Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Int J Toxicol ; 41(4): 276-290, 2022 08.
Article in English | MEDLINE | ID: mdl-35603517

ABSTRACT

COVID-19 is a potentially fatal infection caused by the SARS-CoV-2 virus. The SARS-CoV-2 3CL protease (Mpro) is a viral enzyme essential for replication and is the target for nirmatrelvir. Paxlovid (nirmatrelvir co-administered with the pharmacokinetic enhancer ritonavir) showed efficacy in COVID-19 patients at high risk of progressing to hospitalization and/or death. Nonclinical safety studies with nirmatrelvir are essential in informing benefit-risk of Paxlovid and were conducted to support clinical development. In vivo safety pharmacology assessments included a nervous system/pulmonary study in rats and a cardiovascular study in telemetered monkeys. Potential toxicities were assessed in repeat dose studies of up to 1 month in rats and monkeys. Nirmatrelvir administration (1,000 mg/kg, p.o.) to male rats produced transient increases in locomotor activity and respiratory rate but did not affect behavioral endpoints in the functional observational battery. Cardiovascular effects in monkeys were limited to transient increases in blood pressure and decreases in heart rate, observed only at the highest dose tested (75 mg/kg per dose b.i.d; p.o.). Nirmatrelvir did not prolong QTc-interval or induce arrhythmias. There were no adverse findings in repeat dose toxicity studies up to 1 month in rats (up to 1,000 mg/kg daily, p.o.) or monkeys (up to 600 mg/kg daily, p.o.). Nonadverse, reversible clinical pathology findings without clinical or microscopic correlates included prolonged coagulation times at ≥60 mg/kg in rats and increases in transaminases at 600 mg/kg in monkeys. The safety pharmacology and nonclinical toxicity profiles of nirmatrelvir support clinical development and use of Paxlovid for treatment of COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Animals , Antiviral Agents/adverse effects , Male , Rats
2.
J Biol Chem ; 289(23): 16442-51, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24719331

ABSTRACT

Dendritic cells (DCs) are critical for the initiation of immune responses including activation of CD8 T cells. Intracellular reactive oxygen species (ROS) levels influence DC maturation and function. Intracellular heme, a product of catabolism of heme-containing metalloproteins, is a key inducer of ROS. Intracellular heme levels are regulated by heme oxygenase-1 (HO-1), which catalyzes the degradation of heme. Heme oxygenase-1 has been implicated in regulating DC maturation; however, its role in other DC functions is unclear. Furthermore, the signaling pathways modulated by HO-1 in DCs are unknown. In this study, we demonstrate that inhibition of HO-1 activity in murine bone marrow-derived immature DCs (iDCs) resulted in DCs with raised intracellular ROS levels, a mature phenotype, impaired phagocytic and endocytic function, and increased capacity to stimulate antigen-specific CD8 T cells. Interestingly, our results reveal that the increased ROS levels following HO-1 inhibition did not underlie the changes in phenotype and functions observed in these iDCs. Importantly, we show that the p38 mitogen-activated protein kinase (p38 MAPK), cAMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1) pathway is involved in the mediation of the phenotypic and functional changes arising from HO-1 inhibition. Furthermore, up-regulation of HO-1 activity rendered iDCs refractory to lipopolysaccharide-induced activation of p38 MAPK-CREB/ATF1 pathway and DC maturation. Finally, we demonstrate that treatment of iDC with the HO-1 substrate, heme, recapitulates the effects that result from HO-1 inhibition. Based on these results, we conclude that HO-1 regulates DC maturation and function by modulating the p38 MAPK-CREB/ATF1 signaling axis.


Subject(s)
Activating Transcription Factor 1/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Dendritic Cells/metabolism , Heme Oxygenase-1/metabolism , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Dendritic Cells/cytology , Mice , Mice, Transgenic
3.
J Biol Chem ; 288(31): 22281-8, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23775080

ABSTRACT

Nrf2 is a redox-responsive transcription factor that has been implicated in the regulation of DC immune function. Loss of Nrf2 results in increased co-stimulatory molecule expression, enhanced T cell stimulatory capacity, and increased reactive oxygen species (ROS) levels in murine immature DCs (iDCs). It is unknown whether altered immune function of Nrf2-deficient DCs (Nrf2(-/-) iDCs) is due to elevated ROS levels. Furthermore, it is unclear which intracellular signaling pathways are involved in Nrf2-mediated regulation of DC function. Using antioxidant vitamins to reset ROS levels in Nrf2(-/-) iDCs, we show that elevated ROS is not responsible for the altered phenotype and function of these DCs. Pharmacological inhibitors were used to explore the role of key MAPKs in mediating the altered phenotype and function in Nrf2(-/-) iDCs. We demonstrate that the increased co-stimulatory molecule expression (MHC II and CD86) and antigen-specific T cell activation capacity observed in Nrf2(-/-) iDCs was reversed by inhibition of p38 MAPK but not JNK. Importantly, we provide evidence for increased phosphorylation of cAMP-responsive element binding protein (CREB) and activating transcription factor 1 (ATF1), transcription factors that are downstream of p38 MAPK. The increased phosphorylation of CREB/ATF1 in Nrf2(-/-) iDCs was sensitive to p38 MAPK inhibition. We also show data to implicate heme oxygenase-1 as a potential molecular link between Nrf2 and CREB/ATF1. These results indicate that dysregulation of p38 MAPK-CREB/ATF1 signaling axis underlies the altered function and phenotype in Nrf2-deficient DCs. Our findings provide new insights into the mechanisms by which Nrf2 mediates regulation of DC function.


Subject(s)
Activating Transcription Factor 1/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Dendritic Cells/immunology , NF-E2-Related Factor 2/physiology , Signal Transduction/physiology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Heme Oxygenase-1/metabolism , Interleukin-10/biosynthesis , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics , Reactive Oxygen Species/metabolism
4.
J Med Chem ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687966

ABSTRACT

Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drug-drug interactions upon single-agent use of PF-07817883.

5.
J Biol Chem ; 287(13): 10556-10564, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22311972

ABSTRACT

Dendritic cells (DCs) are critical mediators of immunity and immune tolerance by orchestrating multiple aspects of T cell activation and function. Immature DCs (iDCs) expressing low levels of co-stimulatory receptors are highly efficient at antigen capture but are poor activators of T cells. Maturation of DCs is associated with increased expression of co-stimulatory molecules. Co-stimulatory receptor gene expression is regulated by intracellular redox, NF-κB, and MAPK pathways and by histone deacetylase (HDAC) activity. The transcription factor, Nrf2, is important for maintaining intracellular glutathione (GSH) levels and redox homeostasis and has been implicated in modulating DC co-stimulatory receptor expression. It is unclear whether Nrf2 mediates this effect by GSH-dependent mechanisms and whether it influences DC signaling pathways. Using bone marrow-derived iDCs from Nrf2(+/+) and Nrf2(-/-) mice, we demonstrate that Nrf2(-/-) iDCs have lower basal GSH levels, enhanced co-stimulatory receptor expression, impaired phagocytic functions, and increased antigen-specific CD8 T cell stimulation capacity. Interestingly, lowering GSH levels in Nrf2(+/+) iDCs did not recapitulate the Nrf2(-/-) iDC phenotype. Loss of Nrf2 resulted in elevated basal levels of reactive oxygen species but did not affect basal NF-κB activity or p38 MAPK phosphorylation. Using pharmacological inhibitors, we demonstrate that enhanced co-stimulatory receptor phenotype of Nrf2(-/-) iDC does not require ERK activity but is dependent on HDAC activity, indicating a potential interaction between Nrf2 function and HDAC. These results suggest that Nrf2 activity is required to counter rises in intracellular reactive oxygen species and to regulate pathways that control DC co-stimulatory receptor expression.


Subject(s)
Dendritic Cells/metabolism , Homeostasis/physiology , MAP Kinase Signaling System/physiology , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Dendritic Cells/cytology , Glutathione/genetics , Glutathione/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidation-Reduction , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Open Forum Infect Dis ; 10(8): ofad355, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37559753

ABSTRACT

Background: An urgent need remains for antiviral therapies to treat patients hospitalized with COVID-19. PF-07304814-the prodrug (lufotrelvir) and its active moiety (PF-00835231)-is a potent inhibitor of the SARS-CoV-2 3CL protease. Method: Eligible participants were 18 to 79 years old and hospitalized with confirmed COVID-19. This first-in-human phase 1b study was designed with 2 groups: single ascending dose (SAD) and multiple ascending dose (MAD). Participants could receive local standard-of-care therapy. In SAD, participants were randomized to receive a 24-hour infusion of lufotrelvir/placebo. In MAD, participants were randomized to receive a 120-hour infusion of lufotrelvir/placebo. The primary endpoint was to assess the safety and tolerability of lufotrelvir. The secondary endpoint was to evaluate the pharmacokinetics of lufotrelvir and PF-00835231. Results: In SAD, participants were randomized to receive 250 mg lufotrelvir (n = 2), 500 mg lufotrelvir (n = 2), or placebo (n = 4) by continuous 24-hour infusion. In MAD, participants were randomized to receive 250 mg lufotrelvir (n = 7), 500 mg lufotrelvir (n = 6), or placebo (n = 4) by continuous 120-hour infusion. No adverse events or serious adverse events were considered related to lufotrelvir. At doses of 250 and 500 mg, concentrations for the prodrug lufotrelvir and active moiety PF-00835231 increased in a dose-related manner. Unbound concentrations of the lufotrelvir active metabolite reached steady state approximately 2- and 4-fold that of in vitro EC90 following 250- and 500-mg doses, respectively. Conclusions: These safety and pharmacokinetic findings support the continued evaluation of lufotrelvir in clinical studies. Clinical Trials Registration. ClinicalTrials.gov NCT04535167.

7.
Toxicol Sci ; 183(1): 93-104, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34240189

ABSTRACT

BMS-986251 is a retinoid-related orphan receptor γt (RORγt) inverse agonist that was in development for the treatment of autoimmune diseases. RORγt is a nuclear hormone receptor and transcription factor that is involved in the differentiation and function of T helper 17 cells. RORγt-deficient (constitutive or conditional) mice develop thymic lymphomas with >50% mortality at 4 months, whereas heterozygous mice are normal. A 6-month study was conducted in rasH2-Tg hemizygous mice to assess the potential carcinogenicity of BMS-986251. BMS-986251 was administered once daily by oral gavage to groups of 27 mice/sex at doses of 0 (water control), 0 (vehicle control), 5, 25, or 75 mg/kg. The positive control, N-methyl-N-nitrosourea, was administered by a single intraperitoneal injection to 15 mice/sex at a dose of 75 mg/kg. There were no tumors attributed to BMS-986251 except for thymic lymphomas. Thymic lymphoma was observed in 1 male (3.7%) and 3 females (11.1%) at the mid dose, and 6 females (22.2%) at the high dose. No lymphomas were observed in the negative control groups whereas the incidence of lymphomas in the positive control group was 47-60%. The incidence of thymic lymphomas in the BMS-986251-treated groups was higher than published literature and test facility historical control data. Furthermore, increased thymic lymphoid cellularity (lymphoid hyperplasia) was observed at the mid dose in males and at all doses in females. Since lymphoid hyperplasia may represent a preneoplastic change, a no-effect dose for potential tumor induction was not identified in this study. These results led to the discontinuation of BMS-986251 and underscore the challenges in targeting RORγt for drug development.


Subject(s)
Lymphoma , Nuclear Receptor Subfamily 1, Group F, Member 3 , Animals , Carcinogenicity Tests , Female , Hyperplasia , Lymphoma/chemically induced , Lymphoma/genetics , Male , Mice , Mice, Transgenic
8.
Nat Commun ; 12(1): 6055, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663813

ABSTRACT

COVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential across a broad spectrum of coronaviruses with no close human analogs. PF-00835231, a 3CL protease inhibitor, has exhibited potent in vitro antiviral activity against SARS-CoV-2 as a single agent. Here we report, the design and characterization of a phosphate prodrug PF-07304814 to enable the delivery and projected sustained systemic exposure in human of PF-00835231 to inhibit coronavirus family 3CL protease activity with selectivity over human host protease targets. Furthermore, we show that PF-00835231 has additive/synergistic activity in combination with remdesivir. We present the ADME, safety, in vitro, and in vivo antiviral activity data that supports the clinical evaluation of PF-07304814 as a potential COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/administration & dosage , Indoles/administration & dosage , Leucine/administration & dosage , Pyrrolidinones/administration & dosage , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Alanine/administration & dosage , Alanine/adverse effects , Alanine/analogs & derivatives , Alanine/pharmacokinetics , Animals , COVID-19/virology , Chlorocebus aethiops , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/enzymology , Coronavirus Protease Inhibitors/adverse effects , Coronavirus Protease Inhibitors/pharmacokinetics , Disease Models, Animal , Drug Design , Drug Synergism , Drug Therapy, Combination , HeLa Cells , Humans , Indoles/adverse effects , Indoles/pharmacokinetics , Infusions, Intravenous , Leucine/adverse effects , Leucine/pharmacokinetics , Mice , Pyrrolidinones/adverse effects , Pyrrolidinones/pharmacokinetics , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/enzymology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Vero Cells
9.
bioRxiv ; 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-32935104

ABSTRACT

COVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential across a broad spectrum of coronaviruses with no close human analogs. The designed phosphate prodrug PF-07304814 is metabolized to PF-00835321 which is a potent inhibitor in vitro of the coronavirus family 3CL pro, with selectivity over human host protease targets. Furthermore, PF-00835231 exhibits potent in vitro antiviral activity against SARS-CoV-2 as a single agent and it is additive/synergistic in combination with remdesivir. We present the ADME, safety, in vitro , and in vivo antiviral activity data that supports the clinical evaluation of this compound as a potential COVID-19 treatment.

10.
Science ; 374(6575): 1586-1593, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34726479

ABSTRACT

The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to countering the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency in a phase 1 clinical trial in healthy human participants.


Subject(s)
COVID-19 Drug Treatment , Lactams/pharmacology , Lactams/therapeutic use , Leucine/pharmacology , Leucine/therapeutic use , Nitriles/pharmacology , Nitriles/therapeutic use , Proline/pharmacology , Proline/therapeutic use , SARS-CoV-2/drug effects , Viral Protease Inhibitors/pharmacology , Viral Protease Inhibitors/therapeutic use , Administration, Oral , Animals , COVID-19/virology , Clinical Trials, Phase I as Topic , Coronavirus/drug effects , Disease Models, Animal , Drug Therapy, Combination , Humans , Lactams/administration & dosage , Lactams/pharmacokinetics , Leucine/administration & dosage , Leucine/pharmacokinetics , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Nitriles/administration & dosage , Nitriles/pharmacokinetics , Proline/administration & dosage , Proline/pharmacokinetics , Randomized Controlled Trials as Topic , Ritonavir/administration & dosage , Ritonavir/therapeutic use , SARS-CoV-2/physiology , Viral Protease Inhibitors/administration & dosage , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects
11.
Monoclon Antib Immunodiagn Immunother ; 38(2): 60-69, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31009338

ABSTRACT

CD28 superagonist (CD28SA), a therapeutic immunomodulatory monoclonal antibody triggered rapid and exaggerated activation of CD4+ effector memory T cells (TEMs) in humans with unwanted serious adverse effects. It is well known that distinct metabolic programs determine the fate and responses of immune cells. In this study, we show that human CD4+ TEMs stimulated with CD28SA adopt a metabolic program similar to those of tumor cells with enhanced glucose utilization, lipid biosynthesis, and proliferation in hypoxic conditions. Identification of metabolic profiles underlying hyperactive T cell activation would provide a platform to test safety of immunostimulatory antibodies.


Subject(s)
CD28 Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Glycolysis/immunology , Lipogenesis/immunology , Lymphocyte Activation/immunology , Neoplasms/metabolism , Acetyl Coenzyme A/metabolism , Antibodies, Monoclonal/immunology , CD28 Antigens/metabolism , Cell Proliferation , Glucose/metabolism , Humans , Immunologic Memory , Neoplasms/immunology , Neoplasms/pathology , Protein Kinases/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Cells, Cultured
12.
iScience ; 4: 84-96, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30240756

ABSTRACT

Many xenobiotics can bind to off-target receptors and cause toxicity via the dysregulation of downstream transcription factors. Identification of subsequent off-target toxicity in these chemicals has often required extensive chemical testing in animal models. An alternative, integrated in vitro/in silico approach for predicting toxic off-target functional responses is presented to refine in vitro receptor identification and reduce the burden on in vivo testing. As part of the methodology, mathematical modeling is used to mechanistically describe processes that regulate transcriptional activity following receptor-ligand binding informed by transcription factor signaling assays. Critical reactions in the signaling cascade are identified to highlight potential perturbation points in the biochemical network that can guide and optimize additional in vitro testing. A physiologically based pharmacokinetic model provides information on the timing and localization of different levels of receptor activation informing whole-body toxic potential resulting from off-target binding.

13.
Thromb Haemost ; 92(3): 598-605, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15351857

ABSTRACT

It is established that antibody-induced cross-linking of platelet surface receptors is able to activate platelets in a manner dependent upon FcgammaRIIA. This has not, however, previously been shown for the adhesion receptor P-selectin, and since there is evidence that P-selectin may couple to activation events, it was important to address whether antibody cross-linking of this receptor induced signalling events, and whether this was dependent on FcgammaRIIA. Here we show that although addition of soluble P-selectin ligand rPSGL-Ig alone is not able to induce calcium signalling, further addition of a full-length rabbit anti human IgG leads to a sustained rise in [Ca 2+ ]i. This was due to an increase in the frequency and amplitude of transient calcium spiking in single platelets. The response was dependent upon engagement of both P-selectin and FcgammaRIIA since blocking anti-bodies to either receptor inhibited the response. The calcium rise is mediated primarily by induction of a calcium entry mechanism involving the Na(+)-Ca(2+) exchanger operating in reverse mode, since it was blocked by inhibitors of Na(+)-Ca(2+) exchange, bepridil and 5 mM NiCl(2).


Subject(s)
Antibodies/pharmacology , Antigens, CD/physiology , Blood Platelets/metabolism , Calcium/metabolism , P-Selectin/physiology , Receptors, IgG/physiology , Calcium Signaling/drug effects , Cross-Linking Reagents , Humans , Immunoglobulin G/pharmacology , Membrane Glycoproteins/pharmacology , P-Selectin/immunology , Sodium-Calcium Exchanger/metabolism
14.
MAbs ; 6(5): 1290-9, 2014.
Article in English | MEDLINE | ID: mdl-25517314

ABSTRACT

The CD28 superagonist (CD28SA) TGN1412 was administered to humans as an agent that can selectively activate and expand regulatory T cells but resulted in uncontrolled T cell activation accompanied by cytokine storm. The molecular mechanisms that underlie this uncontrolled T cell activation are unclear. Physiological activation of T cells leads to upregulation of not only activation molecules but also inhibitory receptors such as PD-1. We hypothesized that the uncontrolled activation of CD28SA-stimulated T cells is due to both the enhanced expression of activation molecules and the lack of or reduced inhibitory signals. In this study, we show that anti-CD3 antibody-stimulated human T cells undergo time-limited controlled DNA synthesis, proliferation and interleukin-2 secretion, accompanied by PD-1 expression. In contrast, CD28SA-activated T cells demonstrate uncontrolled activation parameters including enhanced expression of LFA-1 and CCR5 but fail to express PD-1 on the cell surface. We demonstrate the functional relevance of the lack of PD-1 mediated regulatory mechanism in CD28SA-stimulated T cells. Our findings provide a molecular explanation for the dysregulated activation of CD28SA-stimulated T cells and also highlight the potential for the use of differential expression of PD-1 as a biomarker of safety for T cell immunostimulatory biologics.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , CD28 Antigens/immunology , Membrane Proteins/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Blotting, Western , CD28 Antigens/agonists , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Adhesion/drug effects , Cell Adhesion/immunology , Cell Movement/drug effects , Cell Movement/immunology , Cell Proliferation/drug effects , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/metabolism , Flow Cytometry , Humans , Immunologic Memory/immunology , Lymphocyte Function-Associated Antigen-1/immunology , Lymphocyte Function-Associated Antigen-1/metabolism , Membrane Proteins/metabolism , Microscopy, Fluorescence , Programmed Cell Death 1 Receptor/metabolism , Receptors, CCR5/immunology , Receptors, CCR5/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Up-Regulation/drug effects , Up-Regulation/immunology
15.
Nat Rev Drug Discov ; 12(4): 306-24, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23535934

ABSTRACT

Immunomodulatory biologics, which render their therapeutic effects by modulating or harnessing immune responses, have proven their therapeutic utility in several complex conditions including cancer and autoimmune diseases. However, unwanted adverse reactions--including serious infections, malignancy, cytokine release syndrome, anaphylaxis and hypersensitivity as well as immunogenicity--pose a challenge to the development of new (and safer) immunomodulatory biologics. In this article, we assess the safety issues associated with immunomodulatory biologics and discuss the current approaches for predicting and mitigating adverse reactions associated with their use. We also outline how these approaches can inform the development of safer immunomodulatory biologics.


Subject(s)
Drug Design , Immunologic Factors/adverse effects , Risk Management/methods , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Humans , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Neoplasms/drug therapy , Neoplasms/immunology , Risk Assessment/methods
16.
Toxicol Sci ; 112(2): 521-31, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19783637

ABSTRACT

Drug-induced hepatotoxicity represents a major clinical problem and an impediment to new medicine development. Serum biomarkers hold the potential to provide information about pathways leading to cellular responses within inaccessible tissues, which can inform the medicinal chemist and the clinician with respect to safe drug design and use. Hepatocyte apoptosis, necrosis, and innate immune activation have been defined as features of the toxicological response associated with the hepatotoxin acetaminophen (APAP). Within this investigation, we have unambiguously identified and characterized by liquid chromatography-tandem mass spectrometry differing circulating molecular forms of high-mobility group box-1 protein (HMGB1) and keratin-18 (K18), which are linked to the mechanisms and pathological changes induced by APAP in the mouse. Hypoacetylated HMGB1 (necrosis indicator), caspase-cleaved K18 (apoptosis indicator), and full-length K18 (necrosis indicator) present in serum showed strong correlations with the histological time course of cell death and was more sensitive than alanine aminotransferase activity. We have further identified a hyperacetylated form of HMGB1 (inflammatory indicator) in serum, which indicated that hepatotoxicity was associated with an inflammatory response. The inhibition of APAP-induced apoptosis and K18 cleavage by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(OMe) fluoromethyl ketone are associated with increased hepatic damage, by a shift to necrotic cell death only. These findings illustrate the initial verification of K18 and HMGB1 molecular forms as serum-based sensitive tools that provide insights into the cellular dynamics involved in APAP hepatotoxicity within an inaccessible tissue. Based on these findings, potential exists for the qualification and measurement of these proteins to further assist in vitro, in vivo, and clinical bridging in toxicological research.


Subject(s)
Acetaminophen/toxicity , Apoptosis/drug effects , HMGB1 Protein/blood , Keratin-18/blood , Acetylation , Amino Acid Sequence , Animals , Blotting, Western , Caspase Inhibitors , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , HMGB1 Protein/chemistry , Keratin-18/chemistry , Male , Mice , Molecular Sequence Data , Necrosis , Tandem Mass Spectrometry
17.
J Immunol ; 178(1): 330-7, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17182570

ABSTRACT

Extensive evidence has been accumulated to implicate the intracellular protein tyrosine phosphatase, Src homology region 2 domain-containing protein tyrosine phosphatase-1 (SHP-1), as a negative regulator of TCR-signaling thresholds. Specifically, T cells from the SHP-1-deficient mouse, motheaten, exhibit a hyperproliferative phenotype when activated by cognate peptide-pulsed APCs. However, the cellular basis for this phenotype has not been fully explained. Using the intracellular fluorescent dye, CFSE, we show that a greater proportion of motheaten vs control naive CD8(+) T cells undergo cell division when activated by peptide-pulsed APCs. Furthermore, there is a greater likelihood of TCRs on SHP-1-deficient vs control T cells binding to peptide/MHC ligands on APCs when using TCR down-regulation as an indirect measure of TCR engagement. In addition, T cell-APC conjugate assays provide direct evidence that a greater proportion of SHP-1-deficient T cells are capable of forming stable conjugates with APCs and this may explain, at least in part, their hyperproliferative response to TCR-triggered stimulation. The physiological relevance of the combined in vitro observations is demonstrated by the significantly enhanced in vivo expansion and CTL capacity generated in mice receiving adoptively transferred SHP-1-deficient naive CD8(+) T cells when compared with control T cells.


Subject(s)
Antigen-Presenting Cells/immunology , Lymphocyte Activation , Protein Tyrosine Phosphatase, Non-Receptor Type 6/physiology , T-Lymphocytes, Cytotoxic/immunology , src Homology Domains , Animals , Antibodies/pharmacology , Antigen-Presenting Cells/drug effects , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/enzymology , CD8-Positive T-Lymphocytes/immunology , Cell Adhesion/genetics , Cell Division/genetics , Coculture Techniques , Down-Regulation , Fibronectins/immunology , Intercellular Adhesion Molecule-1/drug effects , Intercellular Adhesion Molecule-1/immunology , Lymphocyte Activation/genetics , Lymphocyte Function-Associated Antigen-1/drug effects , Lymphocyte Function-Associated Antigen-1/immunology , Mice , Mice, Mutant Strains , Peptides/pharmacology , Protein Phosphatase 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Receptors, Antigen, T-Cell/agonists , Receptors, Antigen, T-Cell/analysis , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/enzymology
18.
J Biol Chem ; 279(46): 47783-91, 2004 Nov 12.
Article in English | MEDLINE | ID: mdl-15364920

ABSTRACT

The intracellular Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase (SHP-1) has been characterized as a negative regulator of T cell function, contributing to the definition of T cell receptor signaling thresholds in developing and peripheral mouse T lymphocytes. The activation of SHP-1 is achieved through the engagement of its tandem SH2 domains by tyrosine-phosphorylated proteins; however, the identity of the activating ligand(s) for SHP-1, within mouse primary T cells, is presently unresolved. The identification of SHP-1 ligand(s) in primary T cells would provide crucial insight into the molecular mechanisms by which SHP-1 contributes to in vivo thresholds for T cell activation. Here we present a combination of biochemical and yeast genetic analyses indicating CD22 to be a T cell ligand for the SHP-1 SH2 domains. Based on these observations we have confirmed that CD22 is indeed expressed on mouse primary T cells and capable of associating with SHP-1. Significantly, CD22-deficient T cells demonstrate enhanced proliferation in response to anti-CD3 or allogeneic stimulation. Furthermore, the co-engagement of CD3 and CD22 results in a raising of TCR signaling thresholds hence demonstrating a previously unsuspected functional role for CD22 in primary T cells.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, B-Lymphocyte/immunology , Cell Adhesion Molecules/immunology , Lectins/immunology , Protein Tyrosine Phosphatases/immunology , T-Lymphocytes/immunology , src Homology Domains , Amino Acid Sequence , Animals , Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte/genetics , CD3 Complex/immunology , Cell Adhesion Molecules/genetics , Cell Proliferation , Cells, Cultured , Intracellular Signaling Peptides and Proteins , Lectins/genetics , Ligands , Mice , Mice, Inbred Strains , Mice, Knockout , Molecular Sequence Data , Protein Phosphatase 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , Protein Tyrosine Phosphatases/genetics , Protein-Tyrosine Kinases/metabolism , Receptors, Antigen, T-Cell/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sialic Acid Binding Ig-like Lectin 2 , T-Lymphocytes/cytology , Two-Hybrid System Techniques , ZAP-70 Protein-Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL