Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Int J Mol Sci ; 23(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35682900

ABSTRACT

Disturbances in lipid metabolism related to excessive food intake and sedentary lifestyle are among major risk of various metabolic disorders. Stearoyl-CoA desaturase-1 (SCD1) has an essential role in these diseases, as it catalyzes the synthesis of unsaturated fatty acids, both supplying for fat storage and contributing to cellular defense against saturated fatty acid toxicity. Recent studies show that increased activity or over-expression of SCD1 is one of the contributing factors for type 2 diabetes mellitus (T2DM). We aimed to investigate the impact of the common missense rs2234970 (M224L) polymorphism on SCD1 function in transfected cells. We found a higher expression of the minor Leu224 variant, which can be attributed to a combination of mRNA and protein stabilization. The latter was further enhanced by various fatty acids. The increased level of Leu224 variant resulted in an elevated unsaturated: saturated fatty acid ratio, due to higher oleate and palmitoleate contents. Accumulation of Leu224 variant was found in a T2DM patient group, however, the difference was statistically not significant. In conclusion, the minor variant of rs2234970 polymorphism might contribute to the development of obesity-related metabolic disorders, including T2DM, through an increased intracellular level of SCD1.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Diseases , Diabetes Mellitus, Type 2/genetics , Fatty Acids/metabolism , Humans , Lipid Metabolism/genetics , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806300

ABSTRACT

Trans fatty acids (TFAs) are not synthesized in the human body but are generally ingested in substantial amounts. The widespread view that TFAs, particularly those of industrial origin, are unhealthy and contribute to obesity, cardiovascular diseases and diabetes is based mostly on in vivo studies, and the underlying molecular mechanisms remain to be elucidated. Here, we used a hepatoma model of palmitate-induced lipotoxicity to compare the metabolism and effects of the representative industrial and ruminant TFAs, elaidate and vaccenate, respectively, with those of cis-oleate. Cellular FAs, triacylglycerols, diacylglycerols and ceramides were quantitated using chromatography, markers of stress and apoptosis were assessed at mRNA and protein levels, ultrastructural changes were examined by electron microscopy and viability was evaluated by MTT assay. While TFAs were just slightly more damaging than oleate when applied alone, they were remarkably less protective against palmitate toxicity in cotreatments. These differences correlated with their diverse incorporation into the accumulating diacylglycerols and ceramides. Our results provide in vitro evidence for the unfavorable metabolic features and potent stress-inducing character of TFAs in comparison with oleate. These findings strengthen the reasoning against dietary trans fat intake, and they can also help us better understand the molecular mechanisms of lipotoxicity.


Subject(s)
Oleic Acid , Trans Fatty Acids , Ceramides/metabolism , Diglycerides/metabolism , Fatty Acids/metabolism , Hep G2 Cells , Humans , Oleic Acid/chemistry , Oleic Acid/toxicity , Oleic Acids , Palmitates/toxicity
3.
Int J Mol Sci ; 21(7)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283839

ABSTRACT

Dietary trans fatty acids (TFAs) have been implicated in serious health risks, yet little is known about their cellular effects and metabolism. We aim to undertake an in vitro comparison of two representative TFAs (elaidate and vaccenate) to the best-characterized endogenous cis-unsaturated FA (oleate). The present study addresses the possible protective action of TFAs on palmitate-treated RINm5F insulinoma cells with special regards to apoptosis, endoplasmic reticulum stress and the underlying ceramide and diglyceride (DG) accumulation. Both TFAs significantly improved cell viability and reduced apoptosis in palmitate-treated cells. They mildly attenuated palmitate-induced XBP-1 mRNA cleavage and phosphorylation of eukaryotic initiation factor 2α (eIF2α) and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), but they were markedly less potent than oleate. Accordingly, all the three unsaturated FAs markedly reduced cellular palmitate incorporation and prevented harmful ceramide and DG accumulation. However, more elaidate or vaccenate than oleate was inserted into ceramides and DGs. Our results revealed a protective effect of TFAs in short-term palmitate toxicity, yet they also provide important in vitro evidence and even a potential mechanism for unfavorable long-term health effects of TFAs compared to oleate.


Subject(s)
Ceramides/metabolism , Diglycerides/metabolism , Fatty Acids, Monounsaturated/pharmacology , Lipid Metabolism/drug effects , Palmitates/adverse effects , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Endoplasmic Reticulum Stress/drug effects , Fatty Acids, Monounsaturated/chemistry , Rats
4.
Glycoconj J ; 33(3): 435-45, 2016 06.
Article in English | MEDLINE | ID: mdl-26729242

ABSTRACT

In this work O-linked glycopeptides bearing mucin core-1 type structures were enriched from human serum. Since about 70 % of the O-glycans in human serum bind to the plant lectin Jacalin, we tested a previously successful protocol that combined Jacalin affinity enrichment on the protein- and peptide-level with ERLIC chromatography as a further enrichment step in between, to eliminate the high background of unmodified peptides. In parallel, we developed a simpler and significantly faster new workflow that used two lectins sequentially: wheat germ agglutinin and then Jacalin. The first lectin provides general glycopeptide enrichment, while the second specifically enriches O-linked glycopeptides with Galß1-3GalNAcα structures. Mass spectrometric analysis of enriched samples showed that the new sample preparation method is more selective and sensitive than the former. Altogether, 52 unique glycosylation sites in 20 proteins were identified in this study.


Subject(s)
Mucin-1/chemistry , Protein Processing, Post-Translational , Binding Sites , Glycosylation , Humans , Mass Spectrometry/methods , Mucin-1/blood , Mucin-1/metabolism , Plant Lectins/chemistry , Plant Lectins/metabolism
5.
Sci Rep ; 14(1): 177, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167845

ABSTRACT

Overnutrition and genetic predisposition are major risk factors for various metabolic disorders. Stearoyl-CoA desaturase-1 (SCD1) plays a key role in these conditions by synthesizing unsaturated fatty acids (FAs), thereby promoting fat storage and alleviating lipotoxicity. Expression of SCD1 is influenced by various saturated and cis-unsaturated FAs, but the possible role of dietary trans FAs (TFAs) and SCD1 promoter polymorphisms in its regulations has not been addressed. Therefore, we aimed to investigate the impact of the two main TFAs, vaccenate and elaidate, and four common promoter polymorphisms (rs1054411, rs670213, rs2275657, rs2275656) on SCD1 expression in HEK293T and HepG2 cell cultures using luciferase reporter assay, qPCR and immunoblotting. We found that SCD1 protein and mRNA levels as well as SCD1 promoter activity are markedly elevated by elaidate, but not altered by vaccenate. The promoter polymorphisms did not affect the basal transcriptional activity of SCD1. However, the minor allele of rs1054411 increased SCD1 expression in the presence of various FAs. Moreover, this variant was predicted in silico and verified in vitro to reduce the binding of ETS1 transcription factor to SCD1 promoter. Although we could not confirm an association with type 2 diabetes mellitus, the FA-dependent and ETS1-mediated effect of rs1054411 polymorphism deserves further investigation as it may modulate the development of lipid metabolism-related conditions.


Subject(s)
Diabetes Mellitus, Type 2 , Transcription Factors , Humans , Transcription Factors/genetics , Diabetes Mellitus, Type 2/genetics , Alleles , HEK293 Cells , Fatty Acids/metabolism , Fatty Acids, Unsaturated , Fatty Acids, Monounsaturated , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Proto-Oncogene Protein c-ets-1/genetics
6.
Nutr Metab (Lond) ; 20(1): 19, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37004042

ABSTRACT

BACKGROUND: High fat diet (HFD) increases the likelihood of dyslipidemia, which can be a serious risk factor for atherosclerosis, diabetes or hepatosteatosis. Although changes in different blood lipid levels were broadly investigated, such alterations in the liver tissue have not been studied before. The aim of the current study was to investigate the effect of HFD on hepatic triglyceride (TG), diglyceride (DG) and ceramide (CER) levels and on the expression of four key genes involved in lipid homeostasis (Pcsk9, Ldlr, Cd36 and Anxa2) in the liver. In addition, the potential role of PCSK9 in the observed changes was further investigated by using PCSK9 deficient mice. METHODS: We used two in vivo models: mice kept on HFD for 20 weeks and PCSK9-/- mice. The amount of the major TGs, DGs and CERs was measured by using HPLC-MS/MS analysis. The expression profiles of four lipid related genes, namely Pcsk9, Ldlr, Cd36 and Anxa2 were assessed. Co-localization studies were performed by confocal microscopy. RESULTS: In HFD mice, hepatic PCSK9 expression was decreased and ANXA2 expression was increased both on mRNA and protein levels, and the amount of LDLR and CD36 receptor proteins was increased. While LDLR protein level was also elevated in the livers of PCSK9-/- mice, there was no significant change in the expression of ANXA2 and CD36 in these animals. HFD induced a significant elevation in the hepatic levels of all measured TG and DG but not of CER types, and increased the proportion of monounsaturated vs. saturated TGs and DGs. Similar changes were detected in the hepatic lipid profiles of HFD and PCSK9-/- mice. Co-localization of PCSK9 with LDLR, CD36 and ANXA2 was verified in HepG2 cells. CONCLUSIONS: Our results show that obesogenic HFD downregulates PCSK9 expression in the liver and causes alterations in the hepatic lipid accumulation, which resemble those observed in PCSK9 deficiency. These findings suggest that PCSK9-mediated modulation of LDLR and CD36 expression might contribute to the HFD-induced changes in lipid homeostasis.

7.
Pathol Oncol Res ; 26(3): 1797-1803, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31705481

ABSTRACT

Acetaminophen (APAP) induced hepatotoxicity involves activation of c-Jun amino-terminal kinase (JNK), mitochondrial damage and ER stress. BGP-15, a hydroximic acid derivative, has been reported to have hepatoprotective effects in APAP overdose induced liver damage. Effect of BGP-15 was further investigated on mitochondria in APAP-overdose induced acute liver injury in mice. We found that BGP-15 efficiently preserved mitochondrial morphology, and it caused a marked decrease in the number of damaged mitochondria. Attenuation of mitochondrial damage by BGP-15 is supported by immunohistochemistry as the TOMM20 label and the co-localized autophagy markers detected in the livers of APAP-treated mice were markedly reduced upon BGP-15 administration. This effect, along with the observed prevention of JNK activation likely contribute to the mitochondrial protective action of BGP-15.


Subject(s)
Acetaminophen/toxicity , Analgesics, Non-Narcotic/toxicity , Chemical and Drug Induced Liver Injury/pathology , Enzyme Inhibitors/pharmacology , Mitochondria/drug effects , Oximes/pharmacology , Piperidines/pharmacology , Animals , Liver/drug effects , Liver/pathology , Mice
8.
FEBS Lett ; 594(3): 530-539, 2020 02.
Article in English | MEDLINE | ID: mdl-31557308

ABSTRACT

Elevated fatty acid (FA) levels contribute to severe metabolic diseases. Unbalanced oversupply of saturated FAs is particularly damaging, which renders stearoyl-CoA desaturase (SCD1) activity an important factor of resistance. A SCD1-related oxidoreductase protects cells against palmitate toxicity, so we aimed to test whether desaturase activity is limited by SCD1 itself or by the associated electron supply. Unsaturated/saturated FA ratio was markedly elevated by SCD1 overexpression while it remained unaffected by the overexpression of SCD1-related electron transfer proteins in HEK293T cells. Electron supply was not rate-limiting either in palmitate-treated cells or in cells with enhanced SCD1 expression. Our findings indicate the rate-limiting role of SCD1 itself, and that FA desaturation cannot be facilitated by reinforcing the electron supply of the enzyme.


Subject(s)
Fatty Acids/metabolism , Transfection , Electron Transport/drug effects , Gene Expression , HEK293 Cells , Humans , Kinetics , Palmitic Acid/pharmacology , Stearoyl-CoA Desaturase/genetics
9.
Biofactors ; 45(2): 236-243, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30496642

ABSTRACT

Local activation of cortisol in hormone target tissues is a major determinant of glucocorticoid effect. Disorders in this peripheral cortisol metabolism play an important role in the development of metabolic diseases, such as obesity or type 2 diabetes mellitus. Hence, dietary factors influencing the activity of the involved enzymes can have major impacts on the risk of the above diseases. Resveratrol and epigallocatechin gallate (EGCG), two natural polyphenols found in several nutriments and in green tea, respectively, are well-known for their antiobesity and antidiabetic activities. EGCG has been shown to interfere with microsomal cortisol production through decreasing the luminal NADPH:NADP+ ratio. The aim of this study was to clarify if resveratrol also induces such a redox shift or causes any direct enzyme inhibition that influences local cortisol production. Cortisone-cortisol conversions and changes in NADPH levels were monitored in rat liver microsomal vesicles. Cortisol production was inhibited by resveratrol in a concentration dependent manner while the intrinsic reducing and oxidizing capacity as well as the NADPH level inside the ER-derived vesicles remained unaffected. Activity measurements performed in permeabilized microsomes confirmed that resveratrol, unlike EGCG, inhibits 11ß-hydroxysteroid dehydrogenase type 1 directly. Long-term moderation of pre-receptor cortisol production likely contributes to the beneficial health effects of both polyphenols. © 2018 BioFactors, 45(2):236-243, 2019.


Subject(s)
Catechin/analogs & derivatives , Hydrocortisone/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Resveratrol/pharmacology , Animals , Catechin/pharmacology , Chromatography, High Pressure Liquid , Cortisone/metabolism , Male , Rats
10.
Food Chem Toxicol ; 124: 324-335, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30572061

ABSTRACT

High fatty acid (FA) levels are deleterious to pancreatic ß-cells, largely due to the accumulation of biosynthetic lipid intermediates, such as ceramides and diglycerides, which induce ER stress and apoptosis. Toxicity of palmitate (16:0) and oleate (18:1 cis-Δ9) has been widely investigated, while very little data is available on the cell damages caused by elaidate (18:1 trans-Δ9) and vaccenate (18:1 trans-Δ11), although the potential health effects of these dietary trans fatty acids (TFAs) received great publicity. We compared the effects of these four FAs on cell viability, apoptosis, ER stress, JNK phosphorylation and autophagy as well as on ceramide and diglyceride contents in RINm5F insulinoma cells. Similarly to oleate and unlike palmitate, TFAs reduced cell viability only at higher concentration, and they had mild effects on ER stress, apoptosis and autophagy. Palmitate increased ceramide and diglyceride levels far more than any of the unsaturated fatty acids; however, incorporation of TFAs in ceramides and diglycerides was strikingly more pronounced than that of oleate. This indicates a correlation between the accumulation of lipid intermediates and the severity of cell damage. Our findings reveal important metabolic characteristics of TFAs that might underlie a long term toxicity and hence deserve further investigation.


Subject(s)
Ceramides/metabolism , Dietary Fats, Unsaturated/toxicity , Diglycerides/metabolism , Oleic Acid/toxicity , Oleic Acids/toxicity , Trans Fatty Acids/toxicity , Animals , Apoptosis/drug effects , Cell Line, Tumor , Dietary Fats, Unsaturated/analysis , Endoplasmic Reticulum Stress/drug effects , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/pathology , MAP Kinase Kinase 4/metabolism , Necrosis/chemically induced , Oleic Acid/analysis , Oleic Acids/analysis , Palmitic Acids/analysis , Palmitic Acids/toxicity , Phosphorylation , Rats , Trans Fatty Acids/analysis
11.
FEBS Lett ; 590(5): 661-71, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26878259

ABSTRACT

Acyl-CoA desaturation in the endoplasmic reticulum (ER) membrane depends on cytosolic NADH or NADPH, whereas NADPH in the ER lumen is utilized by prereceptor glucocorticoid production. It was assumed that NADH cytochrome b5 oxidoreductase (Ncb5or) might connect Acyl-CoA desaturation to ER luminal redox. We aimed to clarify the ambiguous compartmentalization of Ncb5or and test the possible effect of stearoyl-CoA on microsomal NADPH level. Amino acid sequence analysis, fluorescence microscopy of GFP-tagged protein, immunocytochemistry, and western blot analysis of subcellular fractions unequivocally demonstrated that Ncb5or, either endogenous or exogenous, is localized in the cytoplasm and not in the ER lumen in cultured cells and liver tissue. Moreover, the involvement of ER-luminal reducing equivalents in stearoyl-CoA desaturation was excluded.


Subject(s)
Cytochrome-B(5) Reductase/metabolism , Cytosol/metabolism , Acyl Coenzyme A/metabolism , Computational Biology , Endoplasmic Reticulum/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Microsomes/metabolism , Oxidation-Reduction , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL