Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters

Affiliation country
Publication year range
1.
Immunity ; 57(2): 287-302.e12, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38354704

ABSTRACT

The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.


Subject(s)
CD28 Antigens , Gene Regulatory Networks , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , CD28 Antigens/metabolism , Signal Transduction , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , CD27 Ligand/genetics , CD27 Ligand/metabolism , CD8-Positive T-Lymphocytes
2.
Mol Cell ; 39(4): 489-91, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20797622

ABSTRACT

The single-stranded overhangs at the ends of telomeres are thought to be critical for telomere maintenance, but how they are generated has been largely unclear. Two studies (one in this issue of Molecular Cell, Wu et al., 2010) have now implicated the Apollo nuclease in maintaining the overhang specifically at those telomeres generated by leading-strand DNA synthesis.

3.
Pediatr Blood Cancer ; 64(5)2017 05.
Article in English | MEDLINE | ID: mdl-27808462

ABSTRACT

The 8p11 eosinophilic myeloproliferative syndrome (EMS) is an aggressive neoplasm driven by translocation of the fibroblast growth factor receptor 1 and often transforms to leukemias and lymphomas that are refractory to treatment. The first case was identified in 1983, and to date over 70 cases have been reported in the literature. Despite those reports, no consensus exists on management of this condition, and inconsistency in treatment regimens is even more pronounced in the pediatric literature. We report a case of a male infant with the 8p11 EMS, review the published pediatric experience with EMS, and discuss treatment strategies for this enigmatic hematological disorder.


Subject(s)
Bone Marrow Transplantation , Chromosomes, Human, Pair 8/genetics , Eosinophilia/genetics , Eosinophilia/therapy , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/therapy , Receptor, Fibroblast Growth Factor, Type 1/genetics , Adolescent , Adult , Antiviral Agents/therapeutic use , Child , Child, Preschool , Female , Ganciclovir/therapeutic use , Herpesvirus 6, Human/isolation & purification , Humans , Infant , Male , Roseolovirus Infections/diagnosis , Roseolovirus Infections/drug therapy , Young Adult
4.
bioRxiv ; 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38234854

ABSTRACT

Chromosomal translocations involving the Lysine-Methyl-Tansferase-2A ( KMT2A ) locus generate potent oncogenes that cause highly aggressive acute leukemias 1 . KMT2A and the most frequent translocation partners encode proteins that interact with DNA to regulate developmental gene expression 2 . KMT2A-oncogenic fusion proteins (oncoproteins) contribute to the epigenetic mechanisms that allow KMT2A -rearranged leukemias to evade targeted therapies. By profiling the oncoprotein-target sites of 34 KMT2A -rearranged leukemia samples, we find that the genomic enrichment of oncoprotein binding is highly variable between samples. At high levels of expression, the oncoproteins preferentially activate either the lymphoid or myeloid lineage program depending on the fusion partner. These fusion-partner-dependent binding sites correspond to the frequencies of each mutation in acute lymphoid leukemia versus acute myeloid leukemia. By profiling a sample that underwent a lymphoid-to-myeloid lineage switching event in response to lymphoid-directed treatment, we find the global oncoprotein levels are reduced and the oncoprotein-target gene network changes. At lower levels of expression, the oncoprotein shifts to a non-canonical regulatory program that favors the myeloid lineage, and in a subset of resistant patients, the Menin inhibitor Revumenib induces a similar response. The dynamic shifts in KMT2A oncoproteins we describe likely contribute to epigenetic resistance of KMT2A -rearranged leukemias to targeted therapies.

5.
bioRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106207

ABSTRACT

Stem cells have lower facultative heterochromatin as defined by trimethylation of histone H3 lysine 27 (H3K27me3) compared to differentiated cells, however, the underlying mechanism for this observation has been unknown. Because H3K27me3 levels are diluted two-fold in every round of replication and then restored through the rest of the cycle, we reasoned that the cell cycle length could determine the time available for setting total H3K27me3 levels. Here, we demonstrate that a fast cell cycle sets low levels of H3K27me3 in serum-grown murine embryonic stem cells (mESCs). Extending the G1 phase leads to an increase in global H3K27me3 in mESCs due to the formation of de novo Polycomb domains, and the length of the G1/S block correlates with the extent of gain in H3K27me3, arguing that levels of the modification depend on the time available between successive rounds of replication. Similarly, accelerating the cell cycle in HEK293 cells decreases H3K27me3 levels. Finally, we applied this principle in tumor cells that, due to the dominant negative effect of the sub-stoichiometric H3K27M mutant, have reduced H3K27me3. Here, extending G1 using Palbociclib increased H3K27me3 levels, pointing to an unexpected means to rescue the effect of oncohistones. Our results suggest cell cycle length as a universal mechanism to modulate heterochromatin formation and, thus, cellular identity.

6.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693371

ABSTRACT

Oncogenic fusions involving transcription factors are present in the majority of pediatric leukemias; however, the context-specific mechanisms they employ to drive cancer remain poorly understood. CBFA2T3-GLIS2 (C/G) fusions occur in treatment-refractory acute myeloid leukemias and are restricted to young children. To understand how the C/G fusion drives oncogenesis we applied CUT&RUN chromatin profiling to an umbilical cord blood/endothelial cell (EC) co-culture model of C/G AML that recapitulates the biology of this malignancy. We find C/G fusion binding is mediated by its zinc finger domains. Integration of fusion binding sites in C/G- transduced cells with Polycomb Repressive Complex 2 (PRC2) sites in control cord blood cells identifies MYCN, ZFPM1, ZBTB16 and LMO2 as direct C/G targets. Transcriptomic analysis of a large pediatric AML cohort shows that these genes are upregulated in C/G patient samples. Single cell RNA-sequencing of umbilical cord blood identifies a population of megakaryocyte precursors that already express many of these genes despite lacking the fusion. By integrating CUT&RUN data with CRISPR dependency screens we identify BRG1/SMARCA4 as a vulnerability in C/G AML. BRG1 profiling in C/G patient-derived cell lines shows that the CBFA2T3 locus is a binding site, and treatment with clinically-available BRG1 inhibitors reduces fusion levels and downstream C/G targets including N-MYC, resulting in C/G leukemia cell death and extending survival in a murine xenograft model.

7.
Cancer Discov ; 13(3): 632-653, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36399432

ABSTRACT

Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to study tumor phenotypes by ascertaining nucleosome positioning patterns associated with transcription regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts representing a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) prostate cancers. Nucleosome patterns associated with transcriptional activity were reflected in ctDNA at regions of genes, promoters, histone modifications, transcription factor binding, and accessible chromatin. We identified the activity of key phenotype-defining transcriptional regulators from ctDNA, including AR, ASCL1, HOXB13, HNF4G, and GATA2. To distinguish NEPC and ARPC in patient plasma samples, we developed prediction models that achieved accuracies of 97% for dominant phenotypes and 87% for mixed clinical phenotypes. Although phenotype classification is typically assessed by IHC or transcriptome profiling from tumor biopsies, we demonstrate that ctDNA provides comparable results with diagnostic advantages for precision oncology. SIGNIFICANCE: This study provides insights into the dynamics of nucleosome positioning and gene regulation associated with cancer phenotypes that can be ascertained from ctDNA. New methods for classification in phenotype mixtures extend the utility of ctDNA beyond assessments of somatic DNA alterations with important implications for molecular classification and precision oncology. This article is highlighted in the In This Issue feature, p. 517.


Subject(s)
Circulating Tumor DNA , Prostatic Neoplasms , Male , Humans , Circulating Tumor DNA/genetics , Nucleosomes/genetics , Precision Medicine , Prostatic Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Phenotype
8.
Clin Cancer Res ; 28(20): 4466-4478, 2022 10 14.
Article in English | MEDLINE | ID: mdl-35653119

ABSTRACT

PURPOSE: Propagation of Ewing sarcoma requires precise regulation of EWS::FLI1 transcriptional activity. Determining the mechanisms of fusion regulation will advance our understanding of tumor progression. Here we investigated whether HOXD13, a developmental transcription factor that promotes Ewing sarcoma metastatic phenotypes, influences EWS::FLI1 transcriptional activity. EXPERIMENTAL DESIGN: Existing tumor and cell line datasets were used to define EWS::FLI1 binding sites and transcriptional targets. Chromatin immunoprecipitation and CRISPR interference were employed to identify enhancers. CUT&RUN and RNA sequencing defined binding sites and transcriptional targets of HOXD13. Transcriptional states were investigated using bulk and single-cell transcriptomic data from cell lines, patient-derived xenografts, and patient tumors. Mesenchymal phenotypes were assessed by gene set enrichment, flow cytometry, and migration assays. RESULTS: We found that EWS::FLI1 creates a de novo GGAA microsatellite enhancer in a developmentally conserved regulatory region of the HOXD locus. Knockdown of HOXD13 led to widespread changes in expression of developmental gene programs and EWS::FLI1 targets. HOXD13 binding was enriched at established EWS::FLI1 binding sites where it influenced expression of EWS::FLI1-activated genes. More strikingly, HOXD13 bound and activated EWS::FLI1-repressed genes, leading to adoption of mesenchymal and migratory cell states that are normally suppressed by the fusion. Single-cell analysis confirmed that direct transcriptional antagonism between HOXD13-mediated gene activation and EWS::FLI1-dependent gene repression defines the state of Ewing sarcoma cells along a mesenchymal axis. CONCLUSIONS: Ewing sarcoma tumors are comprised of tumor cells that exist along a mesenchymal transcriptional continuum. The identity of cells along this continuum is, in large part, determined by the competing activities of EWS::FLI1 and HOXD13. See related commentary by Weiss and Bailey, p. 4360.


Subject(s)
Sarcoma, Ewing , Cell Line, Tumor , Cell Plasticity , Chromatin Immunoprecipitation , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Nat Genet ; 53(11): 1586-1596, 2021 11.
Article in English | MEDLINE | ID: mdl-34663924

ABSTRACT

Acute myeloid and lymphoid leukemias often harbor chromosomal translocations involving the KMT2A gene, encoding the KMT2A lysine methyltransferase (also known as mixed-lineage leukemia-1), and produce in-frame fusions of KMT2A to other chromatin-regulatory proteins. Here we map fusion-specific targets across the genome for diverse KMT2A oncofusion proteins in cell lines and patient samples. By modifying CUT&Tag chromatin profiling for full automation, we identify common and tumor-subtype-specific sites of aberrant chromatin regulation induced by KMT2A oncofusion proteins. A subset of KMT2A oncofusion-binding sites are marked by bivalent (H3K4me3 and H3K27me3) chromatin signatures, and single-cell CUT&Tag profiling reveals that these sites display cell-to-cell heterogeneity suggestive of lineage plasticity. In addition, we find that aberrant enrichment of H3K4me3 in gene bodies is sensitive to Menin inhibitors, demonstrating the utility of automated chromatin profiling for identifying therapeutic vulnerabilities. Thus, integration of automated and single-cell CUT&Tag can uncover epigenomic heterogeneity within patient samples and predict sensitivity to therapeutic agents.


Subject(s)
Chromatin/genetics , Histone-Lysine N-Methyltransferase/genetics , Leukemia/genetics , Leukemia/pathology , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/metabolism , Antineoplastic Agents/pharmacology , Automation, Laboratory , Benzamides/pharmacology , Benzimidazoles/pharmacology , Binding Sites , Cell Line, Tumor , Chromatin/metabolism , Chromatin Immunoprecipitation Sequencing/methods , Gene Expression Regulation, Leukemic/drug effects , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histones , Humans , Leukemia/drug therapy , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Pyrimidines/pharmacology , Single-Cell Analysis/methods , Transcriptional Elongation Factors/genetics
10.
Nat Biotechnol ; 39(7): 819-824, 2021 07.
Article in English | MEDLINE | ID: mdl-33846646

ABSTRACT

Methods for quantifying gene expression1 and chromatin accessibility2 in single cells are well established, but single-cell analysis of chromatin regions with specific histone modifications has been technically challenging. In this study, we adapted the CUT&Tag method3 to scalable nanowell and droplet-based single-cell platforms to profile chromatin landscapes in single cells (scCUT&Tag) from complex tissues and during the differentiation of human embryonic stem cells. We focused on profiling polycomb group (PcG) silenced regions marked by histone H3 Lys27 trimethylation (H3K27me3) in single cells as an orthogonal approach to chromatin accessibility for identifying cell states. We show that scCUT&Tag profiling of H3K27me3 distinguishes cell types in human blood and allows the generation of cell-type-specific PcG landscapes from heterogeneous tissues. Furthermore, we used scCUT&Tag to profile H3K27me3 in a patient with a brain tumor before and after treatment, identifying cell types in the tumor microenvironment and heterogeneity in PcG activity in the primary sample and after treatment.


Subject(s)
Chromatin/physiology , Polycomb-Group Proteins/metabolism , Single-Cell Analysis , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Differentiation , Chromatin/genetics , Embryonic Stem Cells , Gene Expression Regulation , Gene Silencing , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , K562 Cells , Polycomb-Group Proteins/genetics
11.
Radiol Case Rep ; 15(7): 1044-1049, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32461775

ABSTRACT

Chylous ascites is a rare, but highly morbid complication of oncologic resection, often associated with retroperitoneal lymphadenectomy. Conservative measures with total parenteral nutrition or lipid-reduced formulas constitute the initial mainstay therapy, but not without risks and failures. This report describes 2 endolymphatic treatment strategies for iatrogenic chylous ascites following neuroblastoma resection. Lymphatic leaks were identified using intranodal lymphangiography, targeted with cone-beam computed tomographic guidance, and embolized with n-butyl cyanoacrylate. There were no adverse outcomes, with complete resolution of chylous ascites and a mean follow-up of 26 months.

12.
Elife ; 92020 09 09.
Article in English | MEDLINE | ID: mdl-32902381

ABSTRACT

Lysine 27-to-methionine (K27M) mutations in the H3.1 or H3.3 histone genes are characteristic of pediatric diffuse midline gliomas (DMGs). These oncohistone mutations dominantly inhibit histone H3K27 trimethylation and silencing, but it is unknown how oncohistone type affects gliomagenesis. We show that the genomic distributions of H3.1 and H3.3 oncohistones in human patient-derived DMG cells are consistent with the DNAreplication-coupled deposition of histone H3.1 and the predominant replication-independent deposition of histone H3.3. Although H3K27 trimethylation is reduced for both oncohistone types, H3.3K27M-bearing cells retain some domains, and only H3.1K27M-bearing cells lack H3K27 trimethylation. Neither oncohistone interferes with PRC2 binding. Using Drosophila as a model, we demonstrate that inhibition of H3K27 trimethylation occurs only when H3K27M oncohistones are deposited into chromatin and only when expressed in cycling cells. We propose that oncohistones inhibit the H3K27 methyltransferase as chromatin patterns are being duplicated in proliferating cells, predisposing them to tumorigenesis.


Subject(s)
Chromatin , Gene Expression Regulation, Neoplastic/genetics , Histones , Mutation/genetics , Animals , Cell Line, Tumor , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Drosophila/genetics , Glioma/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/genetics , Histones/metabolism , Humans , Larva/genetics , Larva/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism
13.
Nat Commun ; 11(1): 913, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32060267

ABSTRACT

Aggressive cancers often have activating mutations in growth-controlling oncogenes and inactivating mutations in tumor-suppressor genes. In neuroblastoma, amplification of the MYCN oncogene and inactivation of the ATRX tumor-suppressor gene correlate with high-risk disease and poor prognosis. Here we show that ATRX mutations and MYCN amplification are mutually exclusive across all ages and stages in neuroblastoma. Using human cell lines and mouse models, we found that elevated MYCN expression and ATRX mutations are incompatible. Elevated MYCN levels promote metabolic reprogramming, mitochondrial dysfunction, reactive-oxygen species generation, and DNA-replicative stress. The combination of replicative stress caused by defects in the ATRX-histone chaperone complex, and that induced by MYCN-mediated metabolic reprogramming, leads to synthetic lethality. Therefore, ATRX and MYCN represent an unusual example, where inactivation of a tumor-suppressor gene and activation of an oncogene are incompatible. This synthetic lethality may eventually be exploited to improve outcomes for patients with high-risk neuroblastoma.


Subject(s)
N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/metabolism , X-linked Nuclear Protein/genetics , Animals , Child, Preschool , Cohort Studies , Female , Gene Amplification , Humans , Infant , Male , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mutation , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/genetics , Reactive Oxygen Species/metabolism , X-linked Nuclear Protein/metabolism
14.
Cancer Discov ; 9(10): 1346-1348, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31575564

ABSTRACT

Identification of cancer-associated mutations in core histone genes has proved challenging due to these genes' highly conserved nature and presence in large arrays. Recent analyses of cancer genomes, including one in this issue of Cancer Discovery, show that mutations in the histone fold can affect nucleosome stability, providing a novel mechanism by which oncohistones contribute to tumorigenesis.See related article by Bennett et al., p. 1438.


Subject(s)
Histones/genetics , Nucleosomes , Carcinogenesis/genetics , Humans , Mutation , Oncogenes
15.
Trends Cancer ; 5(3): 183-194, 2019 03.
Article in English | MEDLINE | ID: mdl-30898265

ABSTRACT

Cancer accounts for ∼9 million deaths per year worldwide, predominantly affecting adults. Adult malignancies are usually examined after extensive clonal evolution and carry many mutations, obscuring the individual contributions of these alterations to oncogenesis. By contrast, pediatric cancers often contain few mutations, many of which cause defects in chromatin-associated proteins. We explore here the roles that chromatin plays in oncogenesis. We highlight how the developmental regulation of cell proliferation genes and the degradation of chromosome ends are two major bottlenecks in the evolution of malignant cells, and point to a third bottleneck where epigenomic dysfunction triggers expression of tumor-suppressor genes, limiting the development of aggressive and metastatic features in tumors. We also identify opportunities for chromatin-based therapies.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Disease Susceptibility , Neoplasms/etiology , Neoplasms/metabolism , Animals , Biomarkers, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Epigenesis, Genetic , Epigenomics/methods , Gene Expression , Humans , Mutation , Neoplasms/pathology , Nucleosomes/metabolism
16.
Epigenetics Chromatin ; 11(1): 74, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30577869

ABSTRACT

BACKGROUND: Our understanding of eukaryotic gene regulation is limited by the complexity of protein-DNA interactions that comprise the chromatin landscape and by inefficient methods for characterizing these interactions. We recently introduced CUT&RUN, an antibody-targeted nuclease cleavage method that profiles DNA-binding proteins, histones and chromatin-modifying proteins in situ with exceptional sensitivity and resolution. RESULTS: Here, we describe an automated CUT&RUN platform and apply it to characterize the chromatin landscapes of human cells. We find that automated CUT&RUN profiles of histone modifications crisply demarcate active and repressed chromatin regions, and we develop a continuous metric to identify cell-type-specific promoter and enhancer activities. We test the ability of automated CUT&RUN to profile frozen tumor samples and find that our method readily distinguishes two pediatric glioma xenografts by their subtype-specific gene expression programs. CONCLUSIONS: The easy, cost-effective workflow makes automated CUT&RUN an attractive tool for high-throughput characterization of cell types and patient samples.


Subject(s)
Chromatin Immunoprecipitation/methods , Gene Expression Profiling/methods , Binding Sites , Chromatin/genetics , DNA-Binding Proteins/analysis , DNA-Binding Proteins/classification , DNA-Binding Proteins/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , High-Throughput Screening Assays/methods , Histone Code/genetics , Histones/genetics , Humans , In Situ Hybridization/methods , K562 Cells , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Software , Transcription Factors/genetics
17.
Assay Drug Dev Technol ; 1(5): 655-63, 2003 Oct.
Article in English | MEDLINE | ID: mdl-15090238

ABSTRACT

Ligand-gated ion channels (LGICs) play important roles in the regulation of cellular function and signaling and serve as excellent drug targets. However, fast desensitization of most LGICs limits the choice of reliable methods to identify agonists, antagonists, and/or modulators in a high throughput manner. In this study, automated Parallel Oocyte Electrophysiology Test station (POETs) was used to screen a directed compound library against a rapidly desensitizing LGIC and to characterize further the pharmacological properties of the hits. POETs allows up to six two-electrode voltage-clamp experiments to be performed in parallel by automatically loading of the oocytes into flowcells, assessing individual oocyte behavior prior to initiating experiments. Oocytes injected with cRNA were transferred from a chilled 96-well plate into flowcells by the instrument, where they were impaled under software control by two independent electrodes. Expression was tested by measuring current responses to rapid application of agonists. Compounds, prepared in a 96-well format, were tested for effects by coapplication with agonist at a single concentration of 30 microM over 2 s. After compound application, oocytes were washed for a minimum of 30 s, and used repeatedly if the test compounds had no significant effect on the control response. Typical throughput could reach approximately 14 plates/day depending on the protocol. Pilot library screening revealed a hit rate of 0.06%, with active compounds having IC(50) values of 4-40 microM. Hits were also confirmed in native neurons using patch-clamp techniques. We conclude that automated POETs serves as a suitable platform for screening and expedient identification of LGIC modulators.


Subject(s)
Cell Culture Techniques/instrumentation , Drug Evaluation, Preclinical/instrumentation , Ion Channels/physiology , Membrane Potentials/physiology , Oocytes/drug effects , Oocytes/physiology , Patch-Clamp Techniques/instrumentation , Robotics/instrumentation , Algorithms , Animals , Cell Culture Techniques/methods , Cells, Cultured , Drug Evaluation, Preclinical/methods , Electrophysiology/instrumentation , Electrophysiology/methods , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Ion Channels/drug effects , Ligands , Membrane Potentials/drug effects , Microelectrodes , Patch-Clamp Techniques/methods , Reproducibility of Results , Robotics/methods , Sensitivity and Specificity , User-Computer Interface , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL