ABSTRACT
BACKGROUND: Antibiotic resistance is a global public health issue, particularly in low- and middle-income countries (LMICs), where antibiotics required to treat resistant infections are not affordable. LMICs also bear a disproportionately high burden of bacterial diseases, particularly among children, and resistance jeopardizes progress made in these areas. Although outpatient antibiotic use is a major driver of antibiotic resistance, data on inappropriate antibiotic prescribing in LMICs are scarce at the community level, where the majority of prescribing occurs. Here, we aimed to characterize inappropriate antibiotic prescribing among young outpatient children and to identify its determinants in 3 LMICs. METHODS AND FINDINGS: We used data from a prospective, community-based mother-and-child cohort (BIRDY, 2012 to 2018) conducted across urban and rural sites in Madagascar, Senegal, and Cambodia. Children were included at birth and followed-up for 3 to 24 months. Data from all outpatient consultations and antibiotics prescriptions were recorded. We defined inappropriate prescriptions as antibiotics prescribed for a health event determined not to require antibiotic therapy (antibiotic duration, dosage, and formulation were not considered). Antibiotic appropriateness was determined a posteriori using a classification algorithm developed according to international clinical guidelines. We used mixed logistic analyses to investigate risk factors for antibiotic prescription during consultations in which children were determined not to require antibiotics. Among the 2,719 children included in this analysis, there were 11,762 outpatient consultations over the follow-up period, of which 3,448 resulted in antibiotic prescription. Overall, 76.5% of consultations resulting in antibiotic prescription were determined not to require antibiotics, ranging from 71.5% in Madagascar to 83.3% in Cambodia. Among the 10,416 consultations (88.6%) determined not to require antibiotic therapy, 25.3% (n = 2,639) nonetheless resulted in antibiotic prescription. This proportion was much lower in Madagascar (15.6%) than in Cambodia (57.0%) or Senegal (57.2%) (p < 0.001). Among the consultations determined not to require antibiotics, in both Cambodia and Madagascar the diagnoses accounting for the greatest absolute share of inappropriate prescribing were rhinopharyngitis (59.0% of associated consultations in Cambodia, 7.9% in Madagascar) and gastroenteritis without evidence of blood in the stool (61.6% and 24.6%, respectively). In Senegal, uncomplicated bronchiolitis accounted for the greatest number of inappropriate prescriptions (84.4% of associated consultations). Across all inappropriate prescriptions, the most frequently prescribed antibiotic was amoxicillin in Cambodia and Madagascar (42.1% and 29.2%, respectively) and cefixime in Senegal (31.2%). Covariates associated with an increased risk of inappropriate prescription include patient age greater than 3 months (adjusted odds ratios (aOR) with 95% confidence interval (95% CI) ranged across countries from 1.91 [1.63, 2.25] to 5.25 [3.85, 7.15], p < 0.001) and living in rural as opposed to urban settings (aOR ranged across countries from 1.83 [1.57, 2.14] to 4.40 [2.34, 8.28], p < 0.001). Diagnosis with a higher severity score was also associated with an increased risk of inappropriate prescription (aOR = 2.00 [1.75, 2.30] for moderately severe, 3.10 [2.47, 3.91] for most severe, p < 0.001), as was consultation during the rainy season (aOR = 1.32 [1.19, 1.47], p < 0.001). The main limitation of our study is the lack of bacteriological documentation, which may have resulted in some diagnosis misclassification and possible overestimation of inappropriate antibiotic prescription. CONCLUSION: In this study, we observed extensive inappropriate antibiotic prescribing among pediatric outpatients in Madagascar, Senegal, and Cambodia. Despite great intercountry heterogeneity in prescribing practices, we identified common risk factors for inappropriate prescription. This underscores the importance of implementing local programs to optimize antibiotic prescribing at the community level in LMICs.
Subject(s)
Inappropriate Prescribing , Respiratory Tract Infections , Infant, Newborn , Female , Humans , Child , Infant , Cohort Studies , Outpatients , Developing Countries , Anti-Bacterial Agents/therapeutic use , Prospective Studies , Practice Patterns, Physicians' , Respiratory Tract Infections/drug therapyABSTRACT
BACKGROUND: Severe bacterial infections (SBIs) are a leading cause of neonatal deaths in low- and middle-income countries (LMICs). However, most data came from hospitals, which do not include neonates who did not seek care or were treated outside the hospital. Studies from the community are scarce, and few among those available were conducted with high-quality microbiological techniques. The burden of SBI at the community level is therefore largely unknown. We aimed here to describe the incidence, etiology, risk factors, and antibiotic resistance profiles of community-acquired neonatal SBI in 3 LMICs. METHODS AND FINDINGS: The BIRDY study is a prospective multicentric community-based mother and child cohort study and was conducted in both urban and rural areas in Madagascar (2012 to 2018), Cambodia (2014 to 2018), and Senegal (2014 to 2018). All pregnant women within a geographically defined population were identified and enrolled. Their neonates were actively followed from birth to 28 days to document all episodes of SBI. A total of 3,858 pregnant women (2,273 (58.9%) in Madagascar, 814 (21.1%) in Cambodia, and 771 (20.0%) in Senegal) were enrolled in the study, and, of these, 31.2% were primigravidae. Women enrolled in the urban sites represented 39.6% (900/2,273), 45.5% (370/814), and 61.9% (477/771), and those enrolled in the rural sites represented 60.4% (1,373/2,273), 54.5% (444/814), and 38.1% (294/771) of the total in Madagascar, Cambodia, and Senegal, respectively. Among the 3,688 recruited newborns, 49.6% were male and 8.7% were low birth weight (LBW). The incidence of possible severe bacterial infection (pSBI; clinical diagnosis based on WHO guidelines of the Integrated Management of Childhood Illness) was 196.3 [95% confidence interval (CI) 176.5 to 218.2], 110.1 [88.3 to 137.3], and 78.3 [59.5 to 103] per 1,000 live births in Madagascar, Cambodia, and Senegal, respectively. The incidence of pSBI differed between urban and rural sites in all study countries. In Madagascar, we estimated an incidence of 161.0 pSBI per 1,000 live births [133.5 to 194] in the urban site and 219.0 [192.6 to 249.1] pSBI per 1,000 live births in the rural site (p = 0.008). In Cambodia, estimated incidences were 141.1 [105.4 to 189.0] and 85.3 [61.0 to 119.4] pSBI per 1,000 live births in urban and rural sites, respectively (p = 0.025), while in Senegal, we estimated 103.6 [76.0 to 141.2] pSBI and 41.5 [23.0 to 75.0] pSBI per 1,000 live births in urban and rural sites, respectively (p = 0.006). The incidences of culture-confirmed SBI were 15.2 [10.6 to 21.8], 6.5 [2.7 to 15.6], and 10.2 [4.8 to 21.3] per 1,000 live births in Madagascar, Cambodia, and Senegal, respectively, with no difference between urban and rural sites in each country. The great majority of early-onset infections occurred during the first 3 days of life (72.7%). The 3 main pathogens isolated were Klebsiella spp. (11/45, 24.4%), Escherichia coli (10/45, 22.2%), and Staphylococcus spp. (11/45, 24.4%). Among the 13 gram-positive isolates, 5 were resistant to gentamicin, and, among the 29 gram-negative isolates, 13 were resistant to gentamicin, with only 1 E. coli out of 10 sensitive to ampicillin. Almost one-third of the isolates were resistant to both first-line drugs recommended for the management of neonatal sepsis (ampicillin and gentamicin). Overall, 38 deaths occurred among neonates with SBI (possible and culture-confirmed SBI together). LBW and foul-smelling amniotic fluid at delivery were common risk factors for early pSBI in all 3 countries. A main limitation of the study was the lack of samples from a significant proportion of infants with pBSI including 35 neonatal deaths. Without these samples, bacterial infection and resistance profiles could not be confirmed. CONCLUSIONS: In this study, we observed a high incidence of neonatal SBI, particularly in the first 3 days of life, in the community of 3 LMICs. The current treatment for the management of neonatal infection is hindered by antimicrobial resistance. Our findings suggest that microbiological diagnosis of SBI remains a challenge in these settings and support more research on causes of neonatal death and the implementation of early interventions (e.g., follow-up of at-risk newborns during the first days of life) to decrease the burden of neonatal SBI and associated mortality and help achieve Sustainable Development Goal 3.
Subject(s)
Bacterial Infections/epidemiology , Adolescent , Adult , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Cambodia/epidemiology , Cohort Studies , Female , Humans , Incidence , Infant, Newborn , Infant, Newborn, Diseases , Madagascar/epidemiology , Male , Middle Aged , Patient Acuity , Pregnancy , Prospective Studies , Senegal/epidemiology , Young AdultABSTRACT
BACKGROUND: Bacterial vaginosis (BV) is associated with a higher risk of preterm delivery and spontaneous abortion. Yet little data on BV prevalence exist for sub-Saharan countries. The aim of this study was to estimate the prevalence of bacterial vaginosis and associated risk factors among pregnant women in Senegal. METHODS: From October 2013 to December 2018, pregnant women in their third trimester were recruited in two primary health centers (one suburban, one rural) in Senegal. Healthcare workers interviewed women and collected a lower vaginal swab and a blood sample. Vaginal flora were classified into four categories using vaginal smear microscopic examination and Gram's coloration. In our study, BV was defined as vaginal flora with no Lactobacillus spp. Variables associated with BV were analyzed using STATA® through univariate and multivariate analysis. RESULTS: A total of 457 women provided a vaginal sample for analysis. Overall, BV prevalence was 18.6% (85/457) [95% CI 15.4-22.6]) and was similar in suburban and rural areas (18.9% versus 18.1%, p = 0.843). Multivariate analysis showed that primigravidity was the only factor independently associated with a lower risk of BV (aOR 0.35 [95% CI 0.17-0.72]). CONCLUSIONS: Our study showed significant BV prevalence among pregnant women in Senegal. Although the literature has underscored the potential consequences of BV for obstetric outcomes, data are scarce on BV prevalence in sub-Saharan African countries. Before authorities consider systematic BV screening for pregnant women, a larger study would be useful in documenting prevalence, risk factors and the impact of BV on pregnancy outcomes.
Subject(s)
Pregnancy Complications, Infectious , Vaginosis, Bacterial , Female , Humans , Infant, Newborn , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnant Women , Risk Factors , Senegal/epidemiology , Vagina , Vaginosis, Bacterial/epidemiologyABSTRACT
BACKGROUND: Influenza is a major cause of morbidity and mortality in Africa. However, a lack of epidemiological data remains for this pathology, and the performances of the influenza-like illness (ILI) case definitions used for sentinel surveillance have never been evaluated in Senegal. This study aimed to i) assess the performance of three different ILI case definitions, adopted by the WHO, USA-CDC (CDC) and European-CDC (ECDC) and ii) identify clinical factors associated with a positive diagnosis for Influenza in order to develop an algorithm fitted for the Senegalese context. METHODS: All 657 patients with a febrile pathological episode (FPE) between January 2013 and December 2016 were followed in a cohort study in two rural villages in Senegal, accounting for 1653 FPE observations with nasopharyngeal sampling and influenza virus screening by rRT-PCR. For each FPE, general characteristics and clinical signs presented by patients were collected. Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV) for the three ILI case definitions were assessed using PCR result as the reference test. Associations between clinical signs and influenza infection were analyzed using logistic regression with generalized estimating equations. Sore throat, arthralgia or myalgia were missing for children under 5 years. RESULTS: WHO, CDC and ECDC case definitions had similar sensitivity (81.0%; 95%CI: 77.0-85.0) and NPV (91.0%; 95%CI: 89.0-93.1) while the WHO and CDC ILI case definitions had the highest specificity (52.0%; 95%CI: 49.1-54.5) and PPV (32.0%; 95%CI: 30.0-35.0). These performances varied by age groups. In children < 5 years, the significant predictors of influenza virus infection were cough and nasal discharge. In patients from 5 years, cough, nasal discharge, sore throat and asthenia grade 3 best predicted influenza infection. The addition of "nasal discharge" as a symptom to the WHO case definition decreased sensitivity but increased specificity, particularly in the pediatric population. CONCLUSION: In summary, all three definitions studies (WHO, ECDC & CDC) have similar performance, even by age group. The revised WHO ILI definition could be chosen for surveillance purposes for its simplicity. Symptomatic predictors of influenza virus infection vary according the age group.
Subject(s)
Influenza, Human/epidemiology , Influenza, Human/etiology , Adolescent , Adult , Centers for Disease Control and Prevention, U.S. , Child , Child, Preschool , Cohort Studies , Cough/etiology , Cough/virology , Female , Fever/etiology , Fever/virology , Humans , Infant , Male , Middle Aged , Nasopharynx/virology , Pharyngitis/complications , Rural Population/statistics & numerical data , Senegal/epidemiology , Sentinel Surveillance , United States , World Health Organization , Young AdultABSTRACT
The era of genome-wide association studies (GWAS) has led to the discovery of numerous genetic variants associated with disease. Better understanding of whether these or other variants interact leading to differential risk compared with individual marker effects will increase our understanding of the genetic architecture of disease, which may be investigated using the family-based study design. We present M-TDT (the multi-locus transmission disequilibrium test), a tool for detecting family-based multi-locus multi-allelic effects for qualitative or quantitative traits, extended from the original transmission disequilibrium test (TDT). Tests to handle the comparison between additive and epistatic models, lack of independence between markers and multiple offspring are described. Performance of M-TDT is compared with a multifactor dimensionality reduction (MDR) approach designed for investigating families in the hypothesis-free genome-wide setting (the multifactor dimensionality reduction pedigree disequilibrium test, MDR-PDT). Other methods derived from the TDT or MDR to investigate genetic interaction in the family-based design are also discussed. The case of three independent biallelic loci is illustrated using simulations for one- to three-locus alternative hypotheses. M-TDT identified joint-locus effects and distinguished effectively between additive and epistatic models. We showed a practical example of M-TDT based on three genes already known to be implicated in malaria susceptibility. Our findings demonstrate the value of M-TDT in a hypothesis-driven context to test for multi-way epistasis underlying common disease etiology, whereas MDR-PDT-based methods are more appropriate in a hypothesis-free genome-wide setting.
Subject(s)
Epistasis, Genetic , Genome , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Models, Genetic , PedigreeABSTRACT
BACKGROUND: The widespread use of artemisinin-based combination therapy (ACT) and long-lasting insecticide-treated nets (LLINs) has led to an impressive decrease of malaria burden these recent years in Africa. However, some new challenges about the future of malaria control and elimination efforts have appeared. Among these challenges, the loss and-or-the only partial acquisition of anti-Plasmodium immunity among exposed populations lead to an increase of the age at risk of malaria. Indeed, older children and adults may become more vulnerable to malaria. Studies about malaria among adults seemed, therefore, important. This study investigated the evolution of malaria morbidity in adults of Dielmo (Senegal) before and after the implementation of LLINs. METHODS: From August 2007 to July 2015, a longitudinal study involving adults above 15 years old was carried out in Dielmo, where ACT was introduced in June 2006 and LLINs in July 2008. In July 2011 and August 2014, all LLINs were renewed. The presence of each person in the village was monitored daily. Thick smears associated lately with rapid diagnosis test (RDT) and quantitative polymerase chain reaction methods were performed for all cases of fever. To assess malaria prevalence, thick smears and RDT were performed quarterly in all individuals. Malaria risks factors were assessed using negative binomial regression mixed-model based on person-trimester observations. RESULTS: Malaria morbidity among adults has decreased significantly since the implementation of LLINs in Dielmo. However, malaria resurgences have occurred twice during the 7 years of LLINs use. During these malaria resurgences, the overall incidence of malaria among adults was similar to the incidence during the year before the implementation of LLINs (adjusted incidence rate ratio [95% CI] aIRR = 1.04 [0.66-1.64], p = 0.88 and aIRR = 1.16 [0.74-1.80], p = 0.52 during the first and the second malaria resurgence period, respectively). Younger adults were most vulnerable during these malaria upsurges as the incidence of malaria increased significantly among them (χ2 = 5.2; p = 0.02). CONCLUSION: Malaria among adults especially younger adults should deserve more attention in the areas where malaria was previously endemic as they became vulnerable probably because of the partial acquisition and-or-the loss of anti-Plasmodium relative immunity and the non regular use of LLINs.
Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Malaria/epidemiology , Mosquito Control , Rural Population/statistics & numerical data , Adolescent , Adult , Aged , Female , Humans , Incidence , Malaria/prevention & control , Male , Middle Aged , Morbidity , Prevalence , Risk Factors , Senegal/epidemiology , Young AdultABSTRACT
BACKGROUND: Coordinated scaled-up malaria control interventions have substantially contributed to the dramatic decrease of malaria-related morbidity and mortality in several endemic countries, including Senegal. However, the impacts of a given malaria control intervention on vector and parasite populations, acquired immunity, and disease burden remain very poorly documented largely due to the lack of continuous surveys. This study took advantage of the sera bank established as part of the Dielmo longitudinal project to investigate the dynamics of IgG antibody responses that accompanied the epidemiological changes resulting from malaria control interventions. Schizonts crude extract of a local strain of Plasmodium falciparum (Pfsch07/03) was used in ELISA to measure and compare seroprevalence and magnitude of IgG antibody responses from 2000 to 2012. RESULTS: The prevalence of Pfsch07/03 IgG antibody responses progressively decreased from 97.25% in 2000 to 57.3% in 2012. The prevalence of Pfsch07/03 antibodies categorized between three different age groups (<7, 7-15, and >15 years) revealed increased seroprevalence with age ranging from 47.19 to 62.67 and 89.45%, respectively in (<7, 7-15, and >15 years) old age groups. A marked drop in seroprevalence was observed after 2008 and was significant in the younger (<7 years) and intermediate (7-15 years) age groups, unlike older individuals aged >15 years (p = 1.00). CONCLUSIONS: The study revealed a substantial contribution of all malaria control interventions to the decrease of IgG antibodies responses to Pfsch07/03 throughout prevention of human-mosquitos contacts, or reduction of parasite biomass. The present study demonstrates the wider potential of sero-epidemiological analysis in monitoring changes in malaria transmission resulting from a given malaria control intervention.
Subject(s)
Antibodies, Protozoan/blood , Immunoglobulin G/blood , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antigens, Protozoan/immunology , Child , Child, Preschool , Communicable Disease Control , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Plasmodium falciparum/immunology , Prevalence , Senegal/epidemiology , Seroepidemiologic Studies , Young AdultABSTRACT
BACKGROUND: Evaluation of local Plasmodium falciparum malaria transmission has been investigated previously using the reversible catalytic model based on prevalence of antibody responses to single antigen to estimate seroconversion rates. High correlations were observed between seroconversion rates and entomological inoculation rates (EIR). However, in this model, the effects of malaria control interventions and clinical episodes on serological measurements were not assessed. This study monitors the use of antibody responses to P. falciparum crude extracts for assessing malaria transmission, compares seroconversion rates estimated from longitudinal data to those derived from cross-sectional surveys and investigates the effects of malaria control interventions on these measures in an area of declining malaria transmission. In addition, the validity of this model was evaluated by comparison with the alternative model. METHODS: Five cross-sectional surveys were carried out at the end of the wet season in Dielmo, a malaria-endemic Senegalese rural area in 2000, 2002, 2008, 2010 and 2012. Antibodies against schizonts crude extract of a local P. falciparum strain adapted to culture (Pf 07/03) were measured by ELISA. Age-specific seroprevalence model was used both for cross-sectional surveys and longitudinal data (combined data of all surveys). RESULTS: A total of 1504 plasma samples obtained through several years follow-up of 350 subjects was used in this study. Seroconversion rates based on P. falciparum schizonts crude extract were estimated for each cross-sectional survey and were found strongly correlated with EIR. High variability between SCRs from cross-sectional and longitudinal surveys was observed. In longitudinal studies, the alternative catalytic reversible model adjusted better with serological data than the catalytic model. Clinical malaria attacks and malaria control interventions were found to have significant effect on seroconversion. DISCUSSION: The results of the study suggested that crude extract was a good serological tool that could be used to assess the level of malaria exposure in areas where malaria transmission is declining. However, additional parameters such as clinical malaria and malaria control interventions must be taken into account for determining serological measurements for more accuracy in transmission assessment.
Subject(s)
Endemic Diseases , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Plasmodium falciparum/physiology , Age Factors , Antibodies, Protozoan/blood , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Models, Theoretical , Prevalence , Schizonts/physiology , Senegal/epidemiology , Seroepidemiologic StudiesABSTRACT
BACKGROUND: In Africa, especially in West Africa, studies about the prevalence and diversity of respiratory viruses (influenza and others) in elderly people are largely lacking. In studies done elsewhere, it is well established that older people, when compared with younger adults, are at greater risk of significant morbidity and mortality from complications arising from influenza. The main aim of this study was to determine the prevalence and the diversity of respiratory viruses associated with ILI cases in adults over 50 years old in Senegal. METHODS: The recruitment period of this study was from January 2009 to December 2011. 232 patients aged 50 years and above presenting ILI cases were enrolled. Nasal-pharyngeal and/or oral pharyngeal swabs were collected from patients. RNA was extracted from 200 µl of each sample followed by a two-step real-time RT-PCR. The Anyplex™ II RV16 Detection kit was used for viral detection. The kit enabled the simultaneous detection of the presence of 16 respiratory viruses. RESULTS: 150 viruses were detected: influenza viruses (44.7%) and rhinoviruses (26.7%) were the most prevalent. We detected 13 human parainfluenza viruses (8.7%), 7 human respiratory syncytial viruses (4.7%), 6 coronaviruses (4%), 5 human metapneumoviruses (3.3%), 5 human adenoviruses (3.3%) and 1 human bocavirus (0.7%). 14 cases (6%) of dual virus infections and one triple viral detection case were encountered. 56 (56.6%) viruses detected were found in the 50-64 year old age group, 59 (76.6%; P < 0.001) from 65-74 year old age group and 35 (62.5%) were detected in the ≥75 year old age group. The viral co-infections were more frequent in the 65-74 age group (9/15). CONCLUSIONS: This pilot study demonstrates a variety of respiratory viruses in the elderly. It also highlights a high prevalence of these viruses in this age group. We speculate from these results that the impact of respiratory viruses other than influenza on the elderly has been considerably underestimated. A more exhaustive study seems necessary in order to provide a more complete picture of the burden of respiratory viruses on morbidity among adults over 50 years old in the sub-Saharan context.
Subject(s)
Respiratory Tract Infections/epidemiology , Virus Diseases/epidemiology , Age Factors , Aged , Aged, 80 and over , Coinfection/diagnosis , Coinfection/epidemiology , Female , Humans , Male , Middle Aged , Pilot Projects , Prevalence , Prospective Studies , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Senegal/epidemiology , Virus Diseases/diagnosisABSTRACT
BACKGROUND: The epidemic rebounds observed in 2010 and 2013 in Dielmo, a Senegalese village, during a decade (2008-2019) of universal coverage using a long-lasting insecticidal net (LLIN) strategy could have contributed to the resurgence of malaria. Thus, this study was undertaken to understand the implications of net ownership and use on malaria rebound events. METHODS: A longitudinal study was carried out in Dielmo with 11 years of LLIN implementation from July 2008 to June 2019 with successive net renewals in 2011, 2014, 2016 and 2019. Quarterly cross-sectional surveys were performed to assess LLIN ownership and use by different age groups in the population. In addition, malaria incidence and transmission were assessed during the study period. RESULTS: Ownership of LLINs decreased significantly from 88% in the 1st year of net implementation to 70% during the first malaria upsurge and 72% during the second upsurge while net use decreased significantly from 66% during the 1st year to 58% during the first malaria upsurge and 53% during the second upsurge. Among young adults aged 15-29 years, net use decreased significantly from the 2nd year (51%) of net use to reach 43% during the first malaria upsurge and only 32% use during the second malaria upsurge. During the second malaria upsurge, net use was significantly lower among older children aged 10-14 years old than during the 1st year of net use (p < 0.001). During the first and the second malaria upsurges, the malaria incidence was significantly higher among children aged 10-14 years old (0.4 attacks per person-year) and young adults aged 15-29 years old (0.3 and 0.4 attacks per person, respectively) than during that the 1st year of net implementation (only 0.02 attacks per person-year for 10-14 year olds and 0.04 for 15-29 year olds; p < 0.001). CONCLUSIONS: The first malaria upsurge occurred following a progressive decrease in net use after the 2nd year of their implementation with an important increase in malaria incidence among older children while the second malaria upsurge was significantly associated with the decrease of net use among older children and young adults. The regular use of nets in all age groups prevented the occurrence of a third malaria upsurge in Dielmo.
Subject(s)
Insecticide-Treated Bednets , Insecticides , Malaria , Child , Humans , Young Adult , Adolescent , Adult , Senegal/epidemiology , Cross-Sectional Studies , Longitudinal Studies , Mosquito Control , Malaria/epidemiology , Malaria/prevention & controlABSTRACT
OBJECTIVES: In low malaria transmission areas, the elimination of the disease has been hampered partly by the existence of a reservoir of subpatent Plasmodium falciparum infections within communities. This reservoir, often undetected, serves as a source of parasites and contributes to ongoing transmission and clinical malaria cases. METHODS: This study, spanning a period of 9 years from June 2014 to December 2022, examined individual variations and long-term subpatent P. falciparum carriage in two matched cohorts of 44 individuals each living in Dielmo village in the Sudanian area of Senegal. Biannual blood samples, collected in June/July and December of each year, underwent P. falciparum diagnosis by quantitative polymerase chain reaction. QGIS and R analytical tools were used to map infections, assess the occurrence and clustering of subpatent and clinical P. falciparum infections, and determine the risk of infection in the vicinity of asymptomatic P. falciparum carriers. RESULTS: The point frequency and long-term P. falciparum carriage were significantly higher among the quantitative polymerase chain reaction (qPCR) positive cohort compared to the negative cohort across the 16 cross-sectional surveys analyzed in this study (19.76% vs 10.99%, P-value <0.001). Asymptomatic carriage events in qPCR-positive group were 18.86 ± 1.72% and significantly greater (P-value = 0.001) than in the qPCR-negative group (11.32 ± 1.32%). The relative risk of P. falciparum infection or clinical malaria calculated with a 95% confidence interval significantly increased in the vicinity of infected individuals and was 1.44 (P-value = 0.53) and 2.64 (P-value = 0.04) when at least one individual in the direct (household) or indirect (block of households) vicinity is infected, respectively. The risk increased to 3.64 (P-value <0.001) if at least 1/5 of individuals in the indirect vicinity were P. falciparum-infected. CONCLUSIONS: The study provides a detailed qualitative and quantitative analysis of the asymptomatic P. falciparum reservoir and its temporal and spatial dynamics within two subgroups of P. falciparum-infected and non-infected individuals in Dielmo village. It identified high-risk populations known as "hotpops" and hotspots that could be targeted by innovative interventions to accelerate the elimination of malaria in Dielmo village.
Subject(s)
Carrier State , Malaria, Falciparum , Plasmodium falciparum , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Senegal/epidemiology , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Male , Female , Carrier State/epidemiology , Carrier State/transmission , Adult , Adolescent , Child , Cross-Sectional Studies , Child, Preschool , Young Adult , Middle Aged , Asymptomatic Infections/epidemiology , Real-Time Polymerase Chain ReactionABSTRACT
To understand 2009 pandemic influenza A virus subtype H1N1 (A[H1N1]pdm09) circulation in West Africa, we collected influenza surveillance data from ministries of health and influenza laboratories in 10 countries, including Cameroon, from 4 May 2009 through 3 April 2010. A total of 10,203 respiratory specimens were tested, of which 25% were positive for influenza virus. Until the end of December 2009, only 14% of all detected strains were A(H1N1)pdm09, but the frequency increased to 89% from January through 3 April 2010. Five West African countries did not report their first A(H1N1)pdm09 case until 6 months after the emergence of the pandemic in North America, in April 2009. The time from first detection of A(H1N1)pdm09 in a country to the time of A(H1N1)pdm09 predominance varied from 0 to 37 weeks. Seven countries did not report A(H1N1)pdm09 predominance until 2010. Introduction and transmission of A(H1N1)pdm09 were delayed in this region.
Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Pandemics , Adult , Africa, Western/epidemiology , Child , Child, Preschool , Humans , Infant , Orthomyxoviridae , Time FactorsABSTRACT
Background: Vaccination reduces mortality from infectious disease, which is the leading cause of death in children under 5 and bears a particularly high burden in low- and middle-income countries. The Global Vaccine Action Plan (2011-2020) has set a target of 90% vaccine coverage for all vaccines included in national immunization programs by 2020. The objectives of this study were to estimate vaccine coverage among children in Madagascar, Cambodia, and Senegal and to identify the risk factors associated with incomplete vaccination. Methods: Using data from a community-based prospective cohort that included all newborn of some areas from 2012 to 2018 in these 3 countries, vaccine coverage was estimated for BCG, hepatitis B, oral polio, pentavalent (targeting diphtheria, tetanus, pertussis, hepatitis B, and Haemophilus influenzae type b), and measles vaccines. Risk factor analysis was performed with logistic regression models to identify correlates of incomplete vaccination. Results: A total of 3606 children were followed up, and vaccine coverage was below the 90% threshold for most vaccines in all countries. Coverage was higher for vaccines recommended at birth and at 6 weeks, while a decrease in coverage for subsequent doses was observed for vaccines requiring several doses (23-47 points). Low birth weight (<2500â g) was an important risk factor for nonvaccination for vaccines recommended at birth in all 3 countries (adjusted odds ratio [95% confidence interval] ranging from 1.93 [1.11-3.38] to 4.28 [1.85-9.37]). Conclusions: Vaccine coverage for common childhood vaccines was lower than World Health Organization recommendations, and multidisciplinary approaches may help to improve vaccine coverage and timeliness.
ABSTRACT
Background: The exact timing, causes, and circumstances of stillbirth and neonatal mortality in low- and middle-income countries (LMICs) remain poorly described, especially for antenatal stillbirths and deaths occurring at home. We aimed to provide reliable estimates of the incidence of stillbirth and neonatal death in three LMICs (Madagascar, Cambodia and Senegal) and to identify their main causes and associated risk factors. Methods: This study is based on data from an international, multicentric, prospective, longitudinal, community-based mother-infant cohort. We included pregnant mothers and prospectively followed up their children in the community. Stillbirths and deaths were systematically reported; information across healthcare settings was collected and verbal autopsies were performed to document the circumstances and timing of death. Results: Among the 4436 pregnancies and 4334 live births, the peripartum period and the first day of life were the key periods of mortality. The estimated incidence of stillbirth was 11 per 1000 total births in Cambodia, 15 per 1000 in Madagascar, and 12 per 1000 in Senegal. We estimated neonatal mortality at 18 per 1000 live births in Cambodia, 24 per 1000 in Madagascar, and 23 per 1000 in Senegal. Based on ultrasound biometric data, 16.1% of infants in Madagascar were born prematurely, where 42% of deliveries and 33% of deaths occurred outside healthcare facilities. Risk factors associated with neonatal death were mainly related to delivery or to events that newborns faced during the first week of life. Conclusions: These findings underscore the immediate need to improve care for and monitoring of children at birth and during early life to decrease infant mortality. Surveillance of stillbirth and neonatal mortality and their causes should be improved to mitigate this burden in LMICs.
Subject(s)
Perinatal Death , Stillbirth , Child , Infant , Infant, Newborn , Female , Pregnancy , Humans , Stillbirth/epidemiology , Mothers , Cohort Studies , Prospective Studies , Developing Countries , Infant MortalityABSTRACT
During the COVID-19 pandemic in Senegal, contact tracing was done to identify transmission clusters, their analysis allowed to understand their dynamics and evolution. In this study, we used information from the surveillance data and phone interviews to construct, represent and analyze COVID-19 transmission clusters from March 2, 2020, to May 31, 2021. In total, 114,040 samples were tested and 2153 transmission clusters identified. A maximum of 7 generations of secondary infections were noted. Clusters had an average of 29.58 members and 7.63 infected among them; their average duration was 27.95 days. Most of the clusters (77.3%) are concentrated in Dakar, capital city of Senegal. The 29 cases identified as super-spreaders, i.e., the indexes that had the most positive contacts, showed few symptoms or were asymptomatic. Deepest transmission clusters are those with the highest percentage of asymptomatic members. The correlation between proportion of asymptomatic and degree of transmission clusters showed that asymptomatic strongly contributed to the continuity of transmission within clusters. During this pandemic, all the efforts towards epidemiological investigations, active case-contact detection, allowed to identify in a short delay growing clusters and help response teams to mitigate the spread of the disease.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Contact Tracing , Pandemics , Senegal/epidemiologyABSTRACT
Dengue virus (DENV) was detected in Senegal in 1979 for the first time. Since 2017, unprecedented frequent outbreaks of DENV were noticed yearly. In this context, epidemiological and molecular evolution data are paramount to decipher the virus diffusion route. In the current study, we focused on a dengue outbreak which occurred in Senegal in 2018 in the context of a large religious gathering with 263 confirmed DENV cases out of 832 collected samples, including 25 life-threatening cases and 2 deaths. It was characterized by a co-circulation of dengue serotypes 1 and 3. Phylogenetic analysis based on the E gene revealed that the main detected serotype in Touba was DENV-3 and belonged to Genotype III. Bayesian phylogeographic analysis was performed and suggested one viral introduction around 2017.07 (95% HPD = 2016.61-2017.57) followed by cryptic circulation before the identification of the first case on 1 October 2018. DENV-3 strains are phylogenetically related, with strong phylogenetic links between strains retrieved from Burkina Faso and other West African countries. These phylogenetic data substantiate epidemiological data of the origin of DENV-3 and its spread between African countries and subsequent diffusion after religious mass events. The study also highlighted the usefulness of a mobile laboratory during the outbreak response, allowing rapid diagnosis and resulting in improved patient management.
Subject(s)
Dengue Virus , Dengue , Humans , Dengue/epidemiology , Dengue Virus/genetics , Serogroup , Phylogeny , Senegal/epidemiology , Bayes Theorem , Disease Outbreaks , Genotype , Burkina FasoABSTRACT
BACKGROUND: The novel coronavirus disease 2019 (COVID-19) pandemic has spread from China to the rest of the world. Africa seems less impacted with lower number of cases and deaths than other continents. Senegal recorded its first case on March 2, 2020. We present here data collected from March 2 to October 31, 2020 in Senegal. METHODS: Socio-demographic, epidemiological, clinical and virological information were collected on suspected cases. To determine factors associated with diagnosed infection, symptomatic disease and death, multivariable binary logistic regression and log binomial models were used. Epidemiological parameters such as the reproduction number and growth rate were estimated. RESULTS: 67,608 suspected cases were tested by the IPD laboratories (13,031 positive and 54,577 negative). All age categories were associated with SARS-CoV-2 infection, but also patients having diabetes or hypertension or other cardiovascular diseases. With diagnosed infection, patients over 65 years and those with hypertension and cardiovascular disease and diabetes were highly associated with death. Patients with co-morbidities were associated with symptomatic disease, but only the under 15 years were not associated with. Among infected, 27.67% were asymptomatic (40.9% when contacts were systematically tested; 12.11% when only symptomatic or high-risk contacts were tested). Less than 15 years-old were mostly asymptomatic (63.2%). Dakar accounted for 81.4% of confirmed cases. The estimated mean serial interval was 5.57 (± 5.14) days. The average reproduction number was estimated at 1.161 (95%CI: 1.159-1.162), the growth rate was 0.031 (95%CI: 0.028-0.034) per day. CONCLUSIONS: Our findings indicated that factors associated with symptomatic COVID-19 and death are advanced age (over 65 years-old) and comorbidities such as diabetes and hypertension and cardiovascular disease.
Subject(s)
COVID-19 , Cardiovascular Diseases , Diabetes Mellitus , Hypertension , Adolescent , Aged , COVID-19/epidemiology , Diabetes Mellitus/epidemiology , Humans , Hypertension/epidemiology , Pandemics , SARS-CoV-2 , Senegal/epidemiologyABSTRACT
The occurrence of malaria resurgences could threaten progress toward elimination of the disease. This study investigated the impact of repeated renewal of long-lasting insecticide-treated net (LLIN) universal coverage on malaria resurgence over a period of 10 years of net implementation in Dielmo (Senegal). A longitudinal study was carried out in Dielmo between August 2007 and July 2018. In July 2008, LLINs were offered to all villagers through universal campaign distribution which was renewed in July 2011, August 2014, and May 2016. Malaria cases were treated with artemisinin-based combination therapy. Two resurgences of malaria occurred during the 10 years in which LLINs have been in use. Since the third renewal of the nets, malaria decreased significantly compared with the first year the nets were implemented (adjusted incidence rate ratio) (95% CI) = 0.35 (0.15-0.85), during the ninth year after net implementation). During the tenth year of net implementation, no cases of malaria were observed among the study population. The use of nets increased significantly after the third time the nets were renewed when compared with the year after the first and the second times the nets were renewed (P < 0.001). The third renewal of nets, which took place after 2 years instead of 3 years together with a higher use of LLINs especially among the young, probably prevented the occurrence of a third malaria upsurge in this village.
Subject(s)
Insecticide-Treated Bednets , Malaria/prevention & control , Mosquito Control/methods , Adolescent , Adult , Child , Child, Preschool , Disease Outbreaks/prevention & control , Female , Humans , Infant , Malaria/epidemiology , Male , Middle Aged , Senegal/epidemiology , Young AdultABSTRACT
Maternal group B Streptococcus (GBS) colonization is a major risk factor for neonatal GBS infection. However, data on GBS are scarce in low- and middle-income countries. Using sociodemographic data and vaginal swabs collected from an international cohort of mothers and newborns, this study aimed to estimate the prevalence of GBS colonization among pregnant women in Madagascar (n = 1,603) and Senegal (n = 616). The prevalence was 5.0% (95% CI, 3.9-6.1) and 16.1% (95% CI, 13.1-19.0) in Madagascar and Senegal, respectively. No factors among sociodemographic characteristics, living conditions, and obstetric history were found to be associated independently with GBS colonization in both countries. This community-based study provides one of the first estimates of maternal GBS colonization among pregnant women from Madagascar and Senegal.
Subject(s)
Maternal Exposure/statistics & numerical data , Mothers/statistics & numerical data , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Streptococcal Infections/diagnosis , Streptococcal Infections/epidemiology , Streptococcus/isolation & purification , Adult , Cohort Studies , Female , Humans , Infant, Newborn , Madagascar/epidemiology , Population Surveillance , Pregnancy , Pregnant Women , Prevalence , Senegal/epidemiologyABSTRACT
As of today, little data is available on COVID-19 in African countries, where the case management relied mainly on a treatment by association between hydroxychloroquine (HCQ) and azithromycin (AZM). This study aimed to understand the main clinical outcomes of COVID-19 hospitalized patients in Senegal from March to October 20202. We described the clinical characteristics of patients and analysed clinical status (alive and discharged versus hospitalized or died) at 15 days after Isolation and Treatment Centres (ITC) admission among adult patients who received HCQ plus AZM and those who did not receive this combination. A total of 926 patients were included in this analysis. Six hundred seventy-four (674) (72.8%) patients received a combination of HCQ and AZM. Results showed that the proportion of patient discharge at D15 was significantly higher for patients receiving HCQ plus AZM (OR: 1.63, IC 95% (1.09-2.43)). Factors associated with a lower proportion of patients discharged alive were: age ≥ 60 years (OR: 0.55, IC 95% (0.36-0.83)), having of at least one pre-existing disorder (OR: 0.61, IC 95% (0.42-0.90)), and a high clinical risk at admission following NEWS score (OR: 0.49, IC 95% (0.28-0.83)). Few side effects were reported including 2 cases of cardiac rhythmic disorders in the HCQ and AZM group versus 13 in without HCQ + AZM. An improvement of clinical status at 15 days was found for patients exposed to HCQ plus AZM combination.