Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Nature ; 590(7846): 438-444, 2021 02.
Article in English | MEDLINE | ID: mdl-33505029

ABSTRACT

Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732Ā resequenced genotypes, which were grown across 10Ā common gardens that span 1,800Ā km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.


Subject(s)
Acclimatization/genetics , Biofuels , Genome, Plant/genetics , Genomics , Global Warming , Panicum/genetics , Polyploidy , Biomass , Ecotype , Evolution, Molecular , Gene Flow , Gene Pool , Genetic Introgression , Molecular Sequence Annotation , Panicum/classification , Panicum/growth & development , United States
2.
Plant Physiol ; 193(4): 2459-2479, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37595026

ABSTRACT

Source and sink interactions play a critical but mechanistically poorly understood role in the regulation of senescence. To disentangle the genetic and molecular mechanisms underlying source-sink-regulated senescence (SSRS), we performed a phenotypic, transcriptomic, and systems genetics analysis of senescence induced by the lack of a strong sink in maize (Zea mays). Comparative analysis of genotypes with contrasting SSRS phenotypes revealed that feedback inhibition of photosynthesis, a surge in reactive oxygen species, and the resulting endoplasmic reticulum (ER) stress were the earliest outcomes of weakened sink demand. Multienvironmental evaluation of a biparental population and a diversity panel identified 12 quantitative trait loci and 24 candidate genes, respectively, underlying SSRS. Combining the natural diversity and coexpression networks analyses identified 7 high-confidence candidate genes involved in proteolysis, photosynthesis, stress response, and protein folding. The role of a cathepsin B like protease 4 (ccp4), a candidate gene supported by systems genetic analysis, was validated by analysis of natural alleles in maize and heterologous analyses in Arabidopsis (Arabidopsis thaliana). Analysis of natural alleles suggested that a 700-bp polymorphic promoter region harboring multiple ABA-responsive elements is responsible for differential transcriptional regulation of ccp4 by ABA and the resulting variation in SSRS phenotype. We propose a model for SSRS wherein feedback inhibition of photosynthesis, ABA signaling, and oxidative stress converge to induce ER stress manifested as programed cell death and senescence. These findings provide a deeper understanding of signals emerging from loss of sink strength and offer opportunities to modify these signals to alter senescence program and enhance crop productivity.


Subject(s)
Transcriptome , Zea mays , Zea mays/metabolism , Transcriptome/genetics , Gene Expression Profiling , Photosynthesis/genetics , Phenotype , Gene Expression Regulation, Plant
3.
Genome ; 67(9): 316-326, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38722238

ABSTRACT

Animals encounter diverse microbial communities throughout their lifetime, which exert varying selection pressures. Antimicrobial peptides (AMPs), which lyse or inhibit microbial growth, are a first line of defense against some of these microbes. Here we examine how developmental variation in microbial exposure has affected the evolution of expression and amino acid sequences of Defensins (an ancient class of AMPs) in the house fly (Musca domestica). The house fly is a well-suited model for this work because it trophically associates with varying microbial communities throughout its life history and its genome contains expanded families of AMPs, including Defensins. We identified two subsets of house fly Defensins: one expressed in larvae or pupae, and the other expressed in adults. The amino acid sequences of these two Defensin subsets form distinct monophyletic clades, and they are located in separate gene clusters in the genome. The adult-expressed Defensins evolve faster than larval/pupal Defensins, consistent with different selection pressures across developmental stages. Our results therefore suggest that varied microbial communities encountered across life history can shape the evolutionary trajectories of immune genes.


Subject(s)
Defensins , Houseflies , Animals , Defensins/genetics , Houseflies/genetics , Evolution, Molecular , Phylogeny , Larva/genetics , Immune System , Amino Acid Sequence , Multigene Family
4.
New Phytol ; 237(5): 1891-1907, 2023 03.
Article in English | MEDLINE | ID: mdl-36457293

ABSTRACT

Globally, weedy plants are a major constraint to sustainable crop production. Much of the success of weeds rests with their ability to rapidly adapt in the face of human-mediated management of agroecosystems. Alopecurus myosuroides (blackgrass) is a widespread and impactful weed affecting agriculture in Europe. Here we report a chromosome-scale genome assembly of blackgrass and use this reference genome to explore the genomic/genetic basis of non-target site herbicide resistance (NTSR). Based on our analysis of F2 seed families derived from two distinct blackgrass populations with the same NTSR phenotype, we demonstrate that the trait is polygenic and evolves from standing genetic variation. We present evidence that selection for NTSR has signatures of both parallel and non-parallel evolution. There are parallel and non-parallel changes at the transcriptional level of several stress- and defence-responsive gene families. At the genomic level, however, the genetic loci underpinning NTSR are different (non-parallel) between seed families. We speculate that variation in the number, regulation and function of stress- and defence-related gene families enable weedy species to rapidly evolve NTSR via exaptation of genes within large multi-functional gene families. These results provide novel insights into the potential for, and nature of plant adaptation in rapidly changing environments.


Subject(s)
Herbicides , Humans , Herbicides/toxicity , Herbicide Resistance/genetics , Plant Weeds/genetics , Poaceae/genetics , Genomics
5.
Plant Cell ; 32(7): 2132-2140, 2020 07.
Article in English | MEDLINE | ID: mdl-32327538

ABSTRACT

Gene copy number variation is a predominant mechanism used by organisms to respond to selective pressures from the environment. This often results in unbalanced structural variations that perpetuate as adaptations to sustain life. However, the underlying mechanisms that give rise to gene proliferation are poorly understood. Here, we show a unique result of genomic plasticity in Amaranthus palmeri: a massive, Ć¢ĀˆĀ¼400-kb extrachromosomal circular DNA (eccDNA) that harbors the 5-ENOYLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE (EPSPS) gene and 58 other genes whose encoded functions traverse detoxification, replication, recombination, transposition, tethering, and transport. Gene expression analysis under glyphosate stress showed transcription of 41 of these 59 genes, with high expression of EPSPS, as well as genes coding for aminotransferases, zinc finger proteins, and several uncharacterized proteins. The genomic architecture of the eccDNA replicon is composed of a complex arrangement of repeat sequences and mobile genetic elements interspersed among arrays of clustered palindromes that may be crucial for stability, DNA duplication and tethering, and/or a means of nuclear integration of the adjacent and intervening sequences. Comparative analysis of orthologous genes in grain amaranth (Amaranthus hypochondriacus) and waterhemp (Amaranthus tuberculatus) suggests that higher order chromatin interactions contribute to the genomic origins of the A. palmeri eccDNA replicon structure.


Subject(s)
Amaranthus/genetics , DNA, Circular/genetics , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Replicon/genetics , Amaranthaceae/genetics , Amaranthus/drug effects , Chromosomes, Plant , DNA, Plant , Gene Amplification , Gene Expression Regulation, Plant , Genome, Plant/genetics , Glycine/pharmacology , Repetitive Sequences, Nucleic Acid , Synteny , Glyphosate
6.
Insect Mol Biol ; 31(6): 782-797, 2022 12.
Article in English | MEDLINE | ID: mdl-35875866

ABSTRACT

Insects possess both infection-induced and constitutively expressed innate immune defences. Some effectors, such as lysozymes and antimicrobial peptides (AMPs), are constitutively expressed in flies, but expression patterns vary across tissues and species. The house fly (Musca domestica L.) has an impressive immune repertoire, with more effector genes than any other flies. We used RNA-seq to explore both constitutive and induced expression of immune effectors in flies. House flies were fed either Pseudomonas aeruginosa or Escherichia coli, or sterile control broth, and gene expression in the gut and carcass was analysed 4Ā h post-feeding. Flies fed either bacterium did not induce AMP expression, but some lysozyme and AMP genes were constitutively expressed. Prior transcriptome data from flies injected with bacteria also were analysed, and these constitutively expressed genes differed from those induced by bacterial injection. Binding sites for the transcription factor Myc were enriched upstream of constitutively expressed AMP genes, while upstream regions of induced AMPs were enriched for NF-κB binding sites resembling those of the Imd-responsive transcription factor Relish. Therefore, we identified at least two expression repertoires for AMPs in the house fly: constitutively expressed genes that may be regulated by Myc, and induced AMPs likely regulated by Relish.


Subject(s)
Houseflies , Animals , Bacteria , Gene Expression Regulation , Houseflies/genetics , Pseudomonas aeruginosa , Transcription Factors/genetics
7.
Plant Cell ; 31(9): 1968-1989, 2019 09.
Article in English | MEDLINE | ID: mdl-31239390

ABSTRACT

Premature senescence in annual crops reduces yield, while delayed senescence, termed stay-green, imposes positive and negative impacts on yield and nutrition quality. Despite its importance, scant information is available on the genetic architecture of senescence in maize (Zea mays) and other cereals. We combined a systematic characterization of natural diversity for senescence in maize and coexpression networks derived from transcriptome analysis of normally senescing and stay-green lines. Sixty-four candidate genes were identified by genome-wide association study (GWAS), and 14 of these genes are supported by additional evidence for involvement in senescence-related processes including proteolysis, sugar transport and signaling, and sink activity. Eight of the GWAS candidates, independently supported by a coexpression network underlying stay-green, include a trehalose-6-phosphate synthase, a NAC transcription factor, and two xylan biosynthetic enzymes. Source-sink communication and the activity of cell walls as a secondary sink emerge as key determinants of stay-green. Mutant analysis supports the role of a candidate encoding Cys protease in stay-green in Arabidopsis (Arabidopsis thaliana), and analysis of natural alleles suggests a similar role in maize. This study provides a foundation for enhanced understanding and manipulation of senescence for increasing carbon yield, nutritional quality, and stress tolerance of maize and other cereals.


Subject(s)
Aging/genetics , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genes, Plant/genetics , Zea mays/genetics , Arabidopsis/genetics , Gene Expression Profiling , Genome-Wide Association Study , Glucosyltransferases/genetics , Plant Leaves , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Transcriptome
8.
Plant Dis ; 106(3): 990-995, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34705484

ABSTRACT

Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) is a devastating fungus pathogen that causes Fusarium wilt in both domesticated cotton species, Gossypium hirsutum (Upland) and G. barbadense (Pima). Greenhouse and field-based pathogenicity assays can be a challenge because of nonuniform inoculum levels, the presence of endophytes, and varying environmental factors. Therefore, an inĀ vitro coculture system was designed to support the growth of both domesticated cotton species and FOV4 via an inert polyphenolic foam substrate with a liquid medium. A Fusarium wilt-susceptible Pima cotton cultivar, G. barbadense 'GB1031'; a highly resistant Pima cotton cultivar, G. barbadense 'DP348RF'; and a susceptible Upland cotton cultivar, G. hirsutum 'TM-1', were evaluated for 30 days during coculture with FOV4 in this foam-based system. Thirty days after inoculation, disease symptoms were more severe in both susceptible cultivars, which displayed higher percentages of foliar damage, and greater plant mortality than observed in 'DP348RF', the resistant Pima cotton cultivar. This foam-based inĀ vitro system may be useful for screening cotton germplasm for resistance to a variety of fungus pathogens and may facilitate the study of biotic interactions in domesticated cotton species under controlled environmental conditions.


Subject(s)
Fusarium , Gossypium , Coculture Techniques , Fusarium/physiology , Gossypium/microbiology , Plant Diseases/microbiology
9.
Plant Cell Physiol ; 62(7): 1199-1214, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34015110

ABSTRACT

The strength of the stalk rind, measured as rind penetrometer resistance (RPR), is an important contributor to stalk lodging resistance. To enhance the genetic architecture of RPR, we combined selection mapping on populations developed by 15 cycles of divergent selection for high and low RPR with time-course transcriptomic and metabolic analyses of the stalks. Divergent selection significantly altered allele frequencies of 3,656 and 3,412 single- nucleotide polymorphisms (SNPs) in the high and low RPR populations, respectively. Surprisingly, only 110 (1.56%) SNPs under selection were common in both populations, while the majority (98.4%) were unique to each population. This result indicated that high and low RPR phenotypes are produced by biologically distinct mechanisms. Remarkably, regions harboring lignin and polysaccharide genes were preferentially selected in high and low RPR populations, respectively. The preferential selection was manifested as higher lignification and increased saccharification of the high and low RPR stalks, respectively. The evolution of distinct gene classes according to the direction of selection was unexpected in the context of parallel evolution and demonstrated that selection for a trait, albeit in different directions, does not necessarily act on the same genes. Tricin, a grass-specific monolignol that initiates the incorporation of lignin in the cell walls, emerged as a key determinant of RPR. Integration of selection mapping and transcriptomic analyses with published genetic studies of RPR identified several candidate genes including ZmMYB31, ZmNAC25, ZmMADS1, ZmEXPA2, ZmIAA41 and hk5. These findings provide a foundation for an enhanced understanding of RPR and the improvement of stalk lodging resistance.


Subject(s)
Zea mays/genetics , Cell Wall/metabolism , Evolution, Molecular , Gene Expression Profiling , Gene Frequency , Metabolomics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Zea mays/anatomy & histology
10.
BMC Biotechnol ; 21(1): 4, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33419422

ABSTRACT

BACKGROUND: As bioprocess intensification has increased over the last 30 years, yields from mammalian cell processes have increased from 10's of milligrams to over 10's of grams per liter. Most of these gains in productivity can be attributed to increasing cell densities within bioreactors. As such, strategies have been developed to minimize accumulation of metabolic wastes, such as lactate and ammonia. Unfortunately, neither cell growth nor biopharmaceutical production can occur without some waste metabolite accumulation. Inevitably, metabolic waste accumulation leads to decline and termination of the culture. While it is understood that the accumulation of these unwanted compounds imparts a suboptimal culture environment, little is known about the genotoxic properties of these compounds that may lead to global genome instability. In this study, we examined the effects of high and moderate extracellular ammonia on the physiology and genomic integrity of Chinese hamster ovary (CHO) cells. RESULTS: Through whole genome sequencing, we discovered 2394 variant sites within functional genes comprised of both single nucleotide polymorphisms and insertion/deletion mutations as a result of ammonia stress with high or moderate impact on functional genes. Furthermore, several of these de novo mutations were found in genes whose functions are to maintain genome stability, such as Tp53, Tnfsf11, Brca1, as well as Nfkb1. Furthermore, we characterized microsatellite content of the cultures using the CriGri-PICR Chinese hamster genome assembly and discovered an abundance of microsatellite loci that are not replicated faithfully in the ammonia-stressed cultures. Unfaithful replication of these loci is a signature of microsatellite instability. With rigorous filtering, we found 124 candidate microsatellite loci that may be suitable for further investigation to determine whether these loci may be reliable biomarkers to predict genome instability in CHO cultures. CONCLUSION: This study advances our knowledge with regards to the effects of ammonia accumulation on CHO cell culture performance by identifying ammonia-sensitive genes linked to genome stability and lays the foundation for the development of a new diagnostic tool for assessing genome stability.


Subject(s)
Ammonia/metabolism , Batch Cell Culture Techniques/methods , Genetic Variation , Microsatellite Instability , Animals , BRCA1 Protein/metabolism , Biomarkers , Bioreactors , CHO Cells , Cell Count , Cricetulus , Culture Media , Female , Genes, p53 , Genetic Variation/genetics , Lactic Acid/metabolism , Mutation , NF-kappa B p50 Subunit/metabolism , Ovary/metabolism , RANK Ligand/metabolism
11.
BMC Microbiol ; 21(1): 346, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911456

ABSTRACT

BACKGROUND: House fly larvae (Musca domestica L.) require a live microbial community to successfully develop. Cattle manure is rich in organic matter and microorganisms, comprising a suitable substrate for larvae who feed on both the decomposing manure and the prokaryotic and eukaryotic microbes therein. Microbial communities change as manure ages, and when fly larvae are present changes attributable to larval grazing also occur. Here, we used high throughput sequencing of 16S and 18S rRNA genes to characterize microbial communities in dairy cattle manure and evaluated the changes in those communities over time by comparing the communities in fresh manure to aged manure with or without house fly larvae. RESULTS: Bacteria, archaea and protist community compositions significantly differed across manure types (e.g. fresh, aged, larval-grazed). Irrespective of manure type, microbial communities were dominated by the following phyla: Euryarchaeota (Archaea); Proteobacteria, Firmicutes and Bacteroidetes (Bacteria); Ciliophora, Metamonanda, Ochrophyta, Apicomplexa, Discoba, Lobosa and Cercozoa (Protists). Larval grazing significantly reduced the abundances of Bacteroidetes, Ciliophora, Cercozoa and increased the abundances of Apicomplexa and Discoba. Manure aging alone significantly altered the abundance bacteria (Acinetobacter, Clostridium, Petrimonas, Succinovibro), protists (Buxtonella, Enteromonas) and archaea (Methanosphaera and Methanomassiliicoccus). Larval grazing also altered the abundance of several bacterial genera (Pseudomonas, Bacteroides, Flavobacterium, Taibaiella, Sphingopyxis, Sphingobacterium), protists (Oxytricha, Cercomonas, Colpodella, Parabodo) and archaea (Methanobrevibacter and Methanocorpusculum). Overall, larval grazing significantly reduced bacterial and archaeal diversities but increased protist diversity. Moreover, total carbon (TC) and nitrogen (TN) decreased in larval grazed manure, and both TC and TN were highly correlated with several of bacterial, archaeal and protist communities. CONCLUSIONS: House fly larval grazing altered the abundance and diversity of bacterial, archaeal and protist communities differently than manure aging alone. Fly larvae likely alter community composition by directly feeding on and eliminating microbes and by competing with predatory microbes for available nutrients and microbial prey. Our results lend insight into the role house fly larvae play in shaping manure microbial communities and help identify microbes that house fly larvae utilize as food sources in manure. Information extrapolated from this study can be used to develop manure management strategies to interfere with house fly development and reduce house fly populations.


Subject(s)
Houseflies/metabolism , Manure/microbiology , Microbiota , Animals , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Carbon/analysis , Cattle , Eukaryota/classification , Eukaryota/genetics , Eukaryota/isolation & purification , Houseflies/growth & development , Larva/growth & development , Larva/metabolism , Manure/analysis , Nitrogen/analysis , RNA, Ribosomal/genetics
12.
Phytopathology ; 111(3): 496-499, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32648525

ABSTRACT

Although Botrytis fragariae was only recently identified as a new Botrytis species that causes strawberry gray mold, its prevalence extends to many states of the eastern United States. Compared with B. cinerea, which is known to be the causal agent of gray mold on many crop plants including strawberry, B. fragariae appears to have specifically adapted to strawberry and exhibits distinct fungicide sensitivity. This is the first presentation of a high-quality genome assembly of B. fragariae with gene annotation based on sequence homology and deep transcriptome data. The genome sequence information from B. fragariae is expected to help reveal genomic features underlying its host specialization and evolution of distinct fungicide resistance and other novel pathogenicity mechanisms.


Subject(s)
Fragaria , Fungicides, Industrial , Botrytis/genetics , Fungicides, Industrial/pharmacology , Plant Diseases , United States
13.
Proc Natl Acad Sci U S A ; 115(13): 3332-3337, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531028

ABSTRACT

Gene amplification has been observed in many bacteria and eukaryotes as a response to various selective pressures, such as antibiotics, cytotoxic drugs, pesticides, herbicides, and other stressful environmental conditions. An increase in gene copy number is often found as extrachromosomal elements that usually contain autonomously replicating extrachromosomal circular DNA molecules (eccDNAs). Amaranthus palmeri, a crop weed, can develop herbicide resistance to glyphosate [N-(phosphonomethyl) glycine] by amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the molecular target of glyphosate. However, biological questions regarding the source of the amplified EPSPS, the nature of the amplified DNA structures, and mechanisms responsible for maintaining this gene amplification in cells and their inheritance remain unknown. Here, we report that amplified EPSPS copies in glyphosate-resistant (GR) A. palmeri are present in the form of eccDNAs with various conformations. The eccDNAs are transmitted during cell division in mitosis and meiosis to the soma and germ cells and the progeny by an as yet unknown mechanism of tethering to mitotic and meiotic chromosomes. We propose that eccDNAs are one of the components of McClintock's postulated innate systems [McClintock B (1978) Stadler Genetics Symposium] that can rapidly produce soma variation, amplify EPSPS genes in the sporophyte that are transmitted to germ cells, and modulate rapid glyphosate resistance through genome plasticity and adaptive evolution.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Amaranthus/genetics , DNA, Circular , Gene Amplification , Gene Expression Regulation, Plant , Herbicide Resistance/genetics , Herbicides/pharmacology , Amaranthus/drug effects , Amaranthus/enzymology , Chromosomes, Plant , Glycine/analogs & derivatives , Glycine/pharmacology , Glyphosate
14.
Genomics ; 112(2): 1233-1244, 2020 03.
Article in English | MEDLINE | ID: mdl-31323298

ABSTRACT

AT-hook motif nuclear localized (AHL) genes have diverse but poorly understood biological functions. We identified and analyzed 37 AHL genes in maize. We also discovered four and one additional AHLs in rice and sorghum, respectively, besides those reported earlier. The maize AHLs were classified into two clades (A and B) and three distinct types (I, II, and III) as also reported in Arabidopsis. Phylogenetic and ortholog analyses showed that, while the evolutionary classification was conserved in plants, expansion of the AHL gene family in maize was accompanied with new biological functions. Gene structure analysis showed that, while all but one Type-I AHLs lacked an intron, origin of Type-II and Type-III AHLs was associated with the gain of introns suggesting evolutionarily distinct temporal and spatial expression patterns and, likely, neofunctionalization. Gene duplication analysis revealed that AHLs in maize expanded via dispersive duplication further supporting their functional diversity. To discern these functions, we analyzed 71 transcriptomes from diverse tissues and developmental stages of maize and classified AHLs into eight groups with distinct temporal/spatial expression profiles. Coexpression analysis implicated 5 AHLs and 33 novel genes in networks specific to endosperm, seed, root, leaf, and reproductive tissues indicating their role in the development of these organs. Major processes coregulated by AHLs include pollen development, drought response, senescence, and wound response. We also identified interactions of AHL proteins in coregulating important processes including stress response. These novel insights into the role of AHLs in plant development provide a platform for functional analyses in maize and related grasses.


Subject(s)
AT-Hook Motifs , Plant Proteins/genetics , Zea mays/genetics , Endosperm/genetics , Endosperm/metabolism , Gene Duplication , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Transcriptome , Zea mays/growth & development
15.
BMC Dev Biol ; 20(1): 25, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33267776

ABSTRACT

BACKGROUND: Genotype independent transformation and whole plant regeneration through somatic embryogenesis relies heavily on the intrinsic ability of a genotype to regenerate. The critical genetic architecture of non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells in a highly regenerable cotton genotype is unknown. RESULTS: In this study, gene expression profiles of a highly regenerable Gossypium hirsutum L. cultivar, Jin668, were analyzed at two critical developmental stages during somatic embryogenesis, non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells. The rate of EC formation in Jin668 is 96%. Differential gene expression analysis revealed a total of 5333 differentially expressed genes (DEG) with 2534 genes upregulated and 2799 genes downregulated in EC. A total of 144 genes were unique to NEC cells and 174 genes were unique to EC. Clustering and enrichment analysis identified genes upregulated in EC that function as transcription factors/DNA binding, phytohormone response, oxidative reduction, and regulators of transcription; while genes categorized in methylation pathways were downregulated. Four key transcription factors were identified based on their sharp upregulation in EC tissue; LEAFY COTYLEDON 1 (LEC1), BABY BOOM (BBM), FUSCA (FUS3) and AGAMOUS-LIKE15 with distinguishable subgenome expression bias. CONCLUSIONS: This comparative analysis of NEC and EC transcriptomes gives new insights into the genes involved in somatic embryogenesis in cotton.


Subject(s)
Gossypium/genetics , Plant Somatic Embryogenesis Techniques , Transcriptome , DNA Methylation/genetics , Gene Expression Regulation, Plant , Gossypium/physiology , Plant Cells/metabolism , Plant Growth Regulators/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Signal Transduction/genetics , Transcription Factors/genetics
16.
BMC Genomics ; 21(1): 131, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32033524

ABSTRACT

BACKGROUND: Seashore paspalum (Paspalum vaginatum), a halophytic warm-seasoned perennial grass, is tolerant of many environmental stresses, especially salt stress. To investigate molecular mechanisms underlying salinity tolerance in seashore paspalum, physiological characteristics and global transcription profiles of highly (Supreme) and moderately (Parish) salinity-tolerant cultivars under normal and salt stressed conditions were analyzed. RESULTS: Physiological characterization comparing highly (Supreme) and moderately (Parish) salinity-tolerant cultivars revealed that Supreme's higher salinity tolerance is associated with higher Na+ and Ca2+ accumulation under normal conditions and further increase of Na+ under salt-treated conditions (400 mM NaCl), possibly by vacuolar sequestration. Moreover, K+ retention under salt treatment occurs in both cultivars, suggesting that it may be a conserved mechanism for prevention of Na+ toxicity. We sequenced the transcriptome of the two cultivars under both normal and salt-treated conditions (400 mM NaCl) using RNA-seq. De novo assembly of about 153 million high-quality reads and identification of Open Reading Frames (ORFs) uncovered a total of 82,608 non-redundant unigenes, of which 3250 genes were identified as transcription factors (TFs). Gene Ontology (GO) annotation revealed the presence of genes involved in diverse cellular processes in seashore paspalum's transcriptome. Differential expression analysis identified a total of 828 and 2222 genes that are responsive to high salinity for Supreme and Parish, respectively. "Oxidation-reduction process" and "nucleic acid binding" are significantly enriched GOs among differentially expressed genes in both cultivars under salt treatment. Interestingly, compared to Parish, a number of salt stress induced transcription factors are enriched and show higher abundance in Supreme under normal conditions, possibly due to enhanced Ca2+ signaling transduction out of Na+ accumulation, which may be another contributor to Supreme's higher salinity tolerance. CONCLUSION: Physiological and transcriptome analyses of seashore paspalum reveal major molecular underpinnings contributing to plant response to salt stress in this halophytic warm-seasoned perennial grass. The data obtained provide valuable molecular resources for functional studies and developing strategies to engineer plant salinity tolerance.


Subject(s)
Paspalum/genetics , Salt Tolerance/genetics , Calcium/metabolism , Gene Expression Profiling , Genes, Plant , Paspalum/metabolism , Proton Pumps/genetics , Proton Pumps/metabolism , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Sodium/metabolism , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Phytopathology ; 110(9): 1511-1521, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32370659

ABSTRACT

Reniform nematode (Rotylenchulus reniformis) is a yield-limiting pathogen of soybean (Glycine max) in the southeastern region of the United States. A population of 250 recombinant inbred lines (RIL) (F2:8) developed from a cross between reniform nematode resistant soybean cultivar Forrest and susceptible cultivar Williams 82 was utilized to identify regions associated with host suitability. A genetic linkage map was constructed using single-nucleotide polymorphism markers generated by genotyping-by-sequencing. The phenotype was measured in the RIL population and resistance was characterized using normalized and transformed nematode reproduction indices in an optimal univariate cluster analysis. Quantitative trait loci (QTL) analysis using normalized phenotype scores identified two QTLs on each arm of chromosome 18 (rrn-1 and rrn-2). The same QTL analysis performed with log10(x) transformed phenotype data also identified two QTLs: one on chromosome 18 overlapping the same region in the other analysis (rrn-1), and one on chromosome 11 (rrn-3). While rrn-1 and rrn-3 have been reported associated with reduced reproduction of reniform nematode, this is the first report of the rrn-2 region associated with host suitability to reniform nematode. The resistant parent allele at rrn-2 showed an inverse relationship with the resistance phenotype, correlating with an increase in nematode reproduction or host suitability. Several candidate genes within these regions corresponded with host plant defense systems. Interestingly, a characteristic pathogen resistance gene with a leucine-rich repeat was discovered within rrn-2. These genetic markers can be used by soybean breeders in marker-assisted selection to develop lines with resistance to reniform nematode.


Subject(s)
Quantitative Trait Loci , Tylenchoidea , Animals , Genetic Markers , Plant Diseases , Glycine max/genetics
18.
BMC Genomics ; 20(1): 254, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30925895

ABSTRACT

BACKGROUND: Placental efficiency (PE) describes the relationship between placental and fetal weights (fetal wt/placental wt). Within litters, PE can vary drastically, resulting in similarly sized pigs associated with differently sized placentas, up to a 25% weight difference. However, the mechanisms enabling the smaller placenta to grow a comparable littermate are unknown. To elucidate potential mechanisms, morphological measurements and gene expression profiles in placental and associated endometrial tissues of high PE and low PE feto-placental units were compared. Tissue samples were obtained from eight maternal line gilts during gestational day 95 ovario-hysterectomies. RNA was extracted from tissues of feto-placental units with the highest and lowest PE in each litter and sequenced. RESULTS: Morphological measurements, except placental weight, were not different (P > 0.05) between high and low PE. No DEG were identified in the endometrium and 214 DEG were identified in the placenta (FDR < 0.1), of which 48% were upregulated and 52% were downregulated. Gene ontology (GO) analysis revealed that a large percentage of DEG were involved in catalytic activity, binding, transporter activity, metabolism, biological regulation, and localization. Four GO terms were enriched in the upregulated genes and no terms were enriched in the downregulated genes (FDR < 0.05). Eight statistically significant correlations (P < 0.05) were identified between the morphological measurements and DEG. CONCLUSION: Morphological measures between high and low PE verified comparisons were of similarly sized pigs grown on different sized placentas, and indicated that any negative effects of a reduced placental size on fetal growth were not evident by day 95. The identification of DEG in the placenta, but absence of DEG in the endometrium confirmed that the placenta responds to the fetus. The GO analyses provided evidence that extremes of PE are differentially regulated, affecting components of placental transport capacity like nutrient transport and blood flow. However, alternative GO terms were identified, indicating the complexity of the relationship between placental and fetal weights. These findings support the use of PE as a marker of placental function and provide novel insight into the genetic control of PE, but further research is required to make PE production applicable.


Subject(s)
Gene Expression Regulation , Placenta/metabolism , Animals , Endometrium/metabolism , Female , Fetal Weight , Gene Ontology , Gestational Age , Litter Size , Placenta/physiology , Pregnancy , Swine
19.
BMC Genomics ; 20(1): 420, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31133004

ABSTRACT

BACKGROUND: The process of crop domestication often consists of two stages: initial domestication, where the wild species is first cultivated by humans, followed by diversification, when the domesticated species are subsequently adapted to more environments and specialized uses. Selective pressure to increase sugar accumulation in certain varieties of the cereal crop Sorghum bicolor is an excellent example of the latter; this has resulted in pronounced phenotypic divergence between sweet and grain-type sorghums, but the genetic mechanisms underlying these differences remain poorly understood. RESULTS: Here we present a new reference genome based on an archetypal sweet sorghum line and compare it to the current grain sorghum reference, revealing a high rate of nonsynonymous and potential loss of function mutations, but few changes in gene content or overall genome structure. We also use comparative transcriptomics to highlight changes in gene expression correlated with high stalk sugar content and show that changes in the activity and possibly localization of transporters, along with the timing of sugar metabolism play a critical role in the sweet phenotype. CONCLUSIONS: The high level of genomic similarity between sweet and grain sorghum reflects their historical relatedness, rather than their current phenotypic differences, but we find key changes in signaling molecules and transcriptional regulators that represent new candidates for understanding and improving sugar metabolism in this important crop.


Subject(s)
Genome, Plant , Sorghum/genetics , Sugars/metabolism , DNA, Plant/chemistry , Gene Expression Profiling , Genomics/standards , Genotype , Reference Standards , Sequence Homology, Nucleic Acid , Sorghum/metabolism
20.
Plant Cell Physiol ; 60(2): 285-302, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30351427

ABSTRACT

Plant organ development to a specific size and shape is controlled by cell proliferation and cell expansion. Here, we identify a novel Myb-like Arabidopsis gene, Development Related Myb-like1 (DRMY1), which controls cell expansion in both vegetative and reproductive organs. DRMY1 is strongly expressed in developing organs and its expression is reduced by ethylene while it is induced by ABA. DRMY1 has a Myb-like DNA-binding domain, which is predominantly localized in the nucleus and does not exhibit transcriptional activation activity. The loss-of-function T-DNA insertion mutant drmy1 shows reduced organ growth and cell expansion, which is associated with changes in the cell wall matrix polysaccharides. Interestingly, overexpression of DRMY1 in Arabidopsis does not lead to enhanced organ growth. Expression of genes involved in cell wall biosynthesis/remodeling, ribosome biogenesis and in ethylene and ABA signaling pathways is changed with the deficiency of DRMY1. Our results suggest that DRMY1 plays an essential role in organ development by regulating cell expansion either directly by affecting cell wall architecture and/or cytoplasmic growth or indirectly through the ethylene and/or ABA signaling pathways.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , DNA-Binding Proteins/genetics , Seeds/growth & development , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/physiology , DNA-Binding Proteins/physiology , Flowers/growth & development , Germination/physiology , Phylogeny , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL