Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Respir Crit Care Med ; 209(7): 805-815, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38190719

ABSTRACT

Rationale: Two molecular phenotypes of sepsis and acute respiratory distress syndrome, termed hyperinflammatory and hypoinflammatory, have been consistently identified by latent class analysis in numerous cohorts, with widely divergent clinical outcomes and differential responses to some treatments; however, the key biological differences between these phenotypes remain poorly understood.Objectives: We used host and microbe metagenomic sequencing data from blood to deepen our understanding of biological differences between latent class analysis-derived phenotypes and to assess concordance between the latent class analysis-derived phenotypes and phenotypes reported by other investigative groups (e.g., Sepsis Response Signature [SRS1-2], molecular diagnosis and risk stratification of sepsis [MARS1-4], reactive and uninflamed).Methods: We analyzed data from 113 patients with hypoinflammatory sepsis and 76 patients with hyperinflammatory sepsis enrolled in a two-hospital prospective cohort study. Molecular phenotypes had been previously assigned using latent class analysis.Measurements and Main Results: The hyperinflammatory and hypoinflammatory phenotypes of sepsis had distinct gene expression signatures, with 5,755 genes (31%) differentially expressed. The hyperinflammatory phenotype was associated with elevated expression of innate immune response genes, whereas the hypoinflammatory phenotype was associated with elevated expression of adaptive immune response genes and, notably, T cell response genes. Plasma metagenomic analysis identified differences in prevalence of bacteremia, bacterial DNA abundance, and composition between the phenotypes, with an increased presence and abundance of Enterobacteriaceae in the hyperinflammatory phenotype. Significant overlap was observed between these phenotypes and previously identified transcriptional subtypes of acute respiratory distress syndrome (reactive and uninflamed) and sepsis (SRS1-2). Analysis of data from the VANISH trial indicated that corticosteroids might have a detrimental effect in patients with the hypoinflammatory phenotype.Conclusions: The hyperinflammatory and hypoinflammatory phenotypes have distinct transcriptional and metagenomic features that could be leveraged for precision treatment strategies.


Subject(s)
Respiratory Distress Syndrome , Sepsis , Humans , Prospective Studies , Critical Illness , Phenotype , Sepsis/genetics , Sepsis/complications , Respiratory Distress Syndrome/complications
2.
Am J Respir Crit Care Med ; 209(7): 816-828, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38345571

ABSTRACT

Rationale: Two molecular phenotypes have been identified in acute respiratory distress syndrome (ARDS). In the ROSE (Reevaluation of Systemic Early Neuromuscular Blockade) trial of cisatracurium in moderate to severe ARDS, we addressed three unanswered questions: 1) Do the same phenotypes emerge in a more severe ARDS cohort with earlier recruitment; 2) Do phenotypes respond differently to neuromuscular blockade? and 3) What biological pathways most differentiate inflammatory phenotypes?Methods: We performed latent class analysis in ROSE using preenrollment clinical and protein biomarkers. In a subset of patients (n = 134), we sequenced whole-blood RNA using enrollment and Day 2 samples and performed differential gene expression and pathway analyses. Informed by the differential gene expression analysis, we measured additional plasma proteins and evaluated their abundance relative to gene expression amounts.Measurements and Main Results: In ROSE, we identified the hypoinflammatory (60.4%) and hyperinflammatory (39.6%) phenotypes with similar biological and clinical characteristics as prior studies, including higher mortality at Day 90 for the hyperinflammatory phenotype (30.3% vs. 61.6%; P < 0.0001). We observed no treatment interaction between the phenotypes and randomized groups for mortality. The hyperinflammatory phenotype was enriched for genes associated with innate immune response, tissue remodeling, and zinc metabolism at Day 0 and collagen synthesis and neutrophil degranulation at Day 2. Longitudinal changes in gene expression patterns differed dependent on survivorship. For most highly expressed genes, we observed correlations with their corresponding plasma proteins' abundance. However, for the class-defining plasma proteins in the latent class analysis, no correlation was observed with their corresponding genes' expression.Conclusions: The hyperinflammatory and hypoinflammatory phenotypes have different clinical, protein, and dynamic transcriptional characteristics. These findings support the clinical and biological potential of molecular phenotypes to advance precision care in ARDS.


Subject(s)
Respiratory Distress Syndrome , Humans , Phenotype , Biomarkers , Blood Proteins/genetics , Gene Expression
3.
Crit Care ; 28(1): 185, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38807178

ABSTRACT

BACKGROUND: Streptococcus pneumoniae is the most common bacterial cause of community acquired pneumonia and the acute respiratory distress syndrome (ARDS). Some clinical trials have demonstrated a beneficial effect of corticosteroid therapy in community acquired pneumonia, COVID-19, and ARDS, but the mechanisms of this benefit remain unclear. The primary objective of this study was to investigate the effects of corticosteroids on the pulmonary biology of pneumococcal pneumonia in a mouse model. A secondary objective was to identify shared transcriptomic features of pneumococcal pneumonia and steroid treatment in the mouse model and clinical samples. METHODS: We carried out comprehensive physiologic, biochemical, and histological analyses in mice to identify the mechanisms of lung injury in Streptococcus pneumoniae with and without adjunctive steroid therapy. We also studied lower respiratory tract gene expression from a cohort of 15 mechanically ventilated patients (10 with Streptococcus pneumoniae and 5 controls) to compare with the transcriptional studies in the mice. RESULTS: In mice with pneumonia, dexamethasone in combination with ceftriaxone reduced (1) pulmonary edema formation, (2) alveolar protein permeability, (3) proinflammatory cytokine release, (4) histopathologic lung injury score, and (5) hypoxemia but did not increase bacterial burden. Transcriptomic analyses identified effects of steroid therapy in mice that were also observed in the clinical samples. CONCLUSIONS: In combination with appropriate antibiotic therapy in mice, treatment of pneumococcal pneumonia with steroid therapy reduced hypoxemia, pulmonary edema, lung permeability, and histologic criteria of lung injury, and also altered inflammatory responses at the protein and gene expression level. The transcriptional studies in patients suggest that the mouse model replicates some of the features of pneumonia in patients with Streptococcus pneumoniae and steroid treatment. Overall, these studies provide evidence for the mechanisms that may explain the beneficial effects of glucocorticoid therapy in patients with community acquired pneumonia from Streptococcus Pneumoniae.


Subject(s)
Adrenal Cortex Hormones , Disease Models, Animal , Pneumonia, Pneumococcal , Animals , Pneumonia, Pneumococcal/drug therapy , Mice , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/pharmacology , Humans , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Female , Male , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/pathogenicity
4.
Crit Care ; 28(1): 132, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649920

ABSTRACT

BACKGROUND: Rapidly improving acute respiratory distress syndrome (RIARDS) is an increasingly appreciated subgroup of ARDS in which hypoxemia improves within 24 h after initiation of mechanical ventilation. Detailed clinical and biological features of RIARDS have not been clearly defined, and it is unknown whether RIARDS is associated with the hypoinflammatory or hyperinflammatory phenotype of ARDS. The purpose of this study was to define the clinical and biological features of RIARDS and its association with inflammatory subphenotypes. METHODS: We analyzed data from 215 patients who met Berlin criteria for ARDS (endotracheally intubated) and were enrolled in a prospective observational cohort conducted at two sites, one tertiary care center and one urban safety net hospital. RIARDS was defined according to previous studies as improvement of hypoxemia defined as (i) PaO2:FiO2 > 300 or (ii) SpO2: FiO2 > 315 on the day following diagnosis of ARDS (day 2) or (iii) unassisted breathing by day 2 and for the next 48 h (defined as absence of endotracheal intubation on day 2 through day 4). Plasma biomarkers were measured on samples collected on the day of study enrollment, and ARDS phenotypes were allocated as previously described. RESULTS: RIARDS accounted for 21% of all ARDS participants. Patients with RIARDS had better clinical outcomes compared to those with persistent ARDS, with lower hospital mortality (13% vs. 57%; p value < 0.001) and more ICU-free days (median 24 vs. 0; p value < 0.001). Plasma levels of interleukin-6, interleukin-8, and plasminogen activator inhibitor-1 were significantly lower among patients with RIARDS. The hypoinflammatory phenotype of ARDS was more common among patients with RIARDS (78% vs. 51% in persistent ARDS; p value = 0.001). CONCLUSIONS: This study identifies a high prevalence of RIARDS in a multicenter observational cohort and confirms the more benign clinical course of these patients. We report the novel finding that RIARDS is characterized by lower concentrations of plasma biomarkers of inflammation compared to persistent ARDS, and that hypoinflammatory ARDS is more prevalent among patients with RIARDS. Identification and exclusion of RIARDS could potentially improve prognostic and predictive enrichment in clinical trials.


Subject(s)
Biomarkers , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/physiopathology , Male , Female , Middle Aged , Prospective Studies , Aged , Biomarkers/blood , Biomarkers/analysis , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Adult , Cohort Studies , Hypoxia/blood
5.
Am J Physiol Lung Cell Mol Physiol ; 323(2): L152-L164, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35670478

ABSTRACT

Electronic cigarettes (e-cigarettes) are designed to simulate combustible cigarette smoking and to aid in smoking cessation. Although the number of e-cigarette users has been increasing, the potential health impacts and biological effects of e-cigarettes are still not fully understood. Previous research has focused on the biological effects of e-cigarettes on lung cancer cell lines and distal airway epithelial cells; however, there have been few published studies on the effect of e-cigarettes on primary lung alveolar epithelial cells. The primary purpose of this study was to investigate the direct effect of e-cigarette aerosol on primary human lung alveolar epithelial type 2 (AT2) cells, both alone and in the presence of viral infection. The Melo-3 atomizer caused direct AT2 cell toxicity, whereas the more popular Juul pod's aerosol did not have a detectable cytotoxic effect on AT2 cells. Juul nicotine aerosol also did not increase short-term susceptibility to viral infection. However, 3 days of exposure upregulated genes central to the generation of reactive oxygen species, lipid peroxidation, and carcinogen metabolism and downregulated key innate immune system genes related to cytokine and chemokine signaling. These findings have implications for the potentially injurious impact of long-term use of popular low-power e-cigarette pods on the human alveolar epithelium. Gene expression data might be an important endpoint for evaluating the potential harmful effects of vaping devices that do not cause overt toxicity.


Subject(s)
Electronic Nicotine Delivery Systems , Vaping , Alveolar Epithelial Cells , Humans , Nicotine/adverse effects , Respiratory Aerosols and Droplets , Vaping/adverse effects
6.
Thorax ; 77(1): 13-21, 2022 01.
Article in English | MEDLINE | ID: mdl-34253679

ABSTRACT

RATIONALE: Using latent class analysis (LCA), two subphenotypes of acute respiratory distress syndrome (ARDS) have consistently been identified in five randomised controlled trials (RCTs), with distinct biological characteristics, divergent outcomes and differential treatment responses to randomised interventions. Their existence in unselected populations of ARDS remains unknown. We sought to identify subphenotypes in observational cohorts of ARDS using LCA. METHODS: LCA was independently applied to patients with ARDS from two prospective observational cohorts of patients admitted to the intensive care unit, derived from the Validating Acute Lung Injury markers for Diagnosis (VALID) (n=624) and Early Assessment of Renal and Lung Injury (EARLI) (n=335) studies. Clinical and biological data were used as class-defining variables. To test for concordance with prior ARDS subphenotypes, the performance metrics of parsimonious classifier models (interleukin 8, bicarbonate, protein C and vasopressor-use), previously developed in RCTs, were evaluated in EARLI and VALID with LCA-derived subphenotypes as the gold-standard. RESULTS: A 2-class model best fit the population in VALID (p=0.0010) and in EARLI (p<0.0001). Class 2 comprised 27% and 37% of the populations in VALID and EARLI, respectively. Consistent with the previously described 'hyperinflammatory' subphenotype, Class 2 was characterised by higher proinflammatory biomarkers, acidosis and increased shock and worse clinical outcomes. The similarities between these and prior RCT-derived subphenotypes were further substantiated by the performance of the parsimonious classifier models in both cohorts (area under the curves 0.92-0.94). The hyperinflammatory subphenotype was associated with increased prevalence of chronic liver disease and neutropenia and reduced incidence of chronic obstructive pulmonary disease. Measurement of novel biomarkers showed significantly higher levels of matrix metalloproteinase-8 and markers of endothelial injury in the hyperinflammatory subphenotype, whereas, matrix metalloproteinase-9 was significantly lower. CONCLUSION: Previously described subphenotypes are generalisable to unselected populations of non-trauma ARDS.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Biomarkers , Humans , Latent Class Analysis , Prospective Studies , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/etiology
7.
Res Sq ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38464245

ABSTRACT

Background: Streptococcus pneumoniae is the most common bacterial cause of community acquired pneumonia and the acute respiratory distress syndrome (ARDS). Some clinical trials have demonstrated a beneficial effect of corticosteroid therapy in community acquired pneumonia, COVID-19, and ARDS, but the mechanisms of this benefit remain unclear. The objective of this study was to investigate the effects of corticosteroids on the pulmonary biology of pneumococcal pneumonia in an observational cohort of mechanically ventilated patients and in a mouse model of bacterial pneumonia with Streptococcus pneumoniae. Methods: We studied gene expression with lower respiratory tract transcriptomes from a cohort of mechanically ventilated patients and in mice. We also carried out comprehensive physiologic, biochemical, and histological analyses in mice to identify the mechanisms of lung injury in Streptococcus pneumoniae with and without adjunctive steroid therapy. Results: Transcriptomic analysis identified pleiotropic effects of steroid therapy on the lower respiratory tract in critically ill patients with pneumococcal pneumonia, findings that were reproducible in mice. In mice with pneumonia, dexamethasone in combination with ceftriaxone reduced (1) pulmonary edema formation, (2) alveolar protein permeability, (3) proinflammatory cytokine release, (4) histopathologic lung injury score, and (5) hypoxemia but did not increase bacterial burden. Conclusions: The gene expression studies in patients and in the mice support the clinical relevance of the mouse studies, which replicate several features of pneumococcal pneumonia and steroid therapy in humans. In combination with appropriate antibiotic therapy in mice, treatment of pneumococcal pneumonia with steroid therapy reduced hypoxemia, pulmonary edema, lung permeability, and histologic criteria of lung injury, and also altered inflammatory responses at the protein and gene expression level. The results from these studies provide evidence for the mechanisms that may explain the beneficial effects of glucocorticoid therapy in patients with community acquired pneumonia from Streptococcus Pneumoniae.

8.
Nat Commun ; 15(1): 5483, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942804

ABSTRACT

Dexamethasone is the standard of care for critically ill patients with COVID-19, but the mechanisms by which it decreases mortality and its immunological effects in this setting are not understood. Here we perform bulk and single-cell RNA sequencing of samples from the lower respiratory tract and blood, and assess plasma cytokine profiling to study the effects of dexamethasone on both systemic and pulmonary immune cell compartments. In blood samples, dexamethasone is associated with decreased expression of genes associated with T cell activation, including TNFSFR4 and IL21R. We also identify decreased expression of several immune pathways, including major histocompatibility complex-II signaling, selectin P ligand signaling, and T cell recruitment by intercellular adhesion molecule and integrin activation, suggesting these are potential mechanisms of the therapeutic benefit of steroids in COVID-19. We identify additional compartment- and cell- specific differences in the effect of dexamethasone that are reproducible in publicly available datasets, including steroid-resistant interferon pathway expression in the respiratory tract, which may be additional therapeutic targets. In summary, we demonstrate compartment-specific effects of dexamethasone in critically ill COVID-19 patients, providing mechanistic insights with potential therapeutic relevance. Our results highlight the importance of studying compartmentalized inflammation in critically ill patients.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Cytokines , Dexamethasone , Lung , SARS-CoV-2 , Dexamethasone/therapeutic use , Dexamethasone/pharmacology , Humans , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/drug effects , Lung/drug effects , Lung/virology , Cytokines/metabolism , Cytokines/blood , Critical Illness , Male , Single-Cell Analysis , Female , Middle Aged , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Aged , Lymphocyte Activation/drug effects
9.
Front Immunol ; 14: 1076772, 2023.
Article in English | MEDLINE | ID: mdl-36999019

ABSTRACT

E-cigarette use has rapidly increased as an alternative means of nicotine delivery by heated aerosolization. Recent studies demonstrate nicotine-containing e-cigarette aerosols can have immunosuppressive and pro-inflammatory effects, but it remains unclear how e-cigarettes and the constituents of e-liquids may impact acute lung injury and the development of acute respiratory distress syndrome caused by viral pneumonia. Therefore, in these studies, mice were exposed one hour per day over nine consecutive days to aerosol generated by the clinically-relevant tank-style Aspire Nautilus aerosolizing e-liquid containing a mixture of vegetable glycerin and propylene glycol (VG/PG) with or without nicotine. Exposure to the nicotine-containing aerosol resulted in clinically-relevant levels of plasma cotinine, a nicotine-derived metabolite, and an increase in the pro-inflammatory cytokines IL-17A, CXCL1, and MCP-1 in the distal airspaces. Following the e-cigarette exposure, mice were intranasally inoculated with influenza A virus (H1N1 PR8 strain). Exposure to aerosols generated from VG/PG with and without nicotine caused greater influenza-induced production in the distal airspaces of the pro-inflammatory cytokines IFN-γ, TNFα, IL-1ß, IL-6, IL-17A, and MCP-1 at 7 days post inoculation (dpi). Compared to the aerosolized carrier VG/PG, in mice exposed to aerosolized nicotine there was a significantly lower amount of Mucin 5 subtype AC (MUC5AC) in the distal airspaces and significantly higher lung permeability to protein and viral load in lungs at 7 dpi with influenza. Additionally, nicotine caused relative downregulation of genes associated with ciliary function and fluid clearance and an increased expression of pro-inflammatory pathways at 7 dpi. These results show that (1) the e-liquid carrier VG/PG increases the pro-inflammatory immune responses to viral pneumonia and that (2) nicotine in an e-cigarette aerosol alters the transcriptomic response to pathogens, blunts host defense mechanisms, increases lung barrier permeability, and reduces viral clearance during influenza infection. In conclusion, acute exposure to aerosolized nicotine can impair clearance of viral infection and exacerbate lung injury, findings that have implications for the regulation of e-cigarette products.


Subject(s)
Electronic Nicotine Delivery Systems , Influenza A Virus, H1N1 Subtype , Influenza, Human , Pneumonia, Viral , Mice , Animals , Humans , Nicotine/adverse effects , Interleukin-17/pharmacology , Respiratory Aerosols and Droplets , Lung , Gene Expression
10.
Res Sq ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37577607

ABSTRACT

Dexamethasone is the standard of care for critically ill patients with COVID-19, but the mechanisms by which it decreases mortality and its immunological effects in this setting are not understood. We performed bulk and single-cell RNA sequencing of the lower respiratory tract and blood, and plasma cytokine profiling to study the effect of dexamethasone on systemic and pulmonary immune cells. We find decreased signatures of antigen presentation, T cell recruitment, and viral injury in patients treated with dexamethasone. We identify compartment- and cell- specific differences in the effect of dexamethasone in patients with severe COVID-19 that are reproducible in publicly available datasets. Our results highlight the importance of studying compartmentalized inflammation in critically ill patients.

11.
Lancet Respir Med ; 11(11): 965-974, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37633303

ABSTRACT

BACKGROUND: In sepsis and acute respiratory distress syndrome (ARDS), heterogeneity has contributed to difficulty identifying effective pharmacotherapies. In ARDS, two molecular phenotypes (hypoinflammatory and hyperinflammatory) have consistently been identified, with divergent outcomes and treatment responses. In this study, we sought to derive molecular phenotypes in critically ill adults with sepsis, determine their overlap with previous ARDS phenotypes, and evaluate whether they respond differently to treatment in completed sepsis trials. METHODS: We used clinical data and plasma biomarkers from two prospective sepsis cohorts, the Validating Acute Lung Injury biomarkers for Diagnosis (VALID) study (N=1140) and the Early Assessment of Renal and Lung Injury (EARLI) study (N=818), in latent class analysis (LCA) to identify the optimal number of classes in each cohort independently. We used validated models trained to classify ARDS phenotypes to evaluate concordance of sepsis and ARDS phenotypes. We applied these models retrospectively to the previously published Prospective Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis and Septic Shock (PROWESS-SHOCK) trial and Vasopressin and Septic Shock Trial (VASST) to assign phenotypes and evaluate heterogeneity of treatment effect. FINDINGS: A two-class model best fit both VALID and EARLI (p<0·0001). In VALID, 804 (70·5%) of the 1140 patients were classified as hypoinflammatory and 336 (29·5%) as hyperinflammatory; in EARLI, 530 (64·8%) of 818 were hypoinflammatory and 288 (35·2%) hyperinflammatory. We observed higher plasma pro-inflammatory cytokines, more vasopressor use, more bacteraemia, lower protein C, and higher mortality in the hyperinflammatory than in the hypoinflammatory phenotype (p<0·0001 for all). Classifier models indicated strong concordance between sepsis phenotypes and previously identified ARDS phenotypes (area under the curve 0·87-0·96, depending on the model). Findings were similar excluding participants with both sepsis and ARDS. In PROWESS-SHOCK, 1142 (68·0%) of 1680 patients had the hypoinflammatory phenotype and 538 (32·0%) had the hyperinflammatory phenotype, and response to activated protein C differed by phenotype (p=0·0043). In VASST, phenotype proportions were similar to other cohorts; however, no treatment interaction with the type of vasopressor was observed (p=0·72). INTERPRETATION: Molecular phenotypes previously identified in ARDS are also identifiable in multiple sepsis cohorts and respond differently to activated protein C. Molecular phenotypes could represent a treatable trait in critical illness beyond the patient's syndromic diagnosis. FUNDING: US National Institutes of Health.


Subject(s)
Respiratory Distress Syndrome , Sepsis , Shock, Septic , Adult , Humans , Shock, Septic/diagnosis , Shock, Septic/drug therapy , Protein C/therapeutic use , Retrospective Studies , Prospective Studies , Sepsis/diagnosis , Sepsis/drug therapy , Sepsis/complications , Phenotype , Biomarkers , Vasoconstrictor Agents/therapeutic use , Randomized Controlled Trials as Topic
12.
iScience ; 26(10): 107813, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37810211

ABSTRACT

Altered myeloid inflammation and lymphopenia are hallmarks of severe infections. We identified the upregulated EN-RAGE gene program in airway and blood myeloid cells from patients with acute lung injury from SARS-CoV-2 or other causes across 7 cohorts. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGEhi myeloid cells express features consistent with suppressor cell functionality, including low HLA-DR and high PD-L1. Sustained EN-RAGE program expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell dysfunction markers. IL-6 upregulated many EN-RAGE program genes in monocytes in vitro. IL-6 signaling blockade by tocilizumab in a placebo-controlled clinical trial led to rapid normalization of EN-RAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.

13.
Lancet Respir Med ; 10(4): 367-377, 2022 04.
Article in English | MEDLINE | ID: mdl-35026177

ABSTRACT

BACKGROUND: Two acute respiratory distress syndrome (ARDS) subphenotypes (hyperinflammatory and hypoinflammatory) with distinct clinical and biological features and differential treatment responses have been identified using latent class analysis (LCA) in seven individual cohorts. To facilitate bedside identification of subphenotypes, clinical classifier models using readily available clinical variables have been described in four randomised controlled trials. We aimed to assess the performance of these models in observational cohorts of ARDS. METHODS: In this observational, multicohort, retrospective study, we validated two machine-learning clinical classifier models for assigning ARDS subphenotypes in two observational cohorts of patients with ARDS: Early Assessment of Renal and Lung Injury (EARLI; n=335) and Validating Acute Lung Injury Markers for Diagnosis (VALID; n=452), with LCA-derived subphenotypes as the gold standard. The primary model comprised only vital signs and laboratory variables, and the secondary model comprised all predictors in the primary model, with the addition of ventilatory variables and demographics. Model performance was assessed by calculating the area under the receiver operating characteristic curve (AUC) and calibration plots, and assigning subphenotypes using a probability cutoff value of 0·5 to determine sensitivity, specificity, and accuracy of the assignments. We also assessed the performance of the primary model in EARLI using data automatically extracted from an electronic health record (EHR; EHR-derived EARLI cohort). In Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE; n=2813), a multinational, observational ARDS cohort, we applied a custom classifier model (with fewer variables than the primary model) to determine the prognostic value of the subphenotypes and tested their interaction with the positive end-expiratory pressure (PEEP) strategy, with 90-day mortality as the dependent variable. FINDINGS: The primary clinical classifier model had an area under receiver operating characteristic curve (AUC) of 0·92 (95% CI 0·90-0·95) in EARLI and 0·88 (0·84-0·91) in VALID. Performance of the primary model was similar when using exclusively EHR-derived predictors compared with manually curated predictors (AUC=0·88 [95% CI 0·81-0·94] vs 0·92 [0·88-0·97]). In LUNG SAFE, 90-day mortality was higher in patients assigned the hyperinflammatory subphenotype than in those with the hypoinflammatory phenotype (414 [57%] of 725 vs 694 [33%] of 2088; p<0·0001). There was a significant treatment interaction with PEEP strategy and ARDS subphenotype (p=0·041), with lower 90-day mortality in the high PEEP group of patients with the hyperinflammatory subphenotype (hyperinflammatory subphenotype: 169 [54%] of 313 patients in the high PEEP group vs 127 [62%] of 205 patients in the low PEEP group; hypoinflammatory subphenotype: 231 [34%] of 675 patients in the high PEEP group vs 233 [32%] of 734 patients in the low PEEP group). INTERPRETATION: Classifier models using clinical variables alone can accurately assign ARDS subphenotypes in observational cohorts. Application of these models can provide valuable prognostic information and could inform management strategies for personalised treatment, including application of PEEP, once prospectively validated. FUNDING: US National Institutes of Health and European Society of Intensive Care Medicine.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Humans , Machine Learning , Positive-Pressure Respiration , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Retrospective Studies
14.
Nat Microbiol ; 7(11): 1805-1816, 2022 11.
Article in English | MEDLINE | ID: mdl-36266337

ABSTRACT

We carried out integrated host and pathogen metagenomic RNA and DNA next generation sequencing (mNGS) of whole blood (n = 221) and plasma (n = 138) from critically ill patients following hospital admission. We assigned patients into sepsis groups on the basis of clinical and microbiological criteria. From whole-blood gene expression data, we distinguished patients with sepsis from patients with non-infectious systemic inflammatory conditions using a trained bagged support vector machine (bSVM) classifier (area under the receiver operating characteristic curve (AUC) = 0.81 in the training set; AUC = 0.82 in a held-out validation set). Plasma RNA also yielded a transcriptional signature of sepsis with several genes previously reported as sepsis biomarkers, and a bSVM sepsis diagnostic classifier (AUC = 0.97 training set; AUC = 0.77 validation set). Pathogen detection performance of plasma mNGS varied on the basis of pathogen and site of infection. To improve detection of virus, we developed a secondary transcriptomic classifier (AUC = 0.94 training set; AUC = 0.96 validation set). We combined host and microbial features to develop an integrated sepsis diagnostic model that identified 99% of microbiologically confirmed sepsis cases, and predicted sepsis in 74% of suspected and 89% of indeterminate sepsis cases. In summary, we suggest that integrating host transcriptional profiling and broad-range metagenomic pathogen detection from nucleic acid is a promising tool for sepsis diagnosis.


Subject(s)
Critical Illness , Sepsis , Adult , Humans , Prospective Studies , Sepsis/diagnosis , Cohort Studies , RNA
15.
JCI Insight ; 7(24)2022 12 22.
Article in English | MEDLINE | ID: mdl-36346670

ABSTRACT

Clinical outcomes after lung transplantation, a life-saving therapy for patients with end-stage lung diseases, are limited by primary graft dysfunction (PGD). PGD is an early form of acute lung injury with no specific pharmacologic therapies. Here, we present a large multicenter study of plasma and bronchoalveolar lavage (BAL) samples collected on the first posttransplant day, a critical time for investigations of immune pathways related to PGD. We demonstrated that ligands for NKG2D receptors were increased in the BAL from participants who developed severe PGD and were associated with increased time to extubation, prolonged intensive care unit length of stay, and poor peak lung function. Neutrophil extracellular traps (NETs) were increased in PGD and correlated with BAL TNF-α and IFN-γ cytokines. Mechanistically, we found that airway epithelial cell NKG2D ligands were increased following hypoxic challenge. NK cell killing of hypoxic airway epithelial cells was abrogated with NKG2D receptor blockade, and TNF-α and IFN-γ provoked neutrophils to release NETs in culture. These data support an aberrant NK cell/neutrophil axis in human PGD pathogenesis. Early measurement of stress ligands and blockade of the NKG2D receptor hold promise for risk stratification and management of PGD.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , NK Cell Lectin-Like Receptor Subfamily K , Primary Graft Dysfunction/etiology , Tumor Necrosis Factor-alpha , Lung Transplantation/adverse effects , Lung/metabolism
16.
ERJ Open Res ; 7(3)2021 Jul.
Article in English | MEDLINE | ID: mdl-34235210

ABSTRACT

INTRODUCTION: Continuing inhaled corticosteroid (ICS) use does not benefit all patients with COPD, yet it is difficult to determine which patients may safely sustain ICS withdrawal. Although eosinophil levels can facilitate this decision, better biomarkers could improve personalised treatment decisions. METHODS: We performed transcriptional profiling of sputum to explore the molecular biology and compared the predictive value of an unbiased gene signature versus sputum eosinophils for exacerbations after ICS withdrawal in COPD patients. RNA-sequencing data of induced sputum samples from 43 COPD patients were associated with the time to exacerbation after ICS withdrawal. Expression profiles of differentially expressed genes were summarised to create gene signatures. In addition, we built a Bayesian network model to determine coregulatory networks related to the onset of COPD exacerbations after ICS withdrawal. RESULTS: In multivariate analyses, we identified a gene signature (LGALS12, ALOX15, CLC, IL1RL1, CD24, EMR4P) associated with the time to first exacerbation after ICS withdrawal. The addition of this gene signature to a multiple Cox regression model explained more variance of time to exacerbations compared to a model using sputum eosinophils. The gene signature correlated with sputum eosinophil as well as macrophage cell counts. The Bayesian network model identified three coregulatory gene networks as well as sex to be related to an early versus late/nonexacerbation phenotype. CONCLUSION: We identified a sputum gene expression signature that exhibited a higher predictive value for predicting COPD exacerbations after ICS withdrawal than sputum eosinophilia. Future studies should investigate the utility of this signature, which might enhance personalised ICS treatment in COPD patients.

17.
Res Sq ; 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33469573

ABSTRACT

We performed comparative lower respiratory tract transcriptional profiling of 52 critically ill patients with the acute respiratory distress syndrome (ARDS) from COVID-19 or from other etiologies, as well as controls without ARDS. In contrast to a cytokine storm, we observed reduced proinflammatory gene expression in COVID-19 ARDS when compared to ARDS due to other causes. COVID-19 ARDS was characterized by a dysregulated host response with increased PTEN signaling and elevated expression of genes with non-canonical roles in inflammation and immunity that were predicted to be modulated by dexamethasone and granulocyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia, COVID-19 was characterized by impaired interferon-stimulated gene expression (ISG). We found that the relationship between SARS-CoV-2 viral load and expression of ISGs was decoupled in patients with COVID-19 ARDS when compared to patients with mild COVID-19. In summary, assessment of host gene expression in the lower airways of patients with COVID-19 ARDS did not demonstrate cytokine storm but instead revealed a unique and dysregulated host response predicted to be modified by dexamethasone.

18.
Nat Commun ; 12(1): 5152, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446707

ABSTRACT

The immunological features that distinguish COVID-19-associated acute respiratory distress syndrome (ARDS) from other causes of ARDS are incompletely understood. Here, we report the results of comparative lower respiratory tract transcriptional profiling of tracheal aspirate from 52 critically ill patients with ARDS from COVID-19 or from other etiologies, as well as controls without ARDS. In contrast to a "cytokine storm," we observe reduced proinflammatory gene expression in COVID-19 ARDS when compared to ARDS due to other causes. COVID-19 ARDS is characterized by a dysregulated host response with increased PTEN signaling and elevated expression of genes with non-canonical roles in inflammation and immunity. In silico analysis of gene expression identifies several candidate drugs that may modulate gene expression in COVID-19 ARDS, including dexamethasone and granulocyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia, COVID-19 is characterized by impaired interferon-stimulated gene (ISG) expression. The relationship between SARS-CoV-2 viral load and expression of ISGs is decoupled in patients with COVID-19 ARDS when compared to patients with mild COVID-19. In summary, assessment of host gene expression in the lower airways of patients reveals distinct immunological features of COVID-19 ARDS.


Subject(s)
COVID-19/genetics , RNA/genetics , Respiratory Distress Syndrome/genetics , Trachea/immunology , Adult , Aged , Aged, 80 and over , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Cohort Studies , Critical Illness , Cytokines/genetics , Cytokines/immunology , Female , Gene Expression Profiling , Humans , Male , Middle Aged , RNA/metabolism , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2/physiology , Sequence Analysis, RNA
19.
Res Sq ; 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-34013247

ABSTRACT

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing (scRNA-seq) we assessed lower respiratory tract immune responses and microbiome dynamics in 28 COVID-19 patients, 15 of whom developed VAP, and eight critically ill uninfected controls. Two days before VAP onset we observed a transcriptional signature of bacterial infection. Two weeks prior to VAP onset, following intubation, we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.

20.
medRxiv ; 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-33791731

ABSTRACT

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing we assessed lower respiratory tract immune responses and microbiome dynamics in 23 COVID-19 patients, 10 of whom developed VAP, and eight critically ill uninfected controls. At a median of three days (range: 2-4 days) before VAP onset we observed a transcriptional signature of bacterial infection. At a median of 15 days prior to VAP onset (range: 8-38 days), we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.

SELECTION OF CITATIONS
SEARCH DETAIL