Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Mar Drugs ; 20(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35736205

ABSTRACT

Fucoidans, sulfated polysaccharides from brown algae, possess multiple bioactivities in regard to osteogenesis, angiogenesis, and inflammation, all representing key molecular processes for successful bone regeneration. To utilize fucoidans in regenerative medicine, a delivery system is needed which temporarily immobilizes the polysaccharide at the injured site. Hydrogels have become increasingly interesting biomaterials for the support of bone regeneration. Their structural resemblance with the extracellular matrix, their flexible shape, and capacity to deliver bioactive compounds or stem cells into the affected tissue make them promising materials for the support of healing processes. Especially injectable hydrogels stand out due to their minimal invasive application. In the current study, we developed an injectable thermosensitive hydrogel for the delivery of fucoidan based on chitosan, collagen, and ß-glycerophosphate (ß-GP). Physicochemical parameters such as gelation time, gelation temperature, swelling capacity, pH, and internal microstructure were studied. Further, human bone-derived mesenchymal stem cells (MSC) and human outgrowth endothelial cells (OEC) were cultured on top (2D) or inside the hydrogels (3D) to assess the biocompatibility. We found that the sol-gel transition occurred after approximately 1 min at 37 °C. Fucoidan integration into the hydrogel had no or only a minor impact on the mentioned physicochemical parameters compared to hydrogels which did not contain fucoidan. Release assays showed that 60% and 80% of the fucoidan was released from the hydrogel after two and six days, respectively. The hydrogel was biocompatible with MSC and OEC with a limitation for OEC encapsulation. This study demonstrates the potential of thermosensitive chitosan-collagen hydrogels as a delivery system for fucoidan and MSC for the use in regenerative medicine.


Subject(s)
Chitosan , Hydrogels , Chitosan/chemistry , Collagen/chemistry , Endothelial Cells , Humans , Hydrogels/chemistry , Polysaccharides
2.
Int J Mol Sci ; 23(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35328815

ABSTRACT

Graphene oxide (GO) is a promising material for bone tissue engineering, but the validation of its molecular biological effects, especially in the context of clinically applied materials, is still limited. In this study, we compare the effects of graphene oxide framework structures (F-GO) and reduced graphene oxide-based framework structures (F-rGO) as scaffold material with a special focus on vascularization associated processes and mechanisms in the bone. Highly porous networks of zinc oxide tetrapods serving as sacrificial templates were used to create F-GO and F-rGO with porosities >99% consisting of hollow interconnected microtubes. Framework materials were seeded with human mesenchymal stem cells (MSC), and the cell response was evaluated by confocal laser scanning microscopy (CLSM), deoxyribonucleic acid (DNA) quantification, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and alkaline phosphatase activity (ALP) to define their impact on cellular adhesion, osteogenic differentiation, and secretion of vascular growth factors. F-GO based scaffolds improved adhesion and growth of MSC as indicated by CLSM and DNA quantification. Further, F-GO showed a better vascular endothelial growth factor (VEGF) binding capacity and improved cell growth as well as the formation of microvascular capillary-like structures in co-cultures with outgrowth endothelial cells (OEC). These results clearly favored non-reduced graphene oxide in the form of F-GO for bone regeneration applications. To study GO in the context of a clinically used implant material, we coated a commercially available xenograft (Bio-Oss® block) with GO and compared the growth of MSC in monoculture and in coculture with OEC to the native scaffold. We observed a significantly improved growth of MSC and formation of prevascular structures on coated Bio-Oss®, again associated with a higher VEGF binding capacity. We conclude that graphene oxide coating of this clinically used, but highly debiologized bone graft improves MSC cell adhesion and vascularization.


Subject(s)
Graphite , Mesenchymal Stem Cells , Cell Adhesion , Cell Differentiation , DNA/metabolism , Endothelial Cells , Graphite/chemistry , Humans , Mesenchymal Stem Cells/metabolism , Osteogenesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/metabolism
3.
ACS Nano ; 18(12): 8988-8995, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478913

ABSTRACT

Solid-state fabricated carbon nanotube (CNT) sheets have shown promise as thermoacoustic (TA) sound generators, emitting tunable sound waves across a broad frequency spectrum (1-105 Hz) due to their ultralow specific heat capacity. However, their applications as underwater TA sound generators are limited by the reduced mechanical strength of CNT sheets in aqueous environments. In this study, we present a mechanically robust underwater TA device constructed from a three-dimensional (3D) tetrapodal assembly of carbon nanotubes (t-CNTs). These structures feature a high porosity (>99.9%) and a double-hollowed network of well-interconnected CNTs. We systematically explore the impact of different dimensions of t-CNTs and various annealing procedures on sound generation performance. Furnace-annealed t-CNTs, in contrast to directly resistive Joule heating annealing, provide superior, continuous, and homogeneous hydrophobicity across the surface of bulk t-CNTs. As a result, the t-CNTs-based underwater TA device demonstrates stable, smooth, and broad-spectrum sound generation within the frequency range of 1 × 102 to 1 × 104 Hz, along with a weak resonance response. Furthermore, these devices exhibit enhanced and more stable sound generation performance at nonresonance frequencies compared to regular CNT-based devices. This study contributes to advancing the development of underwater TA devices with characteristics such as being nonresonant, high-performing, flexible, elastically compressible, and reliable, enabling operation across a broad frequency range.

SELECTION OF CITATIONS
SEARCH DETAIL