ABSTRACT
Taselisib is a potent Ć-sparing phosphatidylinositol 3-kinase (PI3K) inhibitor that, with endocrine therapy, improves outcomes in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA)-mutated (PIK3CAmut) advanced breast cancer. To understand alterations associated with response to PI3K inhibition, we analysed circulating tumour DNA (ctDNA) from participants enrolled in the SANDPIPER trial. Participants were designated as either PIK3CAmut or PIK3CA no mutation was detected (NMD) per baseline ctDNA. The top mutated genes and tumour fraction estimates identified were analysed for their association with outcomes. In participants with PIK3CAmut ctDNA treated with taselisib + fulvestrant, tumour protein p53 (TP53; encoding p53) and fibroblast growth factor receptor 1 (FGFR1) alterations were associated with shorter progression-free survival (PFS) compared to participants with NMD in these genes. Conversely, participants with PIK3CAmut ctDNA harbouring a neurofibromin 1 (NF1)Ā alteration or high baseline tumour fraction estimate experienced improved PFS upon treatment with taselisib + fulvestrant compared to placebo + fulvestrant. Broadly, alterations in oestrogen receptor (ER), PI3K and p53 pathway genes were associated with resistance to taselisib + fulvestrant in participants with PIK3CAmut ctDNA. Altogether, we demonstrated the impact of genomic (co-)alterations on outcomes with one of the largest clinico-genomic datasets of ER+, HER2-, PIK3CAmut breast cancer patients treated with a PI3K inhibitor.
Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Receptors, Estrogen/metabolism , Tumor Suppressor Protein p53/genetics , Phosphatidylinositol 3-Kinases/metabolism , Genomics , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Receptor, ErbB-2/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic useABSTRACT
BACKGROUND: Mutations in the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K), encoded by the PIK3CA gene, cause dysregulation of the PI3K pathway in 35-40% of patients with HR+/HER2- breast cancer. Preclinically, cancer cells harboring double or multiple PIK3CA mutations (mut) elicit hyperactivation of the PI3K pathway leading to enhanced sensitivity to p110α inhibitors. METHODS: To understand the role of multiple PIK3CAmut in predicting response to p110α inhibition, we estimated the clonality of multiple PIK3CAmut in circulating tumor DNA (ctDNA) from patients with HR+/HER2- metastatic breast cancer enrolled to a prospectively registered clinical trial of fulvestrant Ā± taselisib, and analyzed the subgroups against co-altered genes, pathways, and outcomes. RESULTS: ctDNA samples with clonal multiple PIK3CAmut had fewer co-alterations in receptor tyrosine kinase (RTK) or non-PIK3CA PI3K pathway genes compared to samples with subclonal multiple PIK3CAmut indicating a strong reliance on the PI3K pathway. This was validated in an independent cohort of breast cancer tumor specimens that underwent comprehensive genomic profiling. Furthermore, patients whose ctDNA harbored clonal multiple PIK3CAmut exhibited a significantly higher response rate and longer progression-free survival vs subclonal multiple PIK3CAmut. CONCLUSIONS: Our study establishes clonal multiple PIK3CAmut as an important molecular determinant of response to p110α inhibition and provides rationale for further clinical investigation of p110α inhibitors alone or with rationally-selected therapies in breast cancer and potentially other solid tumor types.
Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Fulvestrant/therapeutic use , Phosphatidylinositol 3-Kinases/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Mutation , Class I Phosphatidylinositol 3-Kinases/geneticsABSTRACT
PURPOSE: Understanding the differences in biomarker prevalence that may exist among diverse populations is invaluable to accurately forecast biomarker-driven clinical trial enrollment metrics and to advance inclusive research and health equity. This study evaluated the frequency and types of PIK3CA mutations (PIK3CAmut) detected in predicted genetic ancestry subgroups across breast cancer (BC) subtypes. METHODS: Analyses were conducted using real-world genomic data from adult patients with BC treated in an academic or community setting in the United States and whose tumor tissue was submitted for comprehensive genomic profiling. RESULTS: Of 36,151 patients with BC (median age, 58 years; 99% female), the breakdown by predicted genetic ancestry was 75% European, 14% African, 6% Central/South American, 3% East Asian, and 1% South Asian. We demonstrated that patients of African ancestry are less likely to have tumors that harbor PIK3CAmut compared with patients of European ancestry with estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+/HER2-) BC (37% [949/2,593] v 44% [7,706/17,637]; q = 4.39E-11) and triple-negative breast cancer (8% [179/2,199] v 14% [991/7,072]; q = 6.07E-13). Moreover, we found that PIK3CAmut were predominantly composed of hotspot mutations, of which mutations at H1047 were the most prevalent across BC subtypes (35%-41% ER+/HER2- BC; 43%-61% HER2+ BC; 40%-59% triple-negative breast cancer). CONCLUSION: This analysis established that tumor PIK3CAmut prevalence can differ among predicted genetic ancestries across BC subtypes on the basis of the largest comprehensive genomic profiling data set of patients with cancer treated in the United States. This study highlights the need for equitable representation in research studies, which is imperative to ensuring better health outcomes for all.
Subject(s)
Triple Negative Breast Neoplasms , Adult , Humans , Female , Middle Aged , Male , Prevalence , Triple Negative Breast Neoplasms/epidemiology , Mutation , Black People , Class I Phosphatidylinositol 3-Kinases/geneticsABSTRACT
PURPOSE: Somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), which encodes the p110α catalytic subunit of PI3K, are found in multiple human cancers. While recurrent mutations in PIK3CA helical, regulatory, and kinase domains lead to constitutive PI3K pathway activation, other mutations remain uncharacterized. To further evaluate their clinical actionability, we designed a basket study for patients with PIK3CA-mutant cancers with the isoform-specific PI3K inhibitor taselisib. PATIENTS AND METHODS: Patients were enrolled on the basis of local PIK3CA mutation testing into one of 11 histology-specific cohorts and treated with taselisib at 6 or 4 mg daily until progression. Tumor DNA from baseline and progression (when available) was sequenced using a next-generation sequencing panel. Exploratory analyses correlating genomic alterations with treatment outcomes were performed. RESULTS: A total of 166 patients with PIK3CA-mutant cancers were enrolled. The confirmed response rate was 9%. Activity varied by tumor type and mutant allele, with confirmed responses observed in head and neck squamous (15.4%), cervical (10%), and other cancers, plus in tumors containing helical domain mutations. Genomic analyses identified mutations potentially associated with resistance to PI3K inhibition upfront (TP53 and PTEN) and postprogression through reactivation of the PI3K pathway (PTEN, STK11, and PIK3R1). Higher rates of dose modification occurred at higher doses of taselisib, indicating a narrow therapeutic index. CONCLUSIONS: Taselisib had limited activity in the tumor types tested and is no longer in development. This genome-driven study improves understanding of the activity, limitations, and resistance mechanisms of using PI3K inhibitors as monotherapy to target PIK3CA-mutant tumors.
Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Imidazoles/therapeutic use , Mutation , Neoplasms/drug therapy , Oxazepines/therapeutic use , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Cohort Studies , Female , Humans , Male , Middle Aged , Neoplasms/genetics , Neoplasms/metabolism , Progression-Free Survival , Treatment Outcome , Young AdultABSTRACT
The PI3K signaling pathway serves as a central node in regulating cell survival, proliferation, and metabolism. PIK3CA, the gene encoding the PI3K catalytic subunit p110-alpha, is commonly altered in breast cancer resulting in the constitutive activation of the PI3K pathway. Using an unbiased cell line screening approach, we tested the sensitivity of breast cancer cell lines to taselisib, a potent PI3K inhibitor, and correlated sensitivity with key biomarkers (PIK3CA, HER2, PTEN, and ESR1). We further assessed how taselisib modulates downstream signaling in the different genomic backgrounds that occur within breast cancer. We found that sensitivity to taselisib correlated with the presence of PIK3CA mutations, but was independent of HER2 status. We further showed that HER2-amplified/PIK3CA wild-type cell lines are not as sensitive to taselisib when compared with HER2-amplified/PIK3CA-mutant cell lines. In a PIK3CA-mutant/PTEN null background, PI3K downstream signaling rebounded in the presence of taselisib correlating with decreased sensitivity at later time points. Finally, we observed that PIK3CA mutations cooccurred with mutations in the estrogen receptor (ER; ESR1) in metastatic tumors from patients with ER+ breast cancer. However, the cooccurrence of an ESR1 mutation with a PIK3CA mutation did not affect response to taselisib in a single agent setting or in combination with fulvestrant. In summary, these data suggest that development of taselisib in breast cancer should occur in a PIK3CA-mutant setting with cotreatments determined by the specific subtypes under investigation.
Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers/metabolism , Breast Neoplasms/drug therapy , Imidazoles/therapeutic use , Oxazepines/therapeutic use , Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Imidazoles/pharmacology , Oxazepines/pharmacologyABSTRACT
Although breast cancer molecular subtypes have been extensively defined by means of gene expression profiling over the past decade, little is known, at the proteomic level, as to how signaling pathways are differentially activated and serve to control proliferation in different breast cancer subtypes. We used reverse-phase protein arrays to examine phosphorylation status of 100 proteins in a panel of 30 breast cancer cell lines and showed distinct pathway activation differences between different subtypes that are not obvious from previous gene expression studies. We also show that basal levels of phosphorylation of key signaling nodes may have diagnostic utility in predicting response to selective inhibitors of phosphatidylinositol 3-kinase and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase. Finally, we show that reverse-phase protein arrays allow the parallel analysis of multiple pharmacodynamic biomarkers of response to targeted kinase inhibitors and that inhibitors of epidermal growth factor receptor and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase result in compensatory up-regulation of the phosphatidylinositol 3-kinase/Akt signaling pathway.
Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Drug Screening Assays, Antitumor/methods , Enzyme Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Proteomics/methods , Breast Neoplasms/pathology , Cell Line, Tumor , Cluster Analysis , Enzyme Inhibitors/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Array Analysis , RNA, Small Interfering/metabolism , Signal TransductionABSTRACT
The identification of early breast cancer patients who may benefit from adjuvant chemotherapy has evolved to include assessment of clinicopathologic features such as tumor size and nodal status, as well as several gene-expression profiles for ER-positive, HER2-negative cancers. However, these tools do not reliably identify patients at the greatest risk of recurrence. The mutation and copy-number landscape of triple-negative breast cancer (TNBC) subtypes defined by gene expression is also largely unknown, and elucidation of this landscape may shed light on novel therapeutic opportunities. The USO01062 phase III clinical trial of standard chemotherapy (with or without capecitabine) enrolled a cohort of putatively high-risk patients based on clinical features, yet only observed a 5-year disease-free survival event rate of 11.6%. In order to uncover genomic aberrations associated with recurrence, a targeted next-generation sequencing panel was used to compare tumor specimens from patients who had a recurrence event with a matched set who did not. The somatic mutation and copy-number alteration landscapes of high-risk early breast cancer patients were characterized and alterations associated with relapse were identified. Tumor mutational burden was evaluated but was not prognostic in this study, nor did it correlate with PDL1 or CD8 gene expression. However, TNBC subtypes had substantial genomic heterogeneity with a distinct pattern of genomic alterations and putative underlying driver mutations. IMPLICATIONS: The present study uncovers a compendium of genomic alterations with utility to more precisely identify high-risk patients for adjuvant trials of novel therapeutic agents.
Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Genomics/methods , Triple Negative Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Humans , Neoplasm Recurrence, Local , PrognosisABSTRACT
Background: There is an urgent requirement to identify biomarkers to tailor treatment in human epidermal growth factor receptor 2 (HER2)-amplified early breast cancer treated with trastuzumab/pertuzumab-based chemotherapy. Methods: Among the 225 patients randomly assigned to trastuzumab/pertuzumab concurrently or sequentially with an anthracycline-containing regimen or concurrently with an anthracycline-free regimen in the Tryphaena trial, we determined the percentage of tumor-infiltrating lymphocytes (TILs) at baseline in 213 patients, of which 126 demonstrated a pathological complete response (pCR; ypT0/is ypN0), with 28 demonstrating event-free survival (EFS) events. We investigated associations between baseline TIL percentage and either pCR or EFS after adjusting for clinicopathological characteristics using logistic and Cox regression models, respectively. To understand TIL biology, we evaluated associations between baseline TILs and baseline tumor gene expression data (800 gene set by NanoString) in a subset of 173 patients. All statistical tests were two-sided. Results: Among the patients with measurable TILs at baseline, the median level was 14.1% (interquartile range = 7.1%-32.4%). After adjusting for clinicopathological characteristics, baseline percentage TIL was not associated with pCR (adjusted odds ratio [aOR] for every 10-percentage unit increase in TILs = 1.12, 95% confidence interval [CI] = 0.95 to 1.31, P = .17). At a median follow-up of 4.7 years, for every increase in baseline TILs of 10%, there was a 25% reduction in the hazard for an EFS event (aOR = 0.75, 95% CI = 0.56 to 1.00, P = .05) after adjusting for baseline clinicopathological characteristics and pCR. Additionally, genes associated with epithelial-mesenchymal transition, angiogenesis, and T-cell inhibition such as SNAIL1, ZEB1, NOTCH3, and B7-H3 were statistically significantly inversely correlated with percentage TIL. Conclusions: Baseline TIL percentage provides independent prognostic information in patients treated with trastuzumab/pertuzumab-based neoadjuvant chemotherapy. However, further validation is required.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoadjuvant Therapy/mortality , Antibodies, Monoclonal, Humanized/administration & dosage , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Follow-Up Studies , Humans , Middle Aged , Prognosis , Receptor, ErbB-2/metabolism , Survival Rate , Trastuzumab/administration & dosageABSTRACT
Taselisib is a potent and selective tumor growth inhibitor through PI3K pathway suppression. Thirty-four patients with locally advanced or metastatic solid tumors were treated (phase I study, modified 3+3 dose escalation; 5 cohorts; 3-16 mg taselisib once-daily capsule). Taselisib pharmacokinetics were dose-proportional; mean half-life was 40 hours. Frequent dose-dependent, treatment-related adverse events included diarrhea, hyperglycemia, decreased appetite, nausea, rash, stomatitis, and vomiting. At 12 and 16 mg dose levels, dose-limiting toxicities (DLT) were observed, with an accumulation of higher-grade adverse events after the cycle 1 DLT assessment window. Pharmacodynamic findings showed pathway inhibition at ≥3 mg in patient tumor samples, consistent with preclinical PIK3CA-mutant tumor xenograft models. Confirmed response rate was 36% for PIK3CA-mutant tumor patients with measurable disease [5/14: 4 breast cancer (3 patients at 12 mg); 1 non-small cell lung cancer], where responses started at 3 mg, and 0% in patients with tumors without known PIK3CA hotspot mutations (0/15).Significance: Preliminary data consistent with preclinical data indicate increased antitumor activity of taselisib in patients with PIK3CA-mutant tumors (in comparison with patients with tumors without known activating PIK3CA hotspot mutations) starting at the lowest dose tested of 3 mg, thereby supporting higher potency for taselisib against PIK3CA-mutant tumors. Cancer Discov; 7(7); 704-15. Ā©2017 AACR.See related commentary by Rodon and Tabernero, p. 666This article is highlighted in the In This Issue feature, p. 653.
Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Imidazoles/administration & dosage , Neoplasms/drug therapy , Oxazepines/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Adult , Aged , Animals , Class I Phosphatidylinositol 3-Kinases/genetics , Dose-Response Relationship, Drug , Drug-Related Side Effects and Adverse Reactions/classification , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Humans , Imidazoles/adverse effects , Male , Mice , Middle Aged , Mutation , Neoplasms/genetics , Neoplasms/pathology , Oxazepines/adverse effects , Protein Kinase Inhibitors/adverse effects , Xenograft Model Antitumor AssaysABSTRACT
Letrozole is a commonly used treatment option for metastatic hormone receptor-positive (HR+) breast cancer, but many patients ultimately relapse. Due to the importance of phosphoinositide-3 kinase (PI3K) in breast cancer, PI3K inhibitors such as taselisib are attractive for combination with endocrine therapies such as letrozole. Taselisib was evaluated as a single agent and in combination with letrozole in a breast cancer cell line engineered to express aromatase. The combination of taselisib and letrozole decreased cellular viability and increased apoptosis relative to either single agent. Signaling cross-talk between the PI3K and ER pathways was associated with efficacy for the combination. In a secreted factor screen, multiple soluble factors, including members of the epidermal and fibroblast growth factor families, rendered breast cancer cells non-responsive to letrozole. It was discovered that many of these factors signal through the PI3K pathway and cells remained sensitive to taselisib in the presence of the soluble factors. We also found that letrozole resistant lines have elevated PI3K pathway signaling due to an increased level of p110α, but are still sensitive to taselisib. These data provide rationale for clinical evaluation of PI3K inhibitors to overcome resistance to endocrine therapies in ER+ breast cancer.
ABSTRACT
Mutations in ESR1 have been associated with resistance to aromatase inhibitor (AI) therapy in patients with ER+ metastatic breast cancer. Little is known of the impact of these mutations in patients receiving selective oestrogen receptor degrader (SERD) therapy. In this study, hotspot mutations in ESR1 and PIK3CA from ctDNA were assayed in clinical trial samples from ER+ metastatic breast cancer patients randomized either to the SERD fulvestrant or fulvestrant plus a pan-PI3K inhibitor. ESR1 mutations are present in 37% of baseline samples and are enriched in patients with luminal A and PIK3CA-mutated tumours. ESR1 mutations are often polyclonal and longitudinal analysis shows distinct clones exhibiting divergent behaviour over time. ESR1 mutation allele frequency does not show a consistent pattern of increases during fulvestrant treatment, and progression-free survival is not different in patients with ESR1 mutations compared with wild-type patients. ESR1 mutations are not associated with clinical resistance to fulvestrant in this study.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Estradiol/analogs & derivatives , Estrogen Receptor Antagonists/pharmacology , Estrogen Receptor alpha/genetics , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast/pathology , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/genetics , DNA Mutational Analysis , DNA, Neoplasm/genetics , Disease-Free Survival , Estradiol/pharmacology , Estradiol/therapeutic use , Estrogen Receptor Antagonists/therapeutic use , Estrogen Receptor alpha/antagonists & inhibitors , Estrogens/metabolism , Female , Fulvestrant , Humans , Indazoles/pharmacology , Indazoles/therapeutic use , Middle Aged , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic useABSTRACT
Breast cancer is a heterogeneous disease and patients are managed clinically based on ER, PR, HER2 expression, and key risk factors. We sought to characterize the molecular landscape of high-risk breast cancer patients enrolled onto an adjuvant chemotherapy study to understand how disease subsets and tumor immune status impact survival. DNA and RNA were extracted from 861 breast cancer samples from patients enrolled onto the United States Oncology trial 01062. Samples were characterized using multiplex gene expression, copy number, and qPCR mutation assays. HR+ patients with a PIK3CA mutant tumor had a favorable disease-free survival (DFS; HR 0.66, P=0.05), however, the prognostic effect was specific to luminal A patients (Luminal A: HR 0.67, P=0.1; Luminal B: HR 1.01, P=0.98). Molecular subtyping of triple-negative breast cancers (TNBCs) suggested that the mesenchymal subtype had the worst DFS, whereas the immunomodulatory subtype had the best DFS. Profiling of immunologic genes revealed that TNBC tumors (n=280) displaying an activated T-cell signature had a longer DFS following adjuvant chemotherapy (HR 0.59, P=0.04), while a distinct set of immune genes was associated with DFS in HR+ cancers. Utilizing a discovery approach, we identified genes associated with a high risk of recurrence in HR+ patients, which were validated in an independent data set. Molecular classification based on PAM50 and TNBC subtyping stratified clinical high-risk patients into distinct prognostic subsets. Patients with high expression of immune-related genes showed superior DFS in both HR+ and TNBC. These results may inform patient management and drug development in early breast cancer.
ABSTRACT
PURPOSE: We describe the preclinical pharmacology and antitumor activity of GDC-0068, a novel highly selective ATP-competitive pan-Akt inhibitor currently in clinical trials for the treatment of human cancers. EXPERIMENTAL DESIGN: The effect of GDC-0068 on Akt signaling was characterized using specific biomarkers of the Akt pathway, and response to GDC-0068 was evaluated in human cancer cell lines and xenograft models with various genetic backgrounds, either as a single agent or in combination with chemotherapeutic agents. RESULTS: GDC-0068 blocked Akt signaling both in cultured human cancer cell lines and in tumor xenograft models as evidenced by dose-dependent decrease in phosphorylation of downstream targets. Inhibition of Akt activity by GDC-0068 resulted in blockade of cell-cycle progression and reduced viability of cancer cell lines. Markers of Akt activation, including high-basal phospho-Akt levels, PTEN loss, and PIK3CA kinase domain mutations, correlate with sensitivity to GDC-0068. Isogenic PTEN knockout also sensitized MCF10A cells to GDC-0068. In multiple tumor xenograft models, oral administration of GDC-0068 resulted in antitumor activity ranging from tumor growth delay to regression. Consistent with the role of Akt in a survival pathway, GDC-0068 also enhanced antitumor activity of classic chemotherapeutic agents. CONCLUSIONS: GDC-0068 is a highly selective, orally bioavailable Akt kinase inhibitor that shows pharmacodynamic inhibition of Akt signaling and robust antitumor activity in human cancer cells in vitro and in vivo. Our preclinical data provide a strong mechanistic rationale to evaluate GDC-0068 in cancers with activated Akt signaling.
Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/metabolism , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Enzyme Activation/drug effects , Female , Humans , Male , Mice , Neoplasms/drug therapy , Signal Transduction/drug effects , Xenograft Model Antitumor AssaysABSTRACT
BACKGROUND: Evaluation of cancer biomarkers from blood could significantly enable biomarker assessment by providing a relatively non-invasive source of representative tumor material. Circulating Tumor Cells (CTCs) isolated from blood of metastatic cancer patients hold significant promise in this regard. METHODOLOGY/PRINCIPAL FINDINGS: Using spiked tumor-cells we evaluated CTC capture on different CTC technology platforms, including CellSearch and two biochip platforms, and used the isolated CTCs to develop and optimize assays for molecular characterization of CTCs. We report similar performance for the various platforms tested in capturing CTCs, and find that capture efficiency is dependent on the level of EpCAM expression. We demonstrate that captured CTCs are amenable to biomarker analyses such as HER2 status, qRT-PCR for breast cancer subtype markers, KRAS mutation detection, and EGFR staining by immunofluorescence (IF). We quantify cell surface expression of EGFR in metastatic lung cancer patient samples. In addition, we determined HER2 status by IF and FISH in CTCs from metastatic breast cancer patients. In the majority of patients (89%) we found concordance with HER2 status from patient tumor tissue, though in a subset of patients (11%), HER2 status in CTCs differed from that observed in the primary tumor. Surprisingly, we found CTC counts to be higher in ER+ patients in comparison to HER2+ and triple negative patients, which could be explained by low EpCAM expression and a more mesenchymal phenotype of tumors belonging to the basal-like molecular subtype of breast cancer. CONCLUSIONS/SIGNIFICANCE: Our data suggests that molecular characterization from captured CTCs is possible and can potentially provide real-time information on biomarker status. In this regard, CTCs hold significant promise as a source of tumor material to facilitate clinical biomarker evaluation. However, limitations exist from a purely EpCAM based capture system and addition of antibodies to mesenchymal markers could further improve CTC capture efficiency to enable routine biomarker analysis from CTCs.
Subject(s)
Gene Expression Regulation, Neoplastic , Neoplastic Cells, Circulating/metabolism , Receptor, ErbB-2/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Receptor, ErbB-2/metabolismABSTRACT
PURPOSE: The class I phosphatidylinositol 3' kinase (PI3K) plays a major role in proliferation and survival in a wide variety of human cancers. A key factor in successful development of drugs targeting this pathway is likely to be the identification of responsive patient populations with predictive diagnostic biomarkers. This study sought to identify candidate biomarkers of response to the selective PI3K inhibitor GDC-0941. EXPERIMENTAL DESIGN: We used a large panel of breast cancer cell lines and in vivo xenograft models to identify candidate predictive biomarkers for a selective inhibitor of class I PI3K that is currently in clinical development. The approach involved pharmacogenomic profiling as well as analysis of gene expression data sets from cells profiled at baseline or after GDC-0941 treatment. RESULTS: We found that models harboring mutations in PIK3CA, amplification of human epidermal growth factor receptor 2, or dual alterations in two pathway components were exquisitely sensitive to the antitumor effects of GDC-0941. We found that several models that do not harbor these alterations also showed sensitivity, suggesting a need for additional diagnostic markers. Gene expression studies identified a collection of genes whose expression was associated with in vitro sensitivity to GDC-0941, and expression of a subset of these genes was found to be intimately linked to signaling through the pathway. CONCLUSION: Pathway focused biomarkers and the gene expression signature described in this study may have utility in the identification of patients likely to benefit from therapy with a selective PI3K inhibitor.
Subject(s)
Breast Neoplasms/drug therapy , Disease Models, Animal , Indazoles/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Sulfonamides/pharmacology , Animals , Apoptosis/drug effects , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Female , Gene Expression Profiling , Humans , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mice , Mutation , Neoplasm Transplantation , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors , Predictive Value of Tests , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Sensitivity and Specificity , Xenograft Model Antitumor AssaysABSTRACT
The insulin-like growth factor-I receptor (IGF-IR) pathway is required for the maintenance of the transformed phenotype in neoplastic cells and hence has been the subject of intensive drug discovery efforts. A key aspect of successful clinical development of targeted therapies directed against IGF-IR will be identification of responsive patient populations. Toward that end, we have endeavored to identify predictive biomarkers of response to an anti-IGF-IR-targeting monoclonal antibody in preclinical models of breast and colorectal cancer. We find that levels of the IGF-IR itself may have predictive value in these tumor types and identify other gene expression predictors of in vitro response. Studies in breast cancer models suggest that IGF-IR expression is both correlated and functionally linked with estrogen receptor signaling and provide a basis for both patient stratification and rational combination therapy with antiestrogen-targeting agents. In addition, we find that levels of other components of the signaling pathway such as the adaptor proteins IRS1 and IRS2, as well as the ligand IGF-II, have predictive value and report on the development of a pathway-focused panel of diagnostic biomarkers that could be used to test these hypotheses during clinical development of IGF-IR-targeting therapies.
Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Receptor, IGF Type 1/antagonists & inhibitors , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Breast Neoplasms/metabolism , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Female , Humans , Immunohistochemistry , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , RNA, Small Interfering/metabolism , Receptor, IGF Type 1/metabolismABSTRACT
PURPOSE: The pathways underlying basal-like breast cancer are poorly understood, and as yet, there is no approved targeted therapy for this disease. We investigated the role of mitogen-activated protein kinase kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) inhibitors as targeted therapies for basal-like breast cancer. EXPERIMENTAL DESIGN: We used pharmacogenomic analysis of a large panel of breast cancer cell lines with detailed accompanying molecular information to identify molecular predictors of response to a potent and selective inhibitor of MEK and also to define molecular mechanisms underlying combined MEK and PI3K targeting in basal-like breast cancer. Hypotheses were confirmed by testing in multiple tumor xenograft models. RESULTS: We found that basal-like breast cancer models have an activated RAS-like transcriptional program and show greater sensitivity to a selective inhibitor of MEK compared with models representative of other breast cancer subtypes. We also showed that loss of PTEN is a negative predictor of response to MEK inhibition, that treatment with a selective MEK inhibitor caused up-regulation of PI3K pathway signaling, and that dual blockade of both PI3K and MEK/extracellular signal-regulated kinase signaling synergized to potently impair the growth of basal-like breast cancer models in vitro and in vivo. CONCLUSIONS: Our studies suggest that single-agent MEK inhibition is a promising therapeutic modality for basal-like breast cancers with intact PTEN, and also provide a basis for rational combination of MEK and PI3K inhibitors in basal-like cancers with both intact and deleted PTEN.