Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 326
Filter
Add more filters

Publication year range
1.
Immunity ; 56(2): 420-432.e7, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36792575

ABSTRACT

Pfs230 is essential for Plasmodium falciparum transmission to mosquitoes and is the protein targeted by the most advanced malaria-transmission-blocking vaccine candidate. Prior understanding of functional epitopes on Pfs230 is based on two monoclonal antibodies (mAbs) with moderate transmission-reducing activity (TRA), elicited from subunit immunization. Here, we screened the B cell repertoire of two naturally exposed individuals possessing serum TRA and identified five potent mAbs from sixteen Pfs230 domain-1-specific mAbs. Structures of three potent and three low-activity antibodies bound to Pfs230 domain 1 revealed four distinct epitopes. Highly potent mAbs from natural infection recognized a common conformational epitope that is highly conserved across P. falciparum field isolates, while antibodies with negligible TRA derived from natural infection or immunization recognized three distinct sites. Our study provides molecular blueprints describing P. falciparum TRA, informed by contrasting potent and non-functional epitopes elicited by natural exposure and vaccination.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Humans , Animals , Plasmodium falciparum , Epitopes , Protozoan Proteins , Antigens, Protozoan , Antibodies, Monoclonal , Antibodies, Protozoan , Malaria, Falciparum/prevention & control
2.
Immunity ; 56(2): 406-419.e7, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36792574

ABSTRACT

Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that interrupt malaria parasite development in the mosquito, thereby blocking onward transmission, and provide a much-needed tool for malaria control and elimination. The parasite surface protein Pfs48/45 is a leading TBV candidate. Here, we isolated and characterized a panel of 81 human Pfs48/45-specific monoclonal antibodies (mAbs) from donors naturally exposed to Plasmodium parasites. Genetically diverse mAbs against each of the three domains (D1-D3) of Pfs48/45 were identified. The most potent mAbs targeted D1 and D3 and achieved >80% transmission-reducing activity in standard membrane-feeding assays, at 10 and 2 µg/mL, respectively. Co-crystal structures of D3 in complex with four different mAbs delineated two conserved protective epitopes. Altogether, these Pfs48/45-specific human mAbs provide important insight into protective and non-protective epitopes that can further our understanding of transmission and inform the design of refined malaria transmission-blocking vaccine candidates.


Subject(s)
Culicidae , Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Humans , Plasmodium falciparum , Culicidae/metabolism , Protozoan Proteins , Antibodies, Monoclonal , Malaria, Falciparum/prevention & control , Antibodies, Protozoan
3.
Immunity ; 53(4): 733-744.e8, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32946741

ABSTRACT

Discovering potent human monoclonal antibodies (mAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on sporozoites (SPZ) and elucidating their mechanisms of neutralization will facilitate translation for passive prophylaxis and aid next-generation vaccine development. Here, we isolated a neutralizing human mAb, L9 that preferentially bound NVDP minor repeats of PfCSP with high affinity while cross-reacting with NANP major repeats. L9 was more potent than six published neutralizing human PfCSP mAbs at mediating protection against mosquito bite challenge in mice. Isothermal titration calorimetry and multiphoton microscopy showed that L9 and the other most protective mAbs bound PfCSP with two binding events and mediated protection by killing SPZ in the liver and by preventing their egress from sinusoids and traversal of hepatocytes. This study defines the subdominant PfCSP minor repeats as neutralizing epitopes, identifies an in vitro biophysical correlate of SPZ neutralization, and demonstrates that the liver is an important site for antibodies to prevent malaria.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Protozoan/immunology , Antimalarials/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Sporozoites/immunology , Adolescent , Adult , Animals , Cell Line , Cell Line, Tumor , Epitopes/immunology , Female , HEK293 Cells , Hepatocytes/immunology , Hepatocytes/parasitology , Humans , Liver/immunology , Liver/parasitology , Malaria/immunology , Malaria/parasitology , Malaria Vaccines/immunology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Young Adult
6.
Immunity ; 48(2): 350-363.e7, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29426701

ABSTRACT

Despite evidence that γδ T cells play an important role during malaria, their precise role remains unclear. During murine malaria induced by Plasmodium chabaudi infection and in human P. falciparum infection, we found that γδ T cells expanded rapidly after resolution of acute parasitemia, in contrast to αß T cells that expanded at the acute stage and then declined. Single-cell sequencing showed that TRAV15N-1 (Vδ6.3) γδ T cells were clonally expanded in mice and had convergent complementarity-determining region 3 sequences. These γδ T cells expressed specific cytokines, M-CSF, CCL5, CCL3, which are known to act on myeloid cells, indicating that this γδ T cell subset might have distinct functions. Both γδ T cells and M-CSF were necessary for preventing parasitemic recurrence. These findings point to an M-CSF-producing γδ T cell subset that fulfills a specialized protective role in the later stage of malaria infection when αß T cells have declined.


Subject(s)
Macrophage Colony-Stimulating Factor/physiology , Malaria/prevention & control , Receptors, Antigen, T-Cell, gamma-delta/physiology , T-Lymphocyte Subsets/immunology , Animals , Female , Humans , Lymphocyte Activation , Malaria/immunology , Mice , Parasitemia/prevention & control , Recurrence
7.
EMBO J ; 40(6): e106583, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33459428

ABSTRACT

Plasmodium falciparum (Pf) is a major cause of human malaria and is transmitted by infected Anopheles mosquitoes. The initial asymptomatic infection is characterized by parasite invasion of hepatocytes, followed by massive replication generating schizonts with blood-infective merozoites. Hepatocytes can be categorized by their zonal location and metabolic functions within a liver lobule. To understand specific host conditions that affect infectivity, we studied Pf parasite liver stage development in relation to the metabolic heterogeneity of fresh human hepatocytes. We found selective preference of different Pf strains for a minority of hepatocytes, which are characterized by the particular presence of glutamine synthetase (hGS). Schizont growth is significantly enhanced by hGS uptake early in development, showcasing a novel import system. In conclusion, Pf development is strongly determined by the differential metabolic status in hepatocyte subtypes. These findings underscore the importance of detailed understanding of hepatocyte host-Pf interactions and may delineate novel pathways for intervention strategies.


Subject(s)
Glutamate-Ammonia Ligase/metabolism , Hepatocytes/parasitology , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Biological Transport/physiology , Cell Proliferation/physiology , Glucose/metabolism , Glutamate-Ammonia Ligase/antagonists & inhibitors , Humans , Liver/parasitology , Liver/pathology
8.
Immunol Rev ; 293(1): 253-269, 2020 01.
Article in English | MEDLINE | ID: mdl-31605396

ABSTRACT

Controlled human malaria infection (CHMI) is an established model in clinical malaria research. Upon exposure to Plasmodium falciparum parasites, malaria-naive volunteers differ in dynamics and composition of their immune profiles and subsequent capacity to generate protective immunity. CHMI volunteers are either inflammatory responders who have prominent cellular IFN-γ production primarily driven by adaptive T cells, or tempered responders who skew toward antibody-mediated humoral immunity. When exposed to consecutive CHMIs under antimalarial chemoprophylaxis, individuals who can control parasitemia after a single immunization (fast responders) are more likely to be protected against a subsequent challenge infection. Fast responders tend to be inflammatory responders who can rapidly induce long-lived IFN-γ+ T cell responses. Slow responders or even non-responders can also be protected, but via a more diverse range of responses that take a longer time to reach full protective efficacy, in part due to their tempered phenotype. The latter group can be identified at baseline before CHMI by higher expression of inhibitory ligands CTLA-4 and TIM-3 on CD4+ T cells. Delineating heterogeneity in human immune responses to P. falciparum will facilitate rational design and strategy towards effective malaria vaccines.


Subject(s)
Host-Parasite Interactions/immunology , Immunity , Malaria/immunology , Malaria/parasitology , Plasmodium/immunology , Animals , Biological Variation, Population/immunology , Biomarkers , Humans , Immunization , Interferon-gamma/metabolism , Malaria/prevention & control , Malaria Vaccines , Models, Theoretical , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
9.
BMC Med ; 21(1): 137, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37024868

ABSTRACT

BACKGROUND: Whole sporozoite immunization under chemoprophylaxis (CPS regime) induces long-lasting sterile homologous protection in the controlled human malaria infection model using Plasmodium falciparum strain NF54. The relative proficiency of liver-stage parasite development may be an important factor determining immunization efficacy. Previous studies show that Plasmodium falciparum strain NF135 produces relatively high numbers of large liver-stage schizonts in vitro. Here, we evaluate this strain for use in CPS immunization regimes. METHODS: In a partially randomized, open-label study conducted at the Radboudumc, Nijmegen, the Netherlands, healthy, malaria-naïve adults were immunized by three rounds of fifteen or five NF135-infected mosquito bites under mefloquine prophylaxis (cohort A) or fifteen NF135-infected mosquito bites and presumptive treatment with artemether/lumefantrine (cohort B). Cohort A participants were exposed to a homologous challenge 19 weeks after immunization. The primary objective of the study was to evaluate the safety and tolerability of CPS immunizations with NF135. RESULTS: Relatively high liver-to-blood inocula were observed during immunization with NF135 in both cohorts. Eighteen of 30 (60%) high-dose participants and 3/10 (30%) low-dose participants experienced grade 3 adverse events 7 to 21 days following their first immunization. All cohort A participants and two participants in cohort B developed breakthrough blood-stage malaria infections during immunizations requiring rescue treatment. The resulting compromised immunizations induced modest sterile protection against homologous challenge in cohort A (5/17; 29%). CONCLUSIONS: These CPS regimes using NF135 were relatively poorly tolerated and frequently required rescue treatment, thereby compromising immunization efficiency and protective efficacy. Consequently, the full potential of NF135 sporozoites for induction of immune protection remains inconclusive. Nonetheless, the high liver-stage burden achieved by this strain highlights it as an interesting potential candidate for novel whole sporozoite immunization approaches. TRIAL REGISTRATION: The trial was registered at ClinicalTrials.gov under identifier NCT03813108.


Subject(s)
Antimalarials , Insect Bites and Stings , Malaria Vaccines , Malaria , Adult , Animals , Humans , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Immunization/methods , Insect Bites and Stings/drug therapy , Malaria/prevention & control , Malaria Vaccines/adverse effects , Plasmodium falciparum , Sporozoites
10.
Mol Cell Proteomics ; 20: 100038, 2021.
Article in English | MEDLINE | ID: mdl-33515807

ABSTRACT

Sporozoites are a motile form of malaria-causing Plasmodium falciparum parasites that migrate from the site of transmission in the dermis through the bloodstream to invade hepatocytes. Sporozoites interact with many cells within the host, but the molecular identity of these interactions and their role in the pathology of malaria is poorly understood. Parasite proteins that are secreted and embedded within membranes are known to be important for these interactions, but our understanding of how they interact with each other to form functional complexes is largely unknown. Here, we compile a library of recombinant proteins representing the repertoire of cell surface and secreted proteins from the P. falciparum sporozoite and use an assay designed to detect extracellular interactions to systematically identify complexes. We identify three protein complexes including an interaction between two components of the p24 complex that is involved in the trafficking of glycosylphosphatidylinositol-anchored proteins through the secretory pathway. Plasmodium parasites lacking either gene are strongly inhibited in the establishment of liver-stage infections. These findings reveal an important role for the p24 complex in malaria pathogenesis and show that the library of recombinant proteins represents a valuable resource to investigate P. falciparum sporozoite biology.


Subject(s)
Host-Parasite Interactions , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Sporozoites/metabolism , Animals , Female , Malaria/parasitology , Mice, Inbred BALB C , Organisms, Genetically Modified , Phenotype , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Plasmodium falciparum/physiology , Protein Interaction Maps , Protozoan Proteins/genetics , Recombinant Proteins/metabolism , Sporozoites/physiology
11.
Trends Immunol ; 40(3): 186-196, 2019 03.
Article in English | MEDLINE | ID: mdl-30713008

ABSTRACT

Recently, a population of non-recirculating, tissue-resident memory CD8+ T cells has been identified; cells that seems to act as key sentinels for invading microorganisms with enhanced effector functions. In malaria, the liver represents the first site for parasite development before a definite infection is established in circulating red blood cells. Here, we discuss the evidence obtained from animal models on several diseases and hypothesize that liver-resident memory CD8+ T cells (hepatic TRM) play a critical role in providing protective liver-stage immunity against Plasmodium malaria parasites. Although observations in human malaria trials are limited to peripheral blood, we propose recommendations for the translation of some of these findings to human malaria research.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hepatocytes/immunology , Liver/immunology , Malaria Vaccines/immunology , Malaria/immunology , Plasmodium falciparum/physiology , T-Lymphocytes, Regulatory/immunology , Animals , Hepatocytes/parasitology , Humans , Immunologic Memory , Interferon-gamma/metabolism , Life Cycle Stages , Lymphocyte Activation , Malaria/prevention & control , Vaccination
12.
PLoS Comput Biol ; 17(4): e1008067, 2021 04.
Article in English | MEDLINE | ID: mdl-33930021

ABSTRACT

Plasmodium species, the causative agent of malaria, have a complex life cycle involving two hosts. The sporozoite life stage is characterized by an extended phase in the mosquito salivary glands followed by free movement and rapid invasion of hepatocytes in the human host. This transmission stage has been the subject of many transcriptomics and proteomics studies and is also targeted by the most advanced malaria vaccine. We applied Bayesian data integration to determine which proteins are not only present in sporozoites but are also specific to that stage. Transcriptomic and proteomic Plasmodium data sets from 26 studies were weighted for how representative they are for sporozoites, based on a carefully assembled gold standard for Plasmodium falciparum (Pf) proteins known to be present or absent during the sporozoite life stage. Of 5418 Pf genes for which expression data were available at the RNA level or at the protein level, 975 were identified as enriched in sporozoites and 90 specific to them. We show that Pf sporozoites are enriched for proteins involved in type II fatty acid synthesis in the apicoplast and GPI anchor synthesis, but otherwise appear metabolically relatively inactive in the salivary glands of mosquitos. Newly annotated hypothetical sporozoite-specific and sporozoite-enriched proteins highlight sporozoite-specific functions. They include PF3D7_0104100 that we identified to be homologous to the prominin family, which in human has been related to a quiescent state of cancer cells. We document high levels of genetic variability for sporozoite proteins, specifically for sporozoite-specific proteins that elicit antibodies in the human host. Nevertheless, we can identify nine relatively well-conserved sporozoite proteins that elicit antibodies and that together can serve as markers for previous exposure. Our understanding of sporozoite biology benefits from identifying key pathways that are enriched during this life stage. This work can guide studies of molecular mechanisms underlying sporozoite biology and potential well-conserved targets for marker and drug development.


Subject(s)
Plasmodium falciparum/metabolism , Proteome , Protozoan Proteins/metabolism , Sporozoites/metabolism , Animals , Bayes Theorem , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide , Probability , Transcriptome
13.
J Infect Dis ; 224(7): 1257-1265, 2021 10 13.
Article in English | MEDLINE | ID: mdl-32239171

ABSTRACT

BACKGROUND: For malaria elimination efforts, it is important to better understand parasite transmission to mosquitoes and develop models for early-clinical evaluation of transmission-blocking interventions. METHODS: In a randomized open-label trial, 24 participants were infected by bites from Plasmodium falciparum 3D7-infected mosquitoes (mosquito bite [MB]; n = 12) or by induced blood-stage malaria (IBSM) with the same parasite line (n = 12). After subcurative piperaquine treatment, asexual parasite and gametocytes kinetics were assessed, and mosquito feeding experiments were performed. RESULTS: Study procedures were well tolerated. The median peak gametocyte density was 1304/mL (interquartile range, 308-1607/mL) after IBSM, compared with 14/mL (10-64/mL) after MB inoculation (P < .001), despite similar peak asexual parasite densities (P = .48). Peak gametocyte density was correlated with preceding pfap2-g transcripts, indicative of gametocyte commitment (ρ = 0.62; P = .002). Direct feeding assays resulted in mosquito infections from 9 of 12 participants after IBSM versus 0 of 12 after MB inoculation (P < .001). CONCLUSIONS: We observed a striking effect of inoculation method on gametocyte production, suggesting higher gametocyte commitment after IBSM. Our direct comparison of MB and IBSM establishes the controlled human malaria infection transmission model, using intravenous administration of P. falciparum-infected erythrocytes as a model for early-clinical evaluation of interventions that aim to interrupt malaria transmission. CLINICAL TRIAL REGISTRATION: NCT03454048.


Subject(s)
Anopheles/parasitology , Insect Bites and Stings , Malaria, Falciparum/blood , Plasmodium falciparum/isolation & purification , Adolescent , Animals , Female , Humans , Malaria , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Parasitemia
14.
Clin Infect Dis ; 72(11): 2035-2041, 2021 06 01.
Article in English | MEDLINE | ID: mdl-32857836

ABSTRACT

WHO convened an Advisory Group (AG) to consider the feasibility, potential value, and limitations of establishing a closely-monitored challenge model of experimental severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) in healthy adult volunteers. The AG included experts in design, establishment, and performance of challenges. This report summarizes issues that render a COVID-19 model daunting to establish (the potential of SARS-CoV-2 to cause severe/fatal illness, its high transmissibility, and lack of a "rescue treatment" to prevent progression from mild/moderate to severe clinical illness) and it proffers prudent strategies for stepwise model development, challenge virus selection, guidelines for manufacturing challenge doses, and ways to contain SARS-CoV-2 and prevent transmission to household/community contacts. A COVID-19 model could demonstrate protection against virus shedding and/or illness induced by prior SARS-CoV-2 challenge or vaccination. A limitation of the model is that vaccine efficacy in experimentally challenged healthy young adults cannot per se be extrapolated to predict efficacy in elderly/high-risk adults.


Subject(s)
COVID-19 , Aged , Healthy Volunteers , Humans , SARS-CoV-2 , Virus Shedding , World Health Organization , Young Adult
15.
Malar J ; 20(1): 381, 2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34565372

ABSTRACT

BACKGROUND: The ability to culture Plasmodium falciparum continuously in vitro has enabled stable access to asexual and sexual parasites for malaria research. The portfolio of isolates has remained limited and research is still largely based on NF54 and its derived clone 3D7. Since 1978, isolates were collected and cryopreserved at Radboudumc from patients presenting at the hospital. Here, procedures are described for culture adaptation of asexual parasites, cloning and production of sexual stage parasites responsible for transmission (gametocytes) and production of oocysts in Anopheles mosquitoes. This study aimed to identify new culture-adapted transmissible P. falciparum isolates, originating from distinct geographical locations. METHODS: Out of a collection of 121 P. falciparum isolates stored in liquid nitrogen, 21 from different geographical origin were selected for initial testing. Isolates were evaluated for their ability to be asexually cultured in vitro, their gametocyte production capacity, and consistent generation of oocysts. RESULTS: Out of 21 isolates tested, twelve were excluded from further analysis due to lack of mature gametocyte production (n = 1) or generation of satisfactory numbers of oocysts in mosquitoes (n = 11). Nine isolates fulfilled selection criteria and were cloned by limiting dilution and retested. After cloning, one isolate was excluded for not showing transmission. The remaining eight isolates transmitted to Anopheles stephensi or Anopheles coluzzii mosquitoes and were categorized into two groups with a reproducible mean oocyst infection intensity above (n = 5) or below five (n = 3). CONCLUSIONS: These new P. falciparum culture-adapted isolates with reproducible transmission to Anopheles mosquitoes are a valuable addition to the malaria research tool box. They can aid in the development of malaria interventions and will be particularly useful for those studying malaria transmission.


Subject(s)
Anopheles/parasitology , Mosquito Vectors/parasitology , Plasmodium falciparum/physiology , Animals , Geography , Species Specificity
16.
Nature ; 528(7580): S94-101, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26633771

ABSTRACT

Mass-screen-and-treat and targeted mass-drug-administration strategies are being considered as a means to interrupt transmission of Plasmodium falciparum malaria. However, the effectiveness of such strategies will depend on the extent to which current and future diagnostics are able to detect those individuals who are infectious to mosquitoes. We estimate the relationship between parasite density and onward infectivity using sensitive quantitative parasite diagnostics and mosquito feeding assays from Burkina Faso. We find that a diagnostic with a lower detection limit of 200 parasites per microlitre would detect 55% of the infectious reservoir (the combined infectivity to mosquitoes of the whole population weighted by how often each individual is bitten) whereas a test with a limit of 20 parasites per microlitre would detect 83% and 2 parasites per microlitre would detect 95% of the infectious reservoir. Using mathematical models, we show that increasing the diagnostic sensitivity from 200 parasites per microlitre (equivalent to microscopy or current rapid diagnostic tests) to 2 parasites per microlitre would increase the number of regions where transmission could be interrupted with a mass-screen-and-treat programme from an entomological inoculation rate below 1 to one of up to 4. The higher sensitivity diagnostic could reduce the number of treatment rounds required to interrupt transmission in areas of lower prevalence. We predict that mass-screen-and-treat with a highly sensitive diagnostic is less effective than mass drug administration owing to the prophylactic protection provided to uninfected individuals by the latter approach. In low-transmission settings such as those in Southeast Asia, we find that a diagnostic tool with a sensitivity of 20 parasites per microlitre may be sufficient for targeted mass drug administration because this diagnostic is predicted to identify a similar village population prevalence compared with that currently detected using polymerase chain reaction if treatment levels are high and screening is conducted during the dry season. Along with other factors, such as coverage, choice of drug, timing of the intervention, importation of infections, and seasonality, the sensitivity of the diagnostic can play a part in increasing the chance of interrupting transmission.


Subject(s)
Diagnostic Tests, Routine , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Adolescent , Adult , Animals , Child , Child, Preschool , Female , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Polymerase Chain Reaction , Prevalence , Reproducibility of Results , Young Adult
17.
Nature ; 522(7556): 315-20, 2015 06 18.
Article in English | MEDLINE | ID: mdl-26085270

ABSTRACT

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.


Subject(s)
Antimalarials/pharmacology , Gene Expression Regulation/drug effects , Malaria/parasitology , Plasmodium/drug effects , Plasmodium/metabolism , Protein Biosynthesis/drug effects , Quinolines/pharmacology , Animals , Antimalarials/administration & dosage , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Drug Discovery , Female , Life Cycle Stages/drug effects , Liver/drug effects , Liver/parasitology , Malaria/drug therapy , Male , Models, Molecular , Peptide Elongation Factor 2/antagonists & inhibitors , Peptide Elongation Factor 2/metabolism , Plasmodium/genetics , Plasmodium/growth & development , Plasmodium berghei/drug effects , Plasmodium berghei/physiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Plasmodium vivax/drug effects , Plasmodium vivax/metabolism , Quinolines/administration & dosage , Quinolines/chemistry , Quinolines/pharmacokinetics
18.
Proc Natl Acad Sci U S A ; 115(29): E6920-E6926, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29967151

ABSTRACT

Isoxazolines are oral insecticidal drugs currently licensed for ectoparasite control in companion animals. Here we propose their use in humans for the reduction of vector-borne disease incidence. Fluralaner and afoxolaner rapidly killed Anopheles, Aedes, and Culex mosquitoes and Phlebotomus sand flies after feeding on a drug-supplemented blood meal, with IC50 values ranging from 33 to 575 nM, and were fully active against strains with preexisting resistance to common insecticides. Based on allometric scaling of preclinical pharmacokinetics data, we predict that a single human median dose of 260 mg (IQR, 177-407 mg) for afoxolaner, or 410 mg (IQR, 278-648 mg) for fluralaner, could provide an insecticidal effect lasting 50-90 days against mosquitoes and Phlebotomus sand flies. Computational modeling showed that seasonal mass drug administration of such a single dose to a fraction of a regional population would dramatically reduce clinical cases of Zika and malaria in endemic settings. Isoxazolines therefore represent a promising new component of drug-based vector control.


Subject(s)
Communicable Disease Control/methods , Culicidae/growth & development , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Vectors/growth & development , Psychodidae/growth & development , Animals , Humans
19.
Proc Natl Acad Sci U S A ; 115(18): E4209-E4218, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29666273

ABSTRACT

Malaria parasites (Plasmodium) can change the attractiveness of their vertebrate hosts to Anopheles vectors, leading to a greater number of vector-host contacts and increased transmission. Indeed, naturally Plasmodium-infected children have been shown to attract more mosquitoes than parasite-free children. Here, we demonstrate Plasmodium-induced increases in the attractiveness of skin odor in Kenyan children and reveal quantitative differences in the production of specific odor components in infected vs. parasite-free individuals. We found the aldehydes heptanal, octanal, and nonanal to be produced in greater amounts by infected individuals and detected by mosquito antennae. In behavioral experiments, we demonstrated that these, and other, Plasmodium-induced aldehydes enhanced the attractiveness of a synthetic odor blend mimicking "healthy" human odor. Heptanal alone increased the attractiveness of "parasite-free" natural human odor. Should the increased production of these aldehydes by Plasmodium-infected humans lead to increased mosquito biting in a natural setting, this would likely affect the transmission of malaria.


Subject(s)
Anopheles/physiology , Malaria , Mosquito Vectors/physiology , Odorants , Plasmodium/metabolism , Animals , Child , Child, Preschool , Female , Humans , Malaria/metabolism , Malaria/transmission , Male
20.
PLoS Pathog ; 14(5): e1007034, 2018 05.
Article in English | MEDLINE | ID: mdl-29742161

ABSTRACT

Malaria transmission remains high in Sub-Saharan Africa despite large-scale implementation of malaria control interventions. A comprehensive understanding of the transmissibility of infections to mosquitoes may guide the design of more effective transmission reducing strategies. The impact of P. falciparum sexual stage immunity on the infectious reservoir for malaria has never been studied in natural settings. Repeated measurements were carried out at start-wet, peak-wet and dry season, and provided data on antibody responses against gametocyte/gamete antigens Pfs48/45 and Pfs230 as anti-gametocyte immunity. Data on high and low-density infections and their infectiousness to anopheline mosquitoes were obtained using quantitative molecular methods and mosquito feeding assays, respectively. An event-driven model for P. falciparum sexual stage immunity was developed and fit to data using an agent based malaria model infrastructure. We found that Pfs48/45 and Pfs230 antibody densities increased with increasing concurrent gametocyte densities; associated with 55-70% reduction in oocyst intensity and achieved up to 44% reduction in proportions of infected mosquitoes. We showed that P. falciparum sexual stage immunity significantly reduces transmission of microscopic (p < 0.001) but not submicroscopic (p = 0.937) gametocyte infections to mosquitoes and that incorporating sexual stage immunity into mathematical models had a considerable impact on the contribution of different age groups to the infectious reservoir of malaria. Human antibody responses to gametocyte antigens are likely to be dependent on recent and concurrent high-density gametocyte exposure and have a pronounced impact on the likelihood of onward transmission of microscopic gametocyte densities compared to low density infections. Our mathematical simulations indicate that anti-gametocyte immunity is an important factor for predicting and understanding the composition and dynamics of the human infectious reservoir for malaria.


Subject(s)
Malaria/transmission , Membrane Glycoproteins/immunology , Plasmodium falciparum/physiology , Protozoan Proteins/immunology , Animals , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Communicable Diseases/transmission , Culicidae , Humans , Insect Vectors , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Plasmodium falciparum/immunology , Plasmodium falciparum/parasitology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL