and female YPM MAM 17066, were compared to previously described C. dryas and "C. salongo" specimens, along with a broader guenon comparative sample (cranial sample n = 146, dental sample n = 102). Qualitative and quantitative assessments were made on the basis of commonly noted pelage features as well as craniodental characters in the form of shape ratios and multivariate discriminant analyses. RESULTS: All C. dryas specimens, including the TL2 adults, are comparatively small in overall cranial size, have relatively small I1 s, and display tall molar cusps; these osteological characters, along with pelage features, are shared with known "C. salongo" specimens. Discriminant analyses of dental features separate C. dryas/salongo specimens from all other guenons. DISCUSSION: In addition to pelage-based evidence, direct osteological evidence suggests "C. salongo" is a junior synonym of C. dryas. Combined with molecular analyses suggesting C. dryas is most closely related to Chlorocebus spp., we emend the species diagnosis and support its transfer to Chlorocebus or possibly a new genus to reflect its distinctiveness.


Subject(s)
Cercopithecinae , Tooth , Animals , Congo , Female , Male , Phylogeny , Skull/diagnostic imaging , Tooth/diagnostic imaging
3.
Am J Phys Anthropol ; 172(1): 3-24, 2020 05.
Article in English | MEDLINE | ID: mdl-32124976

ABSTRACT

OBJECTIVES: The guenons (tribe Cercopithecini) are a diverse and primarily arboreal radiation of Old World monkeys from Africa. However, preliminary behavioral observations of the lesula (Cercopithecus lomamiensis), a little-known guenon species described in 2012, report it spending substantial amounts of time on the ground. New specimens allow us to present the first description of lesula postcranial morphology and apply a comparative functional morphology approach to supplement our knowledge of its locomotor behavior. MATERIALS AND METHODS: To infer the substrate use preferences of the lesula, 22 postcranial variables correlated with locomotion were assessed in a sample of 151 adult guenon specimens, including two C. lomamiensis. Using multivariate statistical analyses, we predict the amount of time the lesula spends on the ground relative to the comparative sample. RESULTS: Results suggest that the lesula spends nearly half its time on the ground, and the two available individuals were classified as semiterrestrial and terrestrial with strong support. Comparisons with two outgroup cercopithecid taxa (Colobus guereza and Macaca mulatta) demonstrate that, as a group, guenons retain signals of a generalized, semiterrestrially adapted postcranium compared to specialized arboreal cercopithecids. DISCUSSION: These results corroborate preliminary behavioral observations of the lesula as a semiterrestrial to terrestrial primate and imply multiple evolutionary transitions in substrate use among the guenon radiation. A broader view of cercopithecoid evolution suggests that a semiterrestrial ancestor for extant guenons is more parsimonious than an arboreal one, indicating that the arboreal members of the group are probably recently derived from a more semiterrestrial ancestor.


Subject(s)
Biological Evolution , Cercopithecus/anatomy & histology , Cercopithecus/physiology , Locomotion , Skeleton/anatomy & histology , Animals , Democratic Republic of the Congo , Female , Male
4.
J Hum Evol ; 128: 76-92, 2019 03.
Article in English | MEDLINE | ID: mdl-30825983

ABSTRACT

Plesiadapiforms, like other Paleogene mammals, are known mostly from fossil teeth and jaw fragments. The several families of plesiadapiforms known from partial skeletons have all been reconstructed as arborealists, but differences in postcranial morphology among these taxa indicate a diversity of positional behaviors. Here we provide the first detailed descriptions and comparisons of a dentally associated partial skeleton (NMMNH P-54500) and of the most complete dentary with anterior teeth (NMMNH P-71598) pertaining to Torrejonia wilsoni, from the early Paleocene (late Torrejonian To3 interval zone) of the Nacimiento Formation, San Juan Basin, New Mexico, USA. NMMNH P-54500 is the oldest known partial skeleton of a plesiadapiform and the only known postcrania for the Palaechthonidae. This skeleton includes craniodental fragments with all permanent teeth fully erupted, and partial forelimbs and hind limbs with some epiphyses unfused, indicating that this individual was a nearly fully-grown subadult. Analysis of the forelimb suggests mobile shoulder and elbow joints, a habitually flexed forearm, and capacity for manual grasping. The hip joint allowed abduction and lateral rotation of the thigh and provides evidence for frequent orthograde postures on large diameter supports. Other aspects of the hind limb suggest a habitually flexed thigh and knee with no evidence for specialized leaping, and mobile ankle joints capable of high degrees of inversion and eversion. Although it is likely that some variability exists within the group, analysis of this skeleton suggests that palaechthonids are most like paromomyids among plesiadapiforms, but retain more plesiomorphic postcranial features than has been documented for the Paromomyidae. These observations are congruent with craniodental evidence supporting palaechthonids and paromomyids as closely related within the Paromomyoidea. The skeleton of T. wilsoni also demonstrates that many regions of the postcranium were already well adapted for arboreality within the first few million years of the diversification of placental mammals following the Cretaceous-Paleogene extinction event.


Subject(s)
Bone and Bones/anatomy & histology , Fossils/anatomy & histology , Primates/anatomy & histology , Animals , Life History Traits , Mammals/anatomy & histology , Mammals/classification , New Mexico , Paleontology , Primates/classification , Primates/physiology
5.
Proc Natl Acad Sci U S A ; 113(18): 5041-6, 2016 May 03.
Article in English | MEDLINE | ID: mdl-27071108

ABSTRACT

Madagascar's lemurs display a diverse array of feeding strategies with complex relationships to seed dispersal mechanisms in Malagasy plants. Although these relationships have been explored previously on a case-by-case basis, we present here the first comprehensive analysis of lemuriform feeding, to our knowledge, and its hypothesized effects on seed dispersal and the long-term survival of Malagasy plant lineages. We used a molecular phylogenetic framework to examine the mode and tempo of diet evolution, and to quantify the associated morphological space occupied by Madagascar's lemurs, both extinct and extant. Using statistical models and morphometric analyses, we demonstrate that the extinction of large-bodied lemurs resulted in a significant reduction in functional morphological space associated with seed dispersal ability. These reductions carry potentially far-reaching consequences for Malagasy ecosystems, and we highlight large-seeded Malagasy plants that appear to be without extant animal dispersers. We also identify living lemurs that are endangered yet occupy unique and essential dispersal niches defined by our morphometric analyses.


Subject(s)
Extinction, Biological , Forests , Models, Statistical , Seed Dispersal/physiology , Strepsirhini/physiology , Trees/growth & development , Animals , Computer Simulation , Madagascar , Trees/classification
6.
Am J Primatol ; 80(5): e22760, 2018 05.
Article in English | MEDLINE | ID: mdl-29664154

ABSTRACT

Studies of the effects of habitat fragmentation and degradation on primate positional behavior, strata use, and substrate utilization offer valuable insights into the behavioral and ecological flexibility of primates whose habitats have undergone extensive anthropogenic disturbance. In this study, we evaluated how positional behavior, strata use, and substrate utilization differed between Bale monkeys (Chlorocebus djamdjamensis)-bamboo-eating cercopithecids endemic to the southern Ethiopian Highlands-occupying continuous versus fragmented forests. Bale monkeys in forest fragments (where bamboo had been degraded or eradicated) spent significantly more time on the ground and in understory strata whereas those in continuous forest spent significantly more time in the middle and upper strata. Bale monkeys in forest fragments also spent significantly more time walking and galloping and significantly less time climbing than those in continuous forest. Our results suggest that, unlike the primarily arboreal Bale monkeys in continuous forest, Bale monkeys in forest fragments should be characterized as semi-terrestrial. In response to habitat disturbance in fragments, we observed a greater emphasis on terrestrial foraging and travel among Bale monkeys in these human altered habitats, which may put them at greater risk of predation and conflict with nearby human populations. Bale monkeys in fragments exhibit flexibility in their positional behavioral repertoire and their degree of terrestriality is more similar to their sister taxa in Chlorocebus than to Bale monkeys in continuous forest. These findings suggest that habitat alteration may compel Bale monkeys to exhibit semi-terrestrial behaviors crucial for their persistence in human-modified habitats. Our results contribute to a growing body of literature on primate behavioral responses to anthropogenic modification of their habitats and provide information that can contribute to the design of appropriate conservation management plans.


Subject(s)
Behavior, Animal , Cercopithecinae/physiology , Ecosystem , Adaptation, Biological , Animals , Conservation of Natural Resources , Ethiopia , Forests , Humans , Locomotion , Poaceae
7.
Biol Lett ; 11(1): 20140911, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25589486

ABSTRACT

Small-bodied, insectivorous Nyctitheriidae are known in the Palaeogene fossil record almost exclusively from teeth and fragmentary jaws and have been referred to Eulipotyphla (shrews, moles and hedgehogs) based on dental similarities. By contrast, isolated postcrania attributed to the group suggest arboreality and a relationship to Euarchonta (primates, treeshrews and colugos). Cretaceous-Palaeocene adapisoriculid insectivores have also been proposed as early euarchontans based on postcranial similarities. We describe the first known dentally associated nyctitheriid auditory regions and postcrania, and use them to test the proposed relationship to Euarchonta with cladistic analyses of 415 dental, cranial and postcranial characteristics scored for 92 fossil and extant mammalian taxa. Although nyctitheriid postcrania share similarities with euarchontans likely related to arboreality, results of cladistic analyses suggest that nyctitheriids are closely related to Eulipotyphla. Adapisoriculidae is found to be outside of crown Placentalia. These results suggest that similarities in postcranial morphology among nyctitheriids, adapisoriculids and euarchontans represent separate instances of convergence or primitive retention of climbing capabilities.


Subject(s)
Bone and Bones/anatomy & histology , Fossils , Mammals/classification , Phylogeny , Animals , Mammals/anatomy & histology , Skull/anatomy & histology , Tooth/anatomy & histology
8.
Sci Rep ; 12(1): 19689, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36446809

ABSTRACT

Two of the most-studied ecogeographical rules describe patterns of body size variation within species. Bergmann's rule predicts that individuals have larger body sizes in colder climates (typically at higher latitudes), and the island rule predicts that island populations of small-bodied species average larger in size than their mainland counterparts (insular gigantism). These rules are rarely tested in conjunction or assessed across space and time simultaneously. We investigated these patterns in the Northern Treeshrew (Tupaia belangeri) using museum specimens collected across a wide spatial and temporal range. Contrary to Bergmann's rule, size increases with temperature in T. belangeri, a signal that is highly consistent across space and time. We also show that these rules are intertwined: Bergmann's rule is reversed on the mainland but holds on islands, and therefore the island rule is upheld at higher, but not lower, latitudes. Moreover, we demonstrate a rapid reversal of both rules over time. The mechanism behind these inversions remains unclear, though temperature and precipitation are significant predictors of body size. Ecogeographical rules rely on the assumption of a constant relationship between size and the factors driving its variation. Our results highlight the need to question this assumption and reevaluate these rules in the context of accelerating and uneven climate change.


Subject(s)
Climate Change , Gigantism , Humans , Animals , Body Size , Cold Climate , Tupaia
9.
Mol Phylogenet Evol ; 60(3): 358-72, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21565274

ABSTRACT

Resolving the phylogeny of treeshrews (Order Scandentia) has historically proven difficult, in large part because of access to specimens and samples from critical taxa. We used "antique" DNA methods with non-destructive sampling of museum specimens to complete taxon sampling for the 20 currently recognized treeshrew species and to estimate their phylogeny and divergence times. Most divergence among extant species is estimated to have taken place within the past 20 million years, with deeper divergences between the two families (Ptilocercidae and Tupaiidae) and between Dendrogale and all other genera within Tupaiidae. All but one of the divergences between currently recognized species had occurred by 4Mya, suggesting that Miocene tectonics, volcanism, and geographic instability drove treeshrew diversification. These geologic processes may be associated with an increase in net diversification rate in the early Miocene. Most evolutionary relationships appear consistent with island-hopping or landbridge colonization between contiguous geographic areas, although there are exceptions in which extinction may play an important part. The single recent divergence is between Tupaia palawanensis and Tupaia moellendorffi, both endemic to the Philippines, and may be due to Pleistocene sea level fluctuations and post-landbridge isolation in allopatry. We provide a time-calibrated phylogenetic framework for answering evolutionary questions about treeshrews and about evolutionary patterns and processes in Euarchonta. We also propose subsuming the monotypic genus Urogale, a Philippine endemic, into Tupaia, thereby reducing the number of extant treeshrew genera from five to four.


Subject(s)
Biological Evolution , Phylogeny , Scandentia/classification , Animals , Asia, Southeastern , DNA, Mitochondrial/genetics , Nucleic Acid Conformation , Phylogeography , Scandentia/genetics , Sequence Analysis, DNA
10.
J Hum Evol ; 60(6): 731-45, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21458844

ABSTRACT

Since its discovery and description, the systematic position of the kipunji (Rungwecebus kipunji) has been a matter of debate. Although it was first placed in the mangabey genus Lophocebus, subsequent molecular studies indicated that the kipunji is most closely related to baboons (Papio). However, the kipunji does not appear to possess cranial features typical of Papio, thus necessitating the erection of a new genus, Rungwecebus. The recovery of an M2-stage subadult male kipunji voucher specimen, in addition to the original M1-stage subadult male voucher specimen, has since allowed further study. Here, we describe the craniodental morphology of the newly acquired kipunji specimen and present a phylogenetic analysis of Rungwecebus craniodental morphology using quantitative and qualitative characters. We examined the skulls of 76 M1- and M2-stage subadult males representing all extant papionin genera, taking note of character states that are static throughout ontogeny. To control for ontogenetic changes, only those characters expressing unchanged character states between subadult and adult specimens were coded for Rungwecebus and entered into a larger, recently published 151-character matrix of adult male morphology. To account for allometry, the narrow allometric coding method and the general allometric coding method were applied. The resulting most parsimonious trees suggest that Rungwecebus is phylogenetically closest to Lophocebus, a result consistent with initial morphological descriptions. However, due to the large amount of missing data for Rungwecebus, there are low bootstrap support values associated with any relationships within the larger Theropithecus/Papio/Lophocebus/Rungwecebus grouping. Taken in combination with previous molecular, phenetic, and ecological studies, the results of this study suggest that Rungwecebus is best regarded as a distinct genus closely related to Papio, Lophocebus, and Theropithecus. Adult morphological specimens are necessary to fully understand the adult kipunji morphotype, and its phylogenetic position will only be more precisely resolved with additional morphological and molecular data.


Subject(s)
Cercopithecinae/anatomy & histology , Phylogeny , Skull/anatomy & histology , Tooth/anatomy & histology , Animals , Cephalometry , Cercopithecinae/classification , Cercopithecinae/growth & development , Male , Odontometry , Skull/growth & development , Tooth/growth & development
11.
Biol Lett ; 7(6): 925-8, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-21752814

ABSTRACT

Modern debate regarding the extinction of non-avian dinosaurs was ignited by the publication of the Cretaceous-Tertiary (K-T) asteroid impact theory and has seen 30 years of dispute over the position of the stratigraphically youngest in situ dinosaur. A zone devoid of dinosaur fossils reported from the last 3 m of the Upper Cretaceous, coined the '3 m gap', has helped drive controversy. Here, we report the discovery of the stratigraphically youngest in situ dinosaur specimen: a ceratopsian brow horn found in a poorly rooted, silty, mudstone floodplain deposit located no more than 13 cm below the palynologically defined boundary. The K-T boundary is identified using three criteria: (i) decrease in Cretaceous palynomorphs without subsequent recovery, (ii) the existence of a 'fern spike', and (iii) correlation to a nearby stratigraphic section where primary extraterrestrial impact markers are present (e.g. iridium anomaly, spherules, shocked quartz). The in situ specimen demonstrates that a gap devoid of non-avian dinosaur fossils does not exist and is inconsistent with the hypothesis that non-avian dinosaurs were extinct prior to the K-T boundary impact event.


Subject(s)
Dinosaurs/classification , Extinction, Biological , Fossils , Geologic Sediments , Animals , Biological Evolution , Bone and Bones , Dinosaurs/anatomy & histology , Horns/anatomy & histology , Montana
12.
Ecol Evol ; 11(21): 14540-14554, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765124

ABSTRACT

The Cretaceous-Paleogene (K-Pg) mass extinction 66 million years ago was characterized by a worldwide ecological catastrophe and rapid species turnover. Large-scale devastation of forested environments resulting from the Chicxulub asteroid impact likely influenced the evolutionary trajectories of multiple clades in terrestrial environments, and it has been hypothesized to have biased survivorship in favour of nonarboreal lineages across the K-Pg boundary. Here, we evaluate patterns of substrate preferences across the K-Pg boundary among crown group mammals, a group that underwent rapid diversification following the mass extinction. Using Bayesian, likelihood, and parsimony reconstructions, we identify patterns of mammalian ecological selectivity that are broadly similar to those previously hypothesized for birds. Models based on extant taxa indicate predominant K-Pg survivorship among semi- or nonarboreal taxa, followed by numerous independent transitions to arboreality in the early Cenozoic. However, contrary to the predominant signal, some or all members of total-clade Euarchonta (Primates + Dermoptera + Scandentia) appear to have maintained arboreal habits across the K-Pg boundary, suggesting ecological flexibility during an interval of global habitat instability. We further observe a pronounced shift in character state transitions away from plesiomorphic arboreality associated with the K-Pg transition. Our findings are consistent with the hypothesis that predominantly nonarboreal taxa preferentially survived the end-Cretaceous mass extinction, and emphasize the pivotal influence of the K-Pg transition in shaping the early evolutionary trajectories of extant terrestrial vertebrates.

13.
Nat Ecol Evol ; 5(1): 32-37, 2021 01.
Article in English | MEDLINE | ID: mdl-33139921

ABSTRACT

When sociality evolved and in which groups remain open questions in mammalian evolution, largely due to the fragmentary Mesozoic mammal fossil record. Nevertheless, exceptionally preserved fossils collected in well-constrained geologic and spatial frameworks can provide glimpses into these more fleeting aspects of early mammalian behaviour. Here we report on exceptional specimens of a multituberculate, Filikomys primaevus gen. nov., from the Late Cretaceous of Montana, primarily occurring as multi-individual, monospecific aggregates of semi-articulated skulls and skeletons within a narrow stratigraphic (~9 cm thick) and geographic (<32 m2) interval. Taphonomic and geologic evidence indicates that F. primaevus engaged in multigenerational, group-nesting and burrowing behaviour, representing the first example of social behaviour in a Mesozoic mammal. That F. primaevus was a digger is further supported by functional morphological and morphometric analyses of its postcranium. The social behaviour of F. primaevus suggests that the capacity for mammals to form social groups extends back to the Mesozoic and is not restricted to therians. Sociality is probably an evolutionarily labile trait that has arisen numerous times during mammalian evolution.


Subject(s)
Dinosaurs , Animals , Biological Evolution , Fossils , Mammals , Social Behavior
14.
Syst Biol ; 58(2): 257-70, 2009 Apr.
Article in English | MEDLINE | ID: mdl-20525582

ABSTRACT

Multiple unlinked genetic loci often provide a more comprehensive picture of evolutionary history than any single gene can, but analyzing multigene data presents particular challenges. Differing rates and patterns of nucleotide substitution, combined with the limited information available in any data set, can make it difficult to specify a model of evolution. In addition, conflict among loci can be the result of real differences in evolutionary process or of stochastic variance and errors in reconstruction. We used 6 presumably unlinked nuclear loci to investigate relationships within the mammalian family Tupaiidae (Scandentia), containing all but one of the extant tupaiid genera. We used a phylogenetic mixture model to analyze the concatenated data and compared this with results using partitioned models. We found that more complex models were not necessarily preferred under tests using Bayes factors and that model complexity affected both tree length and parameter variance. We also compared the results of single-gene and multigene analyses and used splits networks to analyze the source and degree of conflict among genes. Networks can show specific relationships that are inconsistent with each other; these conflicting and minority relationships, which are implicitly ignored or collapsed by traditional consensus methods, can be useful in identifying the underlying causes of topological uncertainty. In our data, conflict is concentrated around particular relationships, not widespread throughout the tree. This pattern is further clarified by considering conflict surrounding the root separately from conflict within the ingroup. Uncertainty in rooting may be because of the apparent evolutionary distance separating these genera and our outgroup, the tupaiid genus Dendrogale. Unlike a previous mitochondrial study, these nuclear data strongly suggest that the genus Tupaia is not monophyletic with respect to the monotypic Urogale, even when uncertainty about rooting is taken into account. These data concur with mitochondrial DNA on other relationships, including the close affinity of Tupaia tana with the enigmatic Tupaia splendidula and of Tupaia belangeri with Tupaia glis. We also discuss the taxonomic and biogeographic implications of these results.


Subject(s)
Phylogeny , Tupaiidae/genetics , Animals , Bayes Theorem , Models, Genetic , Tupaiidae/classification
15.
Biol Lett ; 6(2): 233-7, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-19906681

ABSTRACT

In the four years since its original description, the taxonomy of the kipunji (Rungwecebus kipunji), a geographically restricted and critically endangered African monkey, has been the subject of much debate, and recent research suggesting that the first voucher specimen of Rungwecebus has baboon mitochondrial DNA has intensified the controversy. We show that Rungwecebus from a second region of Tanzania has a distinct mitochondrial haplotype that is basal to a clade containing all Papio species and the original Rungwecebus voucher, supporting the placement of Rungwecebus as the sister taxon of Papio and its status as a separate genus. We suggest that the Rungwecebus population in the Southern Highlands has experienced geographically localized mitochondrial DNA introgression from Papio, while the Ndundulu population retains the true Rungwecebus mitochondrial genome.


Subject(s)
Cercopithecinae/genetics , DNA, Mitochondrial/genetics , Demography , Gene Flow/genetics , Genetics, Population , Hybridization, Genetic , Phylogeny , Animals , Base Sequence , Bayes Theorem , Cercopithecinae/classification , Computational Biology , Haplotypes/genetics , Models, Genetic , Molecular Sequence Data , Papio/genetics , Sequence Analysis, DNA , Tanzania
16.
Anat Rec (Hoboken) ; 302(7): 1154-1168, 2019 07.
Article in English | MEDLINE | ID: mdl-30809964

ABSTRACT

Scandentia (treeshrews) is an order of small-bodied Indomalayan mammals generally agreed to be a member of Euarchonta with Primates and Dermoptera (colugos). However, intraordinal relationships among treeshrews are less well understood. Although recent studies have begun to clarify treeshrew taxonomy using morphological and molecular datasets, previous analysis of treeshrew dentition has yielded little clarity in terms of species-level relationships within the order. However, these studies made use of character-based methods, scoring traits across the dental arcade, which depend on there being clear differences among taxa that can be encapsulated in coding schemes. Geometric morphometrics has the potential to capture subtler shape variation, so it may be better for examining similarities among closely related taxa whose teeth have a similar bauplan. We used three-dimensional geometric morphometrics on a sample of treeshrew lower second molars and compared the patterns of variation to the results of previous studies. We captured 19 landmarks on a sample of 43 specimens representing 15 species. Using specimen-based principal components analysis and between-group principal component analysis, the two treeshrew families (Tupaiidae and Ptilocercidae) were well separated in morphospace. Moreover, several treeshrew species plot in morphospace according to the clades established in previous molecular work, with closely related species plotting closer to one another than to more distantly related species, suggesting that dental morphology can be useful when studying relationships among treeshrews. As most extinct treeshrews are known only from teeth, understanding morphological patterns in treeshrew molars is important for future work on the evolutionary history of Scandentia. Anat Rec, 302:1154-1168, 2019. © 2019 Wiley Periodicals, Inc.


Subject(s)
Biological Evolution , Biological Variation, Population , Molar/anatomy & histology , Scandentia/anatomy & histology , Anatomic Landmarks , Animals , Female , Imaging, Three-Dimensional , Male , Molar/diagnostic imaging , Phylogeny , Scandentia/classification , X-Ray Microtomography
17.
Ecol Evol ; 8(3): 1634-1645, 2018 02.
Article in English | MEDLINE | ID: mdl-29435239

ABSTRACT

There are a number of ecogeographical "rules" that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller-bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small-bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules.

18.
R Soc Open Sci ; 4(5): 170329, 2017 May.
Article in English | MEDLINE | ID: mdl-28573038

ABSTRACT

Palaechthonid plesiadapiforms from the Palaeocene of western North America have long been recognized as among the oldest and most primitive euarchontan mammals, a group that includes extant primates, colugos and treeshrews. Despite their relatively sparse fossil record, palaechthonids have played an important role in discussions surrounding adaptive scenarios for primate origins for nearly a half-century. Likewise, palaechthonids have been considered important for understanding relationships among plesiadapiforms, with members of the group proposed as plausible ancestors of Paromomyidae and Microsyopidae. Here, we describe a dentally associated partial skeleton of Torrejonia wilsoni from the early Palaeocene (approx. 62 Ma) of New Mexico, which is the oldest known plesiadapiform skeleton and the first postcranial elements recovered for a palaechthonid. Results from a cladistic analysis that includes new data from this skeleton suggest that palaechthonids are a paraphyletic group of stem primates, and that T. wilsoni is most closely related to paromomyids. New evidence from the appendicular skeleton of T. wilsoni fails to support an influential hypothesis based on inferences from craniodental morphology that palaechthonids were terrestrial. Instead, the postcranium of T. wilsoni indicates that it was similar to that of all other plesiadapiforms for which skeletons have been recovered in having distinct specializations consistent with arboreality.

19.
PLoS One ; 11(2): e0146825, 2016.
Article in English | MEDLINE | ID: mdl-26840445

ABSTRACT

Accounts of woolly mammoths (Mammuthus primigenius) preserved so well in ice that their meat is still edible have a long history of intriguing the public and influencing paleontological thought on Quaternary extinctions and climate, with some scientists resorting to catastrophism to explain the instantaneous freezing necessary to preserve edible meat. Famously, members of The Explorers Club purportedly dined on frozen mammoth from Alaska, USA, in 1951. This event, well received by the press and general public, became an enduring legend for the Club and popularized the notorious annual tradition of serving rare and exotic food at Club dinners that continues to this day. The Yale Peabody Museum holds a sample of meat preserved from the 1951 meal, interestingly labeled as a South American giant ground sloth (Megatherium), not mammoth. We sequenced a fragment of the mitochondrial cytochrome-b gene and studied archival material to verify its identity, which if genuine, would extend the range of Megatherium over 600% and alter our views on ground sloth evolution. Our results indicate that the meat was not mammoth or Megatherium but green sea turtle (Chelonia mydas). The prehistoric dinner was likely an elaborate publicity stunt. Our study emphasizes the value of museums collecting and curating voucher specimens, particularly those used for evidence of extraordinary claims.


Subject(s)
Mammoths , Meat , Sloths , Alaska , Animals , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Food, Preserved , Humans , Mammoths/classification , Mammoths/genetics , Phylogeny , Sloths/classification , Sloths/genetics
20.
J Morphol ; 253(1): 10-42, 2002 Jul.
Article in English | MEDLINE | ID: mdl-11981802

ABSTRACT

In this study, the forelimb of 12 species of tupaiids was analyzed functionally and compared to that of other archontan mammals. Several differences that relate to differential substrate use were found in the forelimb morphology of tupaiids. These differences included shape of the scapula, length and orientation of the coracoid process, size of the lesser tuberosity, shape of the capitulum, length of the olecranon process, and shape of the radial head and central fossa. The forelimb of the arboreal Ptilocercus lowii, the only ptilocercine, is better adapted for arboreal locomotion, while that of tupaiines is better adapted for terrestrial (or scansorial) locomotion. While the forelimb of the arboreal Ptilocercus appears to be habitually flexed and exhibits more mobility in its joints, a necessity for movement on uneven, discontinuous arboreal supports, all tupaiines are characterized by more extended forelimbs and less mobility in their joints. These restricted joints limit movements more to the parasagittal plane, which increases the efficiency of locomotion on a more even and continuous surface like the ground. Even the most arboreal tupaiines remain similar to their terrestrial relatives in their forelimb morphology, which probably reflects the terrestrial ancestry of Tupaiinae (but not Tupaiidae). The forelimb of Urogale everetti is unique among tupaiines in that it exhibits adaptations for scratch-digging. Several features of the tupaiid forelimb reflect the arboreal ancestry of Tupaiidae and it is proposed that the ancestral tupaiid was arboreal like Ptilocercus. Also, compared to the forelimb character states of tupaiines, those of Ptilocercus are more similar to those of other archontans and it is proposed that the attributes of the forelimb of Ptilocercus are primitive for the Tupaiidae. Hence, Ptilocercus should be considered in any phylogenetic analysis that includes Scandentia.


Subject(s)
Forelimb/anatomy & histology , Tupaiidae/anatomy & histology , Animals , Biological Evolution , Carpus, Animal/anatomy & histology , Cluster Analysis , Humerus/anatomy & histology , Phylogeny , Radius/anatomy & histology , Scapula/anatomy & histology , Tupaiidae/classification , Ulna/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL