Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
Add more filters

Publication year range
1.
Nat Rev Neurosci ; 25(10): 688-704, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39103609

ABSTRACT

Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure-function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals.


Subject(s)
Brain , Nerve Net , Humans , Brain/physiology , Nerve Net/physiology , Cognition/physiology , Connectome/methods , Structure-Activity Relationship , Neural Pathways/physiology , White Matter/physiology , White Matter/anatomy & histology , Brain Mapping
2.
Proc Natl Acad Sci U S A ; 121(25): e2219137121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861593

ABSTRACT

Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning. The interaction of these spatiomolecular gradients i) accurately reconstructs the position of brain tissue samples, ii) delineates known functional territories, and iii) can model the topographical variation of diverse cortical features. The spatiomolecular gradients are distinct from canonical cortical axes differentiating the primary sensory cortex from the association cortex, but radiate in parallel with the axes traversed by local field potentials along the cortex. We replicate all three molecular gradients in three independent human datasets as well as two nonhuman primate datasets and find that each gradient shows a distinct developmental trajectory across the lifespan. The gradients are composed of several well-known transcription factors (e.g., PAX6 and SIX3), and a small set of genes shared across gradients are strongly enriched for multiple diseases. Together, these results provide insight into the developmental sculpting of functionally distinct brain regions, governed by three robust transcriptomic axes embedded within brain parenchyma.


Subject(s)
Brain , Humans , Brain/metabolism , Animals , Adult , Transcription Factors/metabolism , Transcription Factors/genetics , PAX6 Transcription Factor/metabolism , PAX6 Transcription Factor/genetics , Gene Expression Regulation, Developmental , Male , Body Patterning/genetics , Female , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics
3.
Proc Natl Acad Sci U S A ; 121(33): e2314074121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39121162

ABSTRACT

Adolescent development of human brain structural and functional networks is increasingly recognized as fundamental to emergence of typical and atypical adult cognitive and emotional proodal magnetic resonance imaging (MRI) data collected from N [Formula: see text] 300 healthy adolescents (51%; female; 14 to 26 y) each scanned repeatedly in an accelerated longitudinal design, to provide an analyzable dataset of 469 structural scans and 448 functional MRI scans. We estimated the morphometric similarity between each possible pair of 358 cortical areas on a feature vector comprising six macro- and microstructural MRI metrics, resulting in a morphometric similarity network (MSN) for each scan. Over the course of adolescence, we found that morphometric similarity increased in paralimbic cortical areas, e.g., insula and cingulate cortex, but generally decreased in neocortical areas, and these results were replicated in an independent developmental MRI cohort (N [Formula: see text] 304). Increasing hubness of paralimbic nodes in MSNs was associated with increased strength of coupling between their morphometric similarity and functional connectivity. Decreasing hubness of neocortical nodes in MSNs was associated with reduced strength of structure-function coupling and increasingly diverse functional connections in the corresponding fMRI networks. Neocortical areas became more structurally differentiated and more functionally integrative in a metabolically expensive process linked to cortical thinning and myelination, whereas paralimbic areas specialized for affective and interoceptive functions became less differentiated, as hypothetically predicted by a developmental transition from periallocortical to proisocortical organization of the cortex. Cytoarchitectonically distinct zones of the human cortex undergo distinct neurodevelopmental programs during typical adolescence.


Subject(s)
Magnetic Resonance Imaging , Neocortex , Humans , Adolescent , Female , Male , Neocortex/diagnostic imaging , Neocortex/growth & development , Neocortex/physiology , Adult , Young Adult , Brain Mapping/methods , Adolescent Development/physiology , Nerve Net/physiology , Nerve Net/diagnostic imaging , Nerve Net/growth & development , Brain/diagnostic imaging , Brain/growth & development , Brain/physiology
4.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814872

ABSTRACT

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Subject(s)
Cerebral Cortex , Cognition , Magnetic Resonance Imaging , Humans , Cognition/physiology , Cognition/drug effects , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Male , Magnetic Resonance Imaging/methods , Female , Adolescent , Child , Connectome/methods , Alprazolam/pharmacology , Receptors, GABA-A/metabolism , Young Adult
5.
Proc Natl Acad Sci U S A ; 120(14): e2213880120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36976765

ABSTRACT

Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.


Subject(s)
Schizophrenia , Male , Female , Humans , Schizophrenia/diagnostic imaging , Case-Control Studies , Brain/diagnostic imaging , Cerebral Cortex , Magnetic Resonance Imaging/methods , Functional Laterality
6.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38127979

ABSTRACT

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/pathology , Brain Mapping/methods , Genomics , Brain Neoplasms/pathology
7.
Biostatistics ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39140988

ABSTRACT

In the brain, functional connections form a network whose topological organization can be described by graph-theoretic network diagnostics. These include characterizations of the community structure, such as modularity and participation coefficient, which have been shown to change over the course of childhood and adolescence. To investigate if such changes in the functional network are associated with changes in cognitive performance during development, network studies often rely on an arbitrary choice of preprocessing parameters, in particular the proportional threshold of network edges. Because the choice of parameter can impact the value of the network diagnostic, and therefore downstream conclusions, we propose to circumvent that choice by conceptualizing the network diagnostic as a function of the parameter. As opposed to a single value, a network diagnostic curve describes the connectome topology at multiple scales-from the sparsest group of the strongest edges to the entire edge set. To relate these curves to executive function and other covariates, we use scalar-on-function regression, which is more flexible than previous functional data-based models used in network neuroscience. We then consider how systematic differences between networks can manifest in misalignment of diagnostic curves, and consequently propose a supervised curve alignment method that incorporates auxiliary information from other variables. Our algorithm performs both functional regression and alignment via an iterative, penalized, and nonlinear likelihood optimization. The illustrated method has the potential to improve the interpretability and generalizability of neuroscience studies where the goal is to study heterogeneity among a mixture of function- and scalar-valued measures.

8.
Nat Methods ; 19(11): 1472-1479, 2022 11.
Article in English | MEDLINE | ID: mdl-36203018

ABSTRACT

Imaging technologies are increasingly used to generate high-resolution reference maps of brain structure and function. Comparing experimentally generated maps to these reference maps facilitates cross-disciplinary scientific discovery. Although recent data sharing initiatives increase the accessibility of brain maps, data are often shared in disparate coordinate systems, precluding systematic and accurate comparisons. Here we introduce neuromaps, a toolbox for accessing, transforming and analyzing structural and functional brain annotations. We implement functionalities for generating high-quality transformations between four standard coordinate systems. The toolbox includes curated reference maps and biological ontologies of the human brain, such as molecular, microstructural, electrophysiological, developmental and functional ontologies. Robust quantitative assessment of map-to-map similarity is enabled via a suite of spatial autocorrelation-preserving null models. neuromaps combines open-access data with transparent functionality for standardizing and comparing brain maps, providing a systematic workflow for comprehensive structural and functional annotation enrichment analysis of the human brain.


Subject(s)
Brain Mapping , Brain , Humans , Brain Mapping/methods , Brain/physiology
10.
Mol Psychiatry ; 29(6): 1869-1881, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38336840

ABSTRACT

Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflectĀ the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.


Subject(s)
Connectome , Magnetic Resonance Imaging , Schizophrenia , Humans , Schizophrenia/pathology , Schizophrenia/physiopathology , Connectome/methods , Adult , Female , Male , Magnetic Resonance Imaging/methods , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Nerve Net/pathology , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Brain/pathology , Brain/physiopathology , Middle Aged , Neural Pathways/physiopathology , Neural Pathways/pathology , Young Adult
11.
Proc Natl Acad Sci U S A ; 119(33): e2110416119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939696

ABSTRACT

Prior work has shown that there is substantial interindividual variation in the spatial distribution of functional networks across the cerebral cortex, or functional topography. However, it remains unknown whether there are sex differences in the topography of individualized networks in youth. Here, we leveraged an advanced machine learning method (sparsity-regularized non-negative matrix factorization) to define individualized functional networks in 693 youth (ages 8 to 23 y) who underwent functional MRI as part of the Philadelphia Neurodevelopmental Cohort. Multivariate pattern analysis using support vector machines classified participant sex based on functional topography with 82.9% accuracy (P < 0.0001). Brain regions most effective in classifying participant sex belonged to association networks, including the ventral attention, default mode, and frontoparietal networks. Mass univariate analyses using generalized additive models with penalized splines provided convergent results. Furthermore, transcriptomic data from the Allen Human Brain Atlas revealed that sex differences in multivariate patterns of functional topography were spatially correlated with the expression of genes on the X chromosome. These results highlight the role of sex as a biological variable in shaping functional topography.


Subject(s)
Cerebral Cortex , Neural Pathways , Sex Characteristics , Adolescent , Adult , Brain Mapping , Cerebral Cortex/physiology , Child , Female , Humans , Machine Learning , Magnetic Resonance Imaging , Male , Young Adult
12.
Hum Brain Mapp ; 45(2): e26570, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339908

ABSTRACT

Head motion correction is particularly challenging in diffusion-weighted MRI (dMRI) scans due to the dramatic changes in image contrast at different gradient strengths and directions. Head motion correction is typically performed using a Gaussian Process model implemented in FSL's Eddy. Recently, the 3dSHORE-based SHORELine method was introduced that does not require shell-based acquisitions, but it has not been previously benchmarked. Here we perform a comprehensive evaluation of both methods on realistic simulations of a software fiber phantom that provides known ground-truth head motion. We demonstrate that both methods perform remarkably well, but that performance can be impacted by sampling scheme and the extent of head motion and the denoising strategy applied before head motion correction. Furthermore, we find Eddy benefits from denoising the data first with MP-PCA. In sum, we provide the most extensive known benchmarking of dMRI head motion correction, together with extensive simulation data and a reproducible workflow. PRACTITIONER POINTS: Both Eddy and SHORELine head motion correction methods performed quite well on a large variety of simulated data. Denoising with MP-PCA can improve head motion correction performance when Eddy is used. SHORELine effectively corrects motion in non-shelled diffusion spectrum imaging data.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Humans , Diffusion Magnetic Resonance Imaging/methods , Motion , Computer Simulation , Brain/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods
13.
Hum Brain Mapp ; 45(5): e26580, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520359

ABSTRACT

Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of 26 participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n = 20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.


Subject(s)
Diffusion Magnetic Resonance Imaging , White Matter , Humans , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/anatomy & histology , White Matter/diagnostic imaging , White Matter/anatomy & histology , Autopsy , Algorithms
14.
Hum Brain Mapp ; 45(8): e26714, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38878300

ABSTRACT

Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about spatial properties of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genetics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose network enrichment significance testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study enrichment of associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.


Subject(s)
Brain , Phenotype , Humans , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Cohort Studies , Female , Male
15.
Biostatistics ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38058018

ABSTRACT

To better understand complex human phenotypes, large-scale studies have increasingly collected multiple data modalities across domains such as imaging, mobile health, and physical activity. The properties of each data type often differ substantially and require either separate analyses or extensive processing to obtain comparable features for a combined analysis. Multimodal data fusion enables certain analyses on matrix-valued and vector-valued data, but it generally cannot integrate modalities of different dimensions and data structures. For a single data modality, multivariate distance matrix regression provides a distance-based framework for regression accommodating a wide range of data types. However, no distance-based method exists to handle multiple complementary types of data. We propose a novel distance-based regression model, which we refer to as Similarity-based Multimodal Regression (SiMMR), that enables simultaneous regression of multiple modalities through their distance profiles. We demonstrate through simulation, imaging studies, and longitudinal mobile health analyses that our proposed method can detect associations between clinical variables and multimodal data of differing properties and dimensionalities, even with modest sample sizes. We perform experiments to evaluate several different test statistics and provide recommendations for applying our method across a broad range of scenarios.

16.
Nat Methods ; 18(7): 775-778, 2021 07.
Article in English | MEDLINE | ID: mdl-34155395

ABSTRACT

Diffusion-weighted magnetic resonance imaging (dMRI) is the primary method for noninvasively studying the organization of white matter in the human brain. Here we introduce QSIPrep, an integrative software platform for the processing of diffusion images that is compatible with nearly all dMRI sampling schemes. Drawing on a diverse set of software suites to capitalize on their complementary strengths, QSIPrep facilitates the implementation of best practices for processing of diffusion images.


Subject(s)
Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Software , Humans , Programming Languages , Workflow
17.
Mol Psychiatry ; 28(3): 1137-1145, 2023 03.
Article in English | MEDLINE | ID: mdl-36575305

ABSTRACT

Understanding how traumatic stress affects typical brain development during adolescence is critical to elucidate underlying mechanisms related to both maladaptive functioning and resilience after traumatic exposures. The current study aimed to map deviations from normative ranges of brain gray matter for youths with traumatic exposures. For each cortical and subcortical gray matter region, normative percentiles of variations were established using structural MRI from typically developing youths without any traumatic exposure (n = 245; age range = 8-23) from the Philadelphia Neurodevelopmental Cohort (PNC). The remaining PNC participants with neuroimaging data (n = 1129) were classified as either within the normative range (5-95%), delayed (>95%) or accelerated (<5%) maturational ranges for each region using the normative model. An averaged quantile regression index was calculated across all regions. Mediation models revealed that high traumatic stress load was positively associated with poorer cognitive functioning and greater psychopathology, and these associations were mediated by accelerated gray matter maturation. Furthermore, higher stressor reactivity scores, which represent a less resilient response under traumatic stress, were positively correlated with greater acceleration of gray matter maturation (r = 0.224, 95% CI = [0.17, 0.28], p < 0.001), suggesting that more accelerated maturation was linked to greater stressor response regardless of traumatic stress load. We conclude that traumatic stress is a source of deviation from normative brain development associated with poorer cognitive functioning and more psychopathology in the long run.


Subject(s)
Cognition , Gray Matter , Humans , Adolescent , Child , Young Adult , Adult , Cognition/physiology , Magnetic Resonance Imaging/methods , Psychopathology , Brain/pathology
18.
Mol Psychiatry ; 28(8): 3314-3323, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37353585

ABSTRACT

Schizophrenia is marked by deficits in facial affect processing associated with abnormalities in GABAergic circuitry, deficits also found in first-degree relatives. Facial affect processing involves a distributed network of brain regions including limbic regions like amygdala and visual processing areas like fusiform cortex. Pharmacological modulation of GABAergic circuitry using benzodiazepines like alprazolam can be useful for studying this facial affect processing network and associated GABAergic abnormalities in schizophrenia. Here, we use pharmacological modulation and computational modeling to study the contribution of GABAergic abnormalities toward emotion processing deficits in schizophrenia. Specifically, we apply principles from network control theory to model persistence energy - the control energy required to maintain brain activation states - during emotion identification and recall tasks, with and without administration of alprazolam, in a sample of first-degree relatives and healthy controls. Here, persistence energy quantifies the magnitude of theoretical external inputs during the task. We find that alprazolam increases persistence energy in relatives but not in controls during threatening face processing, suggesting a compensatory mechanism given the relative absence of behavioral abnormalities in this sample of unaffected relatives. Further, we demonstrate that regions in the fusiform and occipital cortices are important for facilitating state transitions during facial affect processing. Finally, we uncover spatial relationships (i) between regional variation in differential control energy (alprazolam versus placebo) and (ii) both serotonin and dopamine neurotransmitter systems, indicating that alprazolam may exert its effects by altering neuromodulatory systems. Together, these findings provide a new perspective on the distributed emotion processing network and the effect of GABAergic modulation on this network, in addition to identifying an association between schizophrenia risk and abnormal GABAergic effects on persistence energy during threat processing.


Subject(s)
Schizophrenia , Humans , Schizophrenia/drug therapy , Alprazolam/pharmacology , Emotions , Brain , Amygdala , Brain Mapping , Magnetic Resonance Imaging
19.
Mol Psychiatry ; 28(5): 2008-2017, 2023 05.
Article in English | MEDLINE | ID: mdl-37147389

ABSTRACT

Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Brazil , Brain/diagnostic imaging , Magnetic Resonance Imaging
20.
Cereb Cortex ; 33(4): 1058-1073, 2023 02 07.
Article in English | MEDLINE | ID: mdl-35348659

ABSTRACT

Socioeconomic status (SES) can impact cognitive performance, including working memory (WM). As executive systems that support WM undergo functional neurodevelopment during adolescence, environmental stressors at both individual and community levels may influence cognitive outcomes. Here, we sought to examine how SES at the neighborhood and family level impacts task-related activation of the executive system during adolescence and determine whether this effect mediates the relationship between SES and WM performance. To address these questions, we studied 1,150 youths (age 8-23) that completed a fractal n-back WM task during functional magnetic resonance imaging at 3T as part of the Philadelphia Neurodevelopmental Cohort. We found that both higher neighborhood SES and parental education were associated with greater activation of the executive system to WM load, including the bilateral dorsolateral prefrontal cortex, posterior parietal cortex, and precuneus. The association of neighborhood SES remained significant when controlling for task performance, or related factors like exposure to traumatic events. Furthermore, high-dimensional multivariate mediation analysis identified distinct patterns of brain activity within the executive system that significantly mediated the relationship between measures of SES and task performance. These findings underscore the importance of multilevel environmental factors in shaping executive system function and WM in youth.


Subject(s)
Executive Function , Memory, Short-Term , Humans , Adolescent , Child , Young Adult , Adult , Memory, Short-Term/physiology , Executive Function/physiology , Educational Status , Parents , Magnetic Resonance Imaging/methods , Social Class , Brain/physiology
SELECTION OF CITATIONS
SEARCH DETAIL