Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 14(1): 27-33, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23179078

ABSTRACT

The E3 ligase ARIH2 has an unusual structure and mechanism of elongating ubiquitin chains. To understand its physiological role, we generated gene-targeted mice deficient in ARIH2. ARIH2 deficiency resulted in the embryonic death of C57BL/6 mice. On a mixed genetic background, the lethality was attenuated, with some mice surviving beyond weaning and then succumbing to an aggressive multiorgan inflammatory response. We found that in dendritic cells (DCs), ARIH2 caused degradation of the inhibitor IκBß in the nucleus, which abrogated its ability to sequester, protect and transcriptionally coactivate the transcription factor subunit p65 in the nucleus. Loss of ARIH2 caused dysregulated activation of the transcription factor NF-κB in DCs, which led to lethal activation of the immune system in ARIH2-sufficent mice reconstituted with ARIH2-deficient hematopoietic stem cells. Our data have therapeutic implications for targeting ARIH2 function.


Subject(s)
Dendritic Cells/immunology , Embryonic Development/immunology , Multiple Organ Failure/immunology , Ubiquitin-Protein Ligases/physiology , Animals , Cells, Cultured , Disease Models, Animal , Embryonic Development/genetics , Hematopoiesis/genetics , Humans , Immune System/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Multiple Organ Failure/genetics , NF-kappa B/metabolism , Transcriptional Activation/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Ubiquitination/immunology
2.
Anal Chem ; 96(17): 6643-6651, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38626411

ABSTRACT

Visualizing the distribution of small-molecule drugs in living cells is an important strategy for developing specific, effective, and minimally toxic drugs. As an alternative to fluorescence imaging using bulky fluorophores or cell fixation, stimulated Raman scattering (SRS) imaging combined with bisarylbutadiyne (BADY) tagging enables the observation of small molecules closer to their native intracellular state. However, there is evidence that the physicochemical properties of BADY-tagged analogues of small-molecule drugs differ significantly from those of their parent drugs, potentially affecting their intracellular distribution. Herein, we developed a modified BADY to reduce deviations in physicochemical properties (in particular, lipophilicity and membrane permeability) between tagged and parent drugs, while maintaining high Raman activity in live-cell SRS imaging. We highlight the practical application of this approach by revealing the nuclear distribution of a modified BADY-tagged analogue of JQ1, a bromodomain and extra-terminal motif inhibitor with applications in targeted cancer therapy, in living HeLa cells. The modified BADY, methoxypyridazyl pyrimidyl butadiyne (MPDY), revealed intranuclear JQ1, while BADY-tagged JQ1 did not show a clear nuclear signal. We anticipate that the present approach combining MPDY tagging with live-cell SRS imaging provides important insight into the behavior of intracellular drugs and represents a promising avenue for improving drug development.


Subject(s)
Cell Nucleus , Humans , HeLa Cells , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Nonlinear Optical Microscopy/methods , Alkynes/chemistry , Spectrum Analysis, Raman/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
3.
Biosci Biotechnol Biochem ; 88(3): 333-343, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38124666

ABSTRACT

We investigated the properties of extracellular vesicles from the probiotic Weizmannia coagulans lilac-01 (Lilac-01EVs). The phospholipids in the Lilac-01EV membrane were phosphatidylglycerol and mitochondria-specific cardiolipin. We found that applying Lilac-01EVs to primary rat microglia in vitro resulted in a reduction in primary microglial cell death (P < .05). Lilac-01EVs, which contain cardiolipin and phosphatidylglycerol, may have the potential to inhibit cell death in primary microglia. The addition of Lilac-01EVs to senescent human dermal fibroblasts suggested that Lilac-01 EVs increase the mitochondrial content without affecting their membrane potential in these cells.


Subject(s)
Bacillus coagulans , Extracellular Vesicles , Humans , Rats , Animals , Microglia/metabolism , Cardiolipins/metabolism , Mitochondria , Extracellular Vesicles/metabolism , Cell Death , Fibroblasts/metabolism
4.
Arterioscler Thromb Vasc Biol ; 41(1): 360-376, 2021 01.
Article in English | MEDLINE | ID: mdl-33086872

ABSTRACT

OBJECTIVE: Enhancement of LCAT (lecithin:cholesterol acyltransferase) activity has possibility to be beneficial for atherosclerosis. To evaluate this concept, we characterized our novel, orally administered, small-molecule LCAT activator DS-8190a, which was created from high-throughput screening and subsequent derivatization. We also focused on its mechanism of LCAT activation and the therapeutic activity with improvement of HDL (high-density lipoprotein) functionality. Approach and Results: DS-8190a activated human and cynomolgus monkey but not mouse LCAT enzymes in vitro. DS-8190a was orally administered to cynomolgus monkeys and dose dependently increased LCAT activity (2.0-fold in 3 mg/kg group on day 7), resulting in HDL cholesterol elevation without drastic changes of non-HDL cholesterol. Atheroprotective effects were then evaluated using Ldl-r KO×hLcat Tg mice fed a Western diet for 8 weeks. DS-8190a treatment achieved significant reduction of atherosclerotic lesion area (48.3% reduction in 10 mg/kg treatment group). Furthermore, we conducted reverse cholesterol transport study using Ldl-r KO×hLcat Tg mice intraperitoneally injected with J774A.1 cells loaded with [3H]-cholesterol and confirmed significant increases of [3H] count in plasma (1.4-fold) and feces (1.4-fold on day 2 and 1.5-fold on day3) in the DS-8190a-treated group. With regard to the molecular mechanism involved, direct binding of DS-8190a to human LCAT protein was confirmed by 2 different approaches: affinity purification by DS-8190a-immobilized beads and thermal shift assay. In addition, the candidate binding site of DS-8190a in human LCAT protein was identified by photoaffinity labeling. CONCLUSIONS: This study demonstrates the potential of DS-8190a as a novel therapeutic for atherosclerosis. In addition, this compound proves that a small-molecule direct LCAT activator can achieve HDL-C elevation in monkey and reduction of atherosclerotic lesion area with enhanced HDL function in rodent.


Subject(s)
Atherosclerosis/prevention & control , Enzyme Activators/pharmacology , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Plaque, Atherosclerotic , Animals , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Line , Cholesterol, HDL/blood , Disease Models, Animal , Enzyme Activation , Humans , Macaca fascicularis , Macrophages/drug effects , Macrophages/enzymology , Male , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylcholine-Sterol O-Acyltransferase/genetics , Receptors, LDL/deficiency , Receptors, LDL/genetics , Species Specificity , Up-Regulation
5.
Mol Cell ; 53(6): 904-15, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24656129

ABSTRACT

Little is known about how mammalian cells maintain cell size homeostasis. We conducted a novel genetic screen to identify cell-size-controlling genes and isolated Largen, the product of a gene (PRR16) that increased cell size upon overexpression in human cells. In vitro evidence indicated that Largen preferentially stimulates the translation of specific subsets of mRNAs, including those encoding proteins affecting mitochondrial functions. The involvement of Largen in mitochondrial respiration was consistent with the increased mitochondrial mass and greater ATP production in Largen-overexpressing cells. Furthermore, Largen overexpression led to increased cell size in vivo, as revealed by analyses of conditional Largen transgenic mice. Our results establish Largen as an important link between mRNA translation, mitochondrial functions, and the control of mammalian cell size.


Subject(s)
Cell Size/drug effects , Gene Expression Regulation , Protein Biosynthesis , Proteins/genetics , RNA, Messenger/genetics , Animals , Cell Line, Tumor , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors , High-Throughput Screening Assays , Humans , Jurkat Cells , Mice , Mice, Transgenic , Mitochondria/genetics , Mitochondria/metabolism , Proteins/metabolism , RNA, Messenger/metabolism , Retroviridae/genetics , Retroviridae/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology
6.
Biosci Biotechnol Biochem ; 85(7): 1759-1762, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34036301

ABSTRACT

This study tried to quantitatively clarify the usefulness of supercritical fluid extraction for removal of chlorophyll and pheophorbide from Chlorella pyrenoidosa. C. pyrenoidosa powder was subjected to supercritical fluid extraction, and chlorophyll a and pheophorbide a in its extracted fractions were measured by HPLC-UV. Chlorophyll a and pheophorbide a in residue after supercritical fluid extraction became below of detection limit.


Subject(s)
Chlorella/metabolism , Chlorophyll/analogs & derivatives , Chlorophyll/isolation & purification , Chromatography, Supercritical Fluid/methods , Proteins/metabolism , Chromatography, High Pressure Liquid , Spectrophotometry, Ultraviolet
7.
Genes Dev ; 27(10): 1101-14, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23699408

ABSTRACT

Tumorigenesis results from dysregulation of oncogenes and tumor suppressors that influence cellular proliferation, differentiation, apoptosis, and/or senescence. Many gene products involved in these processes are substrates of the E3 ubiquitin ligase Mule/Huwe1/Arf-BP1 (Mule), but whether Mule acts as an oncogene or tumor suppressor in vivo remains controversial. We generated K14Cre;Mule(flox/flox(y)) (Mule kKO) mice and subjected them to DMBA/PMA-induced skin carcinogenesis, which depends on oncogenic Ras signaling. Mule deficiency resulted in increased penetrance, number, and severity of skin tumors, which could be reversed by concomitant genetic knockout of c-Myc but not by knockout of p53 or p19Arf. Notably, in the absence of Mule, c-Myc/Miz1 transcriptional complexes accumulated, and levels of p21CDKN1A (p21) and p15INK4B (p15) were down-regulated. In vitro, Mule-deficient primary keratinocytes exhibited increased proliferation that could be reversed by Miz1 knockdown. Transfer of Mule-deficient transformed cells to nude mice resulted in enhanced tumor growth that again could be abrogated by Miz1 knockdown. Our data demonstrate in vivo that Mule suppresses Ras-mediated tumorigenesis by preventing an accumulation of c-Myc/Miz1 complexes that mediates p21 and p15 down-regulation.


Subject(s)
Cell Transformation, Neoplastic , Cyclin-Dependent Kinase Inhibitor p15/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Down-Regulation , Nuclear Proteins/antagonists & inhibitors , Oncogene Protein p21(ras)/metabolism , Protein Inhibitors of Activated STAT/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , 9,10-Dimethyl-1,2-benzanthracene/pharmacology , Animals , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p15/biosynthesis , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Cyclin-Dependent Kinase Inhibitor p21/genetics , Female , Genes, ras , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Mice , Mice, Knockout , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oncogene Protein p21(ras)/antagonists & inhibitors , Oncogene Protein p21(ras)/genetics , Protein Inhibitors of Activated STAT/deficiency , Protein Inhibitors of Activated STAT/genetics , Protein Inhibitors of Activated STAT/metabolism , Proto-Oncogene Proteins c-myc/deficiency , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tetradecanoylphorbol Acetate/pharmacology , Tumor Suppressor Protein p53 , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics
8.
Genes Dev ; 26(18): 2038-49, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22925884

ABSTRACT

Isocitrate dehydrogenase-1 (IDH1) R132 mutations occur in glioma, but their physiological significance is unknown. Here we describe the generation and characterization of brain-specific Idh1 R132H conditional knock-in (KI) mice. Idh1 mutation results in hemorrhage and perinatal lethality. Surprisingly, intracellular reactive oxygen species (ROS) are attenuated in Idh1-KI brain cells despite an apparent increase in the NADP(+)/NADPH ratio. Idh1-KI cells also show high levels of D-2-hydroxyglutarate (D2HG) that are associated with inhibited prolyl-hydroxylation of hypoxia-inducible transcription factor-1α (Hif1α) and up-regulated Hif1α target gene transcription. Intriguingly, D2HG also blocks prolyl-hydroxylation of collagen, causing a defect in collagen protein maturation. An endoplasmic reticulum (ER) stress response induced by the accumulation of immature collagens may account for the embryonic lethality of these mutants. Importantly, D2HG-mediated impairment of collagen maturation also led to basement membrane (BM) aberrations that could play a part in glioma progression. Our study presents strong in vivo evidence that the D2HG produced by the mutant Idh1 enzyme is responsible for the above effects.


Subject(s)
Basement Membrane/pathology , Collagen/metabolism , Glutarates/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Animals , Basement Membrane/metabolism , Brain/cytology , Brain/pathology , Gene Knock-In Techniques , Genotype , Glioma/pathology , Mice , Mutation , Protein Stability , Reactive Oxygen Species/metabolism , Stress, Physiological
9.
Proc Natl Acad Sci U S A ; 113(37): 10370-5, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27578866

ABSTRACT

Polycomb repressive complex 2 (PRC2) catalyzes the monomethylation, dimethylation, and trimethylation of histone H3 Lys27 (H3K27) and acts as a central epigenetic regulator that marks the repressive chromatin domain. Embryonic ectoderm development (EED), an essential component of PRC2, interacts with trimethylated H3K27 (H3K27me3) through the aromatic cage structure composed of its three aromatic amino acids, Phe97, Trp364, and Tyr365. This interaction allosterically activates the histone methyltransferase activity of PRC2 and thereby propagates repressive histone marks. In this study, we report the analysis of knock-in mice harboring the myeloid disorder-associated EED Ile363Met (I363M) mutation, analogous to the EED aromatic cage mutants. The I363M homozygotes displayed a remarkable and preferential reduction of H3K27me3 and died at midgestation. The heterozygotes increased the clonogenic capacity and bone marrow repopulating activity of hematopoietic stem/progenitor cells (HSPCs) and were susceptible to leukemia. Lgals3, a PRC2 target gene encoding a multifunctional galactose-binding lectin, was derepressed in I363M heterozygotes, which enhanced the stemness of HSPCs. Thus, our work provides in vivo evidence that the structural integrity of EED to H3K27me3 propagation is critical, especially for embryonic development and hematopoietic homeostasis, and that its perturbation increases the predisposition to hematologic malignancies.


Subject(s)
Galectin 3/genetics , Leukemia/genetics , Polycomb Repressive Complex 2/chemistry , Animals , Embryonic Development/genetics , Epigenesis, Genetic/genetics , Galectin 3/chemistry , Genetic Predisposition to Disease , Hematopoietic Stem Cells/chemistry , Hematopoietic Stem Cells/metabolism , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Humans , Mice , Polycomb Repressive Complex 2/genetics
10.
Nihon Shokakibyo Gakkai Zasshi ; 116(11): 913-926, 2019.
Article in Japanese | MEDLINE | ID: mdl-31708504

ABSTRACT

Although chronic constipation is highly prevalent, its definition remains unclear. Therefore, the prevalence varies depending on reports, and the understanding of actual situations is unclear. Hence, we performed an internet survey on constipation among the Japanese general population to study the background factors and actual situations. Preliminary study on the awareness of constipation was conducted among 10000 people in which 9523 of them was asked if they had constipation at the time of the survey. In this population, 51.5% realized that they had constipation. Multivariate analysis showed the significant association of constipation to age, sex, and past histories or complications of diabetes, hemorrhoids, and cerebrovascular diseases. In a main research composed of 3000 general Japanese population, approximately 30.9% of the subjects reported the use of laxatives to treat constipation, and 43.8% of them were found to use irritant laxatives. Moreover, 67.5% of the subjects purchased laxatives at a pharmacy. The frequency of bowel movement less than 3 times per week was manifested in 36.3% of the subjects, and more than once per week in 21.4%. The percentage of hard (Bristol Stool Form Scale [BSFS] Type 1-2), normal (BSFS Type 3-5), and diarrhea stools (BSFS Type 6-7) was 33.1%, 60.0%, and 6.9%, respectively. The quality of life (QOL) of the subjects with hard and diarrhea stools evaluated by SF-8 was significantly lower than that of those with normal stools. Furthermore, the actual monthly cost for the therapeutic drugs used for treating constipation was less than 1000 yen in 75% of the subjects. Analysis of the IBS-QOL-J indicated that the ≥5000 yen payable group had the lowest satisfaction of defecation among the study groups. At present, many Japanese patients with constipation have not been receiving enough treatment for constipation. Therefore, appropriate medication by physicians as well as instruction to patients is required.


Subject(s)
Constipation/epidemiology , Quality of Life , Humans , Internet , Japan/epidemiology , Surveys and Questionnaires
11.
Biochem Biophys Res Commun ; 503(4): 2878-2884, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30139518

ABSTRACT

Hepcidin is a peptide hormone and has emerged as the central molecule regulating systemic iron homeostasis. Hepcidin inhibition could be a strategy for treating anemia of chronic disease. We previously reported the discovery of DS79182026, a new inhibitor of hepcidin production, from phenotypic screening using the human hepatocyte HepG2 cell line. In this study, we utilized a combination of affinity purification-based chemical proteomics and radioactive compound binding assay, and identified several candidate proteins. Purified recombinant proteins were subjected to radioactive compound binding assays for validation, and ALK2 and ALK3 demonstrated specific binding to the compound. Since ALK2 is known to be related to hepcidin production, we focused on ALK2 and found that its knockdown decreased hepcidin expression; we also found a strong correlation (R = 0.920) between pharmacological activity and compound affinity to ALK2. These results indicate that ALK2 is the primary target protein of our new hepcidin production inhibitors.


Subject(s)
Hepcidins/antagonists & inhibitors , Proteomics/methods , Radioligand Assay/methods , Activin Receptors, Type I/metabolism , Anemia/drug therapy , Hep G2 Cells , Humans , Protein Binding , Proteins/isolation & purification
12.
Nature ; 488(7413): 656-9, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22763442

ABSTRACT

Mutations in the IDH1 and IDH2 genes encoding isocitrate dehydrogenases are frequently found in human glioblastomas and cytogenetically normal acute myeloid leukaemias (AML). These alterations are gain-of-function mutations in that they drive the synthesis of the 'oncometabolite' R-2-hydroxyglutarate (2HG). It remains unclear how IDH1 and IDH2 mutations modify myeloid cell development and promote leukaemogenesis. Here we report the characterization of conditional knock-in (KI) mice in which the most common IDH1 mutation, IDH1(R132H), is inserted into the endogenous murine Idh1 locus and is expressed in all haematopoietic cells (Vav-KI mice) or specifically in cells of the myeloid lineage (LysM-KI mice). These mutants show increased numbers of early haematopoietic progenitors and develop splenomegaly and anaemia with extramedullary haematopoiesis, suggesting a dysfunctional bone marrow niche. Furthermore, LysM-KI cells have hypermethylated histones and changes to DNA methylation similar to those observed in human IDH1- or IDH2-mutant AML. To our knowledge, our study is the first to describe the generation and characterization of conditional IDH1(R132H)-KI mice, and also the first report to demonstrate the induction of a leukaemic DNA methylation signature in a mouse model. Our report thus sheds light on the mechanistic links between IDH1 mutation and human AML.


Subject(s)
Epigenesis, Genetic/genetics , Hematopoietic Stem Cells/cytology , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mutant Proteins/metabolism , Mutation/genetics , Aging , Animals , Bone Marrow/pathology , Cell Lineage , CpG Islands/genetics , DNA Methylation , Disease Models, Animal , Female , Gene Knock-In Techniques , Glioma/pathology , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Male , Mice , Mutant Proteins/genetics , Myeloid Cells/cytology , Myeloid Cells/metabolism , Spleen/pathology
13.
Proc Natl Acad Sci U S A ; 112(9): 2829-34, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25730874

ABSTRACT

Enchondromas are benign cartilage tumors and precursors to malignant chondrosarcomas. Somatic mutations in the isocitrate dehydrogenase genes (IDH1 and IDH2) are present in the majority of these tumor types. How these mutations cause enchondromas is unclear. Here, we identified the spectrum of IDH mutations in human enchondromas and chondrosarcomas and studied their effects in mice. A broad range of mutations was identified, including the previously unreported IDH1-R132Q mutation. These mutations harbored enzymatic activity to catalyze α-ketoglutarate to d-2-hydroxyglutarate (d-2HG). Mice expressing Idh1-R132Q in one allele in cells expressing type 2 collagen showed a disordered growth plate, with persistence of type X-expressing chondrocytes. Chondrocyte cell cultures from these animals or controls showed that there was an increase in proliferation and expression of genes characteristic of hypertrophic chondrocytes with expression of Idh1-R132Q or 2HG treatment. Col2a1-Cre;Idh1-R132Q mutant knock-in mice (mutant allele expressed in chondrocytes) did not survive after the neonatal stage. Col2a1-Cre/ERT2;Idh1-R132 mutant conditional knock-in mice, in which Cre was induced by tamoxifen after weaning, developed multiple enchondroma-like lesions. Taken together, these data show that mutant IDH or d-2HG causes persistence of chondrocytes, giving rise to rests of growth-plate cells that persist in the bone as enchondromas.


Subject(s)
Chondrocytes , Enchondromatosis , Gene Expression Regulation, Enzymologic , Isocitrate Dehydrogenase , Mutation, Missense , Amino Acid Substitution , Animals , Chondrocytes/enzymology , Chondrocytes/pathology , Collagen Type II/biosynthesis , Collagen Type II/genetics , Enchondromatosis/enzymology , Enchondromatosis/genetics , Enchondromatosis/pathology , Glutarates/adverse effects , Glutarates/pharmacology , Humans , Isocitrate Dehydrogenase/biosynthesis , Isocitrate Dehydrogenase/genetics , Mice , Mice, Mutant Strains
14.
Proc Natl Acad Sci U S A ; 111(5): 1843-8, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24449892

ABSTRACT

The generation of viable sperm proceeds through a series of coordinated steps, including germ cell self-renewal, meiotic recombination, and terminal differentiation into functional spermatozoa. The p53 family of transcription factors, including p53, p63, and p73, are critical for many physiological processes, including female fertility, but little is known about their functions in spermatogenesis. Here, we report that deficiency of the TAp73 isoform, but not p53 or ΔNp73, results in male infertility because of severe impairment of spermatogenesis. Mice lacking TAp73 exhibited increased DNA damage and cell death in spermatogonia, disorganized apical ectoplasmic specialization, malformed spermatids, and marked hyperspermia. We demonstrated that TAp73 regulates the mRNA levels of crucial genes involved in germ stem/progenitor cells (CDKN2B), spermatid maturation/spermiogenesis (metalloproteinase and serine proteinase inhibitors), and steroidogenesis (CYP21A2 and progesterone receptor). These alterations of testicular histology and gene expression patterns were specific to TAp73 null mice and not features of mice lacking p53. Our work provides previously unidentified in vivo evidence that TAp73 has a unique role in spermatogenesis that ensures the maintenance of mitotic cells and normal spermiogenesis. These results may have implications for the diagnosis and management of human male infertility.


Subject(s)
DNA-Binding Proteins/metabolism , Fertility , Nuclear Proteins/metabolism , Spermatogenesis , Tumor Suppressor Proteins/metabolism , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM17 Protein , Aging/pathology , Animals , Apoptosis/genetics , Cell Count , Cell Proliferation , DNA Damage/genetics , DNA-Binding Proteins/deficiency , Female , Fertility/genetics , Gene Expression Regulation , Humans , Infertility, Male/blood , Infertility, Male/genetics , Infertility, Male/pathology , Male , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Mice , Mice, Knockout , Nuclear Proteins/deficiency , Oxidative Stress/genetics , Progesterone/blood , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism , Spermatozoa/pathology , Testis/metabolism , Testis/pathology , Tumor Protein p73 , Tumor Suppressor Proteins/deficiency
15.
Extremophiles ; 19(1): 119-25, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25209746

ABSTRACT

A novel pectate lyase of a deep subseafloor bacterium, Georgenia muralis strain JAM 3H7-3 (JCM19733), was purified to homogeneity from a culture broth by an anion exchange chromatography, followed by heat treatment of the enzyme solution at 60 °C for 30 min, and a gel filtration in the presence of SDS. The purified enzyme (Pel-S2) had a molecular mass of ~51 kDa by SDS-PAGE and ~75 kDa by gel filtration. In contrast, without heat treatment, the purified enzyme in SDS sample buffer was found to consist of 23- and 23.5-kDa polypeptides by SDS-PAGE. The enzyme was gradually inactivated by heat treatment with and without SDS in parallel with a shift of polypeptides molecular masses from 23 and 23.5 to 51 kDa on SDS-PAGE. Pel-S2 degraded pectate optimally at pH 10 in a glycine buffer and temperature of 50 °C. The enzyme showed relatively broad substrate specificity toward pectic acid and pectin.


Subject(s)
Gram-Positive Bacteria/enzymology , Polysaccharide-Lyases/metabolism , Water Microbiology , DNA, Bacterial/genetics , Glycine/chemistry , Gram-Positive Bacteria/genetics , Hot Temperature , Hydrogen-Ion Concentration , Pectins/chemistry , Peptides/chemistry , Polysaccharide-Lyases/genetics , Protein Structure, Tertiary , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Substrate Specificity
16.
Hypertens Res ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831090

ABSTRACT

In 2020, concerns arose about the potential adverse effects of angiotensin II type 1 receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) on patients with the Coronavirus Disease 2019 (COVID-19). However, there is no national data on antihypertensive prescriptions during the COVID-19 pandemic in Japan. This study aimed to explore the trends in antihypertensive drug prescriptions in Japan throughout COVID-19 pandemic period. This study used data from the National Database (NDB) Open Data in Japan, an annual publication by the Ministry of Health, Labour and Welfare. To capture changes before and after social activity restrictions, the present study focused on extracting the number of prescribed oral medicine tablets for outpatients from the NDB Open Data from 2018 to 2021. The fiscal year 2020 exhibited the lowest for both outpatient claims and prescribed drugs. In contrast, all categories of antihypertensive drug prescription showed annual increases, and no specific changes in the prescription patterns of ARBs and ACEIs around fiscal year 2020 were observed. This study implies that antihypertensive drug prescriptions were adequately maintained throughout the COVID-19 pandemic in Japan.

17.
Cell Stress Chaperones ; 29(3): 497-509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763404

ABSTRACT

Bcl2-associated athanogene-1 protein (Bag1) acts as a co-chaperone of heat shock protein 70 and heat shock cognate 70 and regulates multiple cellular processes, including cell proliferation, apoptosis, environmental stress response, and drug resistance. Since Bag1 knockout mice exhibited fetal lethality, the in vivo function of Bag1 remains unclear. In this study, we established a mouse line expressing Bag1 gene missing exon 5, which corresponds to an encoding region for the interface of heat shock protein 70/heat shock cognate 70. Despite mice carrying homoalleles of the Bag1 mutant (Bag1Δex5) expressing undetectable levels of Bag1, Bag1Δex5 homozygous mice developed without abnormalities. Bag1Δex5 protein was found to be highly unstable in cells and in vitro. We found that the growth of mouse embryonic fibroblasts derived from Bag1Δex5-homo mice was attenuated by doxorubicin and a glutathione (GSH) synthesis inhibitor, buthionine sulfoximine. In response to buthionine sulfoximine, Bag1Δex5-mouse embryonic fibroblasts exhibited a higher dropping rate of GSH relative to the oxidized glutathione level. In addition, Bag1 might mitigate cellular hydrogen peroxide levels. Taken together, our results demonstrate that the loss of Bag1 did not affect mouse development and that Bag1 is involved in intracellular GSH homeostasis, namely redox homeostasis.


Subject(s)
DNA-Binding Proteins , Fibroblasts , Glutathione , Transcription Factors , Animals , Fibroblasts/metabolism , Glutathione/metabolism , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Doxorubicin/pharmacology , Buthionine Sulfoximine/pharmacology , Embryo, Mammalian/metabolism , Cell Proliferation , Mice, Knockout , Hydrogen Peroxide/metabolism
18.
Cancer Diagn Progn ; 4(3): 239-243, 2024.
Article in English | MEDLINE | ID: mdl-38707720

ABSTRACT

Background/Aim: The present study utilized the three-dimensional histoculture drug response assay (HDRA) to determine the efficacy of recombinant methioninase (rMETase) on tumor tissue resected from patients with late-stage cancer, as a functional biomarker of sensitivity to methionine restriction therapy. Patients and Methods: Resected peritoneal-metastatic cancer, including colorectal cancer, pancreatic cancer, ovarian cancer, and pseudomyxoma were placed on Gelform in RPMI 1640 medium for seven days and treated with rMETase from 2.5 U/ml to 20 U/ml. Cell viability was determined using the MTT assay. A total of 48 patients with late-stage cancer underwent testing for rMETase responsiveness using the HDRA. Results: Colorectal cancer and pseudomyxoma had the highest sensitivity to rMETase. Pancreatic and ovarian cancer also responded to rMETase, but to a lesser degree. Conclusion: Patients with tumors with at least 40% sensitivity to rMETase in the HDRA are being considered as candidates for methionine restriction therapy, which includes the use of rMETase in combination with a low-methionine diet.

19.
Commun Biol ; 7(1): 782, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951147

ABSTRACT

Acute immune responses with excess production of cytokines, lipid/chemical mediators, or coagulation factors, often result in lethal damage. In addition, the innate immune system utilizes multiple types of receptors that recognize neurotransmitters as well as pathogen-associated molecular patterns, making immune responses complex and clinically unpredictable. We here report an innate immune and adrenergic link inducing lethal levels of platelet-activating factor. Injecting mice with toll-like receptor (TLR) 4 ligand lipopolysaccharide (LPS), cell wall N-glycans of Candida albicans, and the α2-adrenergic receptor (α2-AR) agonist medetomidine induces lethal damage. Knocking out the C-type lectin Dectin-2 prevents the lethal damage. In spleen, large amounts of platelet-activating factor (PAF) are detected, and knocking out lysophospholipid acyltransferase 9 (LPLAT9/LPCAT2), which encodes an enzyme that converts inactive lyso-PAF to active PAF, protects mice from the lethal damage. These results reveal a linkage/crosstalk between the nervous and the immune system, possibly inducing lethal levels of PAF.


Subject(s)
Platelet Activating Factor , Animals , Platelet Activating Factor/metabolism , Mice , Mice, Knockout , Mice, Inbred C57BL , Lipopolysaccharides , Candida albicans , Immunity, Innate , Male , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Adrenergic alpha-2 Receptor Agonists/pharmacology
20.
Proc Natl Acad Sci U S A ; 107(32): 13984-90, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20679220

ABSTRACT

MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) are protein-serine/threonine kinases that are activated by ERK or p38 and phosphorylate eIF4E, which is involved in cap-dependent translation initiation. However, Mnk1/2 double knockout (Mnk-DKO) mice show normal cell growth and development despite an absence of eIF4E phosphorylation. Here we show that the tumorigenesis occurring in the Lck-Pten mouse model (referred to here as tPten(-/-) mice) can be suppressed by the loss of Mnk1/2. Phosphorylation of eIF4E was greatly enhanced in lymphomas of parental tPten(-/-) mice compared with lymphoid tissues of wild-type mice, but was totally absent in lymphomas of tPten(-/-); Mnk-DKO mice. Notably, stable knockdown of Mnk1 in the human glioma cell line U87MG resulted in dramatically decreased tumor formation when these cells were injected into athymic nude mice. Our data demonstrate an oncogenic role for Mnk1/2 in tumor development, and highlight these molecules as potential anticancer drug targets that could be inactivated with minimal side effects.


Subject(s)
Neoplasms/etiology , Protein Serine-Threonine Kinases/deficiency , Animals , Cell Line, Tumor , Eukaryotic Initiation Factor-4E/metabolism , Glioma/pathology , Lymphoma/etiology , Mice , Mice, Knockout , Mice, Nude , Neoplasm Transplantation , PTEN Phosphohydrolase/deficiency , Phosphorylation , Protein Serine-Threonine Kinases/physiology , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL