Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
BMC Genomics ; 22(1): 734, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34627148

ABSTRACT

BACKGROUND: The fungal pathogen Fusarium oxysporum f.sp. pisi (Fop) causes Fusarium wilt in peas. There are four races globally: 1, 2, 5 and 6 and all of these races are present in Australia. Molecular infection mechanisms have been studied in a few other F. oxysporum formae speciales; however, there has been no transcriptomic Fop-pea pathosystem study. RESULTS: A transcriptomic study was carried out to understand the molecular pathogenicity differences between the races. Transcriptome analysis at 20 days post-inoculation revealed differences in the differentially expressed genes (DEGs) in the Fop races potentially involved in fungal pathogenicity variations. Most of the DEGs in all the races were engaged in transportation, metabolism, oxidation-reduction, translation, biosynthetic processes, signal transduction, proteolysis, among others. Race 5 expressed the most virulence-associated genes. Most genes encoding for plant cell wall degrading enzymes, CAZymes and effector-like proteins were expressed in race 2. Race 6 expressed the least number of genes at this time point. CONCLUSION: Fop races deploy various factors and complex strategies to mitigate host defences to facilitate colonisation. This investigation provides an overview of the putative pathogenicity genes in different Fop races during the necrotrophic stage of infection. These genes need to be functionally characterised to confirm their pathogenicity/virulence roles and the race-specific genes can be further explored for molecular characterisation.


Subject(s)
Fusarium , Fusarium/genetics , Pisum sativum , Plant Diseases/genetics , Transcriptome , Virulence
2.
Physiol Mol Biol Plants ; 27(3): 563-576, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33854284

ABSTRACT

Aluminium (Al) toxicity in acid soils inhibits root elongation and development causing reduced water and nutrient uptake by the root system, which ultimately reduces the crop yield. This study established a high throughput hydroponics screening method and identified Al toxicity tolerant accessions from a set of putative acid tolerant lentil accessions. Four-day old lentil seedlings were screened at 5 µM Al (pH 4.5) for three days in hydroponics. Measured pre and post treatment root length was used to calculate the change in root length (ΔRL) and relative root growth (RRG%). A subset of 15 selected accessions were used for acid soil Al screening, and histochemical and biochemical analyses. Al treatment significantly reduced the ΔRL with an average of 32.3% reduction observed compared to the control. Approximately 1/4 of the focused identification of germplasm strategy accessions showed higher RRG% than the known tolerant line ILL6002 which has the RRG% of 37.9. Very tolerant accessions with RRG% of > 52% were observed in 5.4% of the total accessions. A selection index calculated based on all root traits in acid soil screening was highest in AGG70137 (636.7) whereas it was lowest in Precoz (76.3). All histochemical and biochemical analyses supported the hydroponic results as Northfield, AGG70137, AGG70561 and AGG70281 showed consistent good performance. The identified new sources of Al tolerant lentil germplasm can be used to breed new Al toxicity tolerant lentil varieties. The established high throughput hydroponic method can be routinely used for screening lentil breeding populations for Al toxicity tolerance. Future recommendations could include evaluation of the yield potential of the selected subset of accessions under acid soil field conditions, and the screening of a wider range of landrace accessions originating from areas with Al toxic acid soils.

3.
BMC Genomics ; 21(1): 248, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32197583

ABSTRACT

BACKGROUND: The Fusarium oxysporum species complex (FOSC) is a ubiquitous group of fungal species readily isolated from agroecosystem and natural ecosystem soils which includes important plant and human pathogens. Genetic relatedness within the complex has been studied by sequencing either the genes or the barcoding gene regions within those genes. Phylogenetic analyses have demonstrated a great deal of diversity which is reflected in the differing number of clades identified: three, five and eight. Genetic limitation within the species in the complex has been studied through Genealogical Concordance Phylogenetic Species Recognition (GCPSR) analyses with varying number of phylogenetic 'species' identified ranging from two to 21. Such differing views have continued to confuse users of these taxonomies. RESULTS: The phylogenetic relationships between Australian F. oxysporum isolates from both natural and agricultural ecosystems were determined using three datasets: whole genome, nuclear genes, and mitochondrial genome sequences. The phylogenies were concordant except for three isolates. There were three concordant clades from all the phylogenies suggesting similar evolutionary history for mitochondrial genome and nuclear genes for the isolates in these three clades. Applying a multispecies coalescent (MSC) model on the eight single copy nuclear protein coding genes from the nuclear gene dataset concluded that the three concordant clades correspond to three phylogenetic species within the FOSC. There was 100% posterior probability support for the formation of three species within the FOSC. This is the first report of using the MSC model to estimate species within the F. oxysporum species complex. The findings from this study were compared with previously published phylogenetics and species delimitation studies. CONCLUSION: Phylogenetic analyses using three different gene datasets from Australian F. oxysporum isolates have all supported the formation of three major clades which delineated into three species. Species 2 (Clade 3) may be called F. oxysporum as it contains the neotype for F. oxysporum.


Subject(s)
Fusarium/classification , Whole Genome Sequencing/statistics & numerical data , Cell Nucleus/genetics , Evolution, Molecular , Fusarium/genetics , Fusarium/isolation & purification , Genome, Fungal , Mitochondria/genetics , Phylogeny
4.
Plant Biotechnol J ; 16(12): 2088-2101, 2018 12.
Article in English | MEDLINE | ID: mdl-29734518

ABSTRACT

Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation.


Subject(s)
Gene Editing/methods , Genes, Plant/genetics , Triticum/genetics , Zinc Fingers/genetics , DNA Repair/genetics , Genome, Plant/genetics , Polyploidy
5.
PLoS One ; 19(1): e0297341, 2024.
Article in English | MEDLINE | ID: mdl-38236905

ABSTRACT

Queensland fruit fly, Bactrocera tryoni, Froggatt (Diptera: Tephritidae) is Australia's primary fruit fly pest species. Integrated Pest Management (IPM) has been adopted to sustainably manage this polyphagous species with a reduced reliance on chemical pesticides. At present, control measures are aimed at the adult stages of the fly, with no IPM tools available to target larvae once they exit the fruit and pupate in the soil. The use of entomopathogenic fungi may provide a biologically-based control method for these soil-dwelling life stages. The effectiveness of fungal isolates of Metarhizium and Beauveria species were screened under laboratory conditions against Queensland fruit fly. In bioassays, 16 isolates were screened for pathogenicity following exposure of third-instar larvae to inoculum-treated vermiculite used as a pupation substrate. The best performing Metarhizium sp. isolate achieved an average percentage mortality of 93%, whereas the best performing Beauveria isolate was less efficient, with an average mortality of 36%. Susceptibility to infection during different development stages was investigated using selected fungal isolates, with the aim of assessing all soil-dwelling life stages from third-instar larvae to final pupal stages and emerging adults. Overall, the third larval instar was the most susceptible stage, with average mortalities between 51-98% depending on the isolate tested. Moreover, adult mortality was significantly higher when exposed to inoculum during pupal eclosion, with mortalities between 56-76% observed within the first nine days post-emergence. The effect of temperature and inoculum concentration on insect mortality were assessed independently with candidate isolates to determine the optimum temperature range for fungal biological control activity and the rate required for application in field conditions. Metarhizium spp. are highly efficacious at killing Queensland fruit fly and have potential for use as biopesticides to target soil-dwelling and other life stages of B. tryoni.


Subject(s)
Beauveria , Metarhizium , Tephritidae , Animals , Soil , Larva , Pest Control, Biological/methods , Drosophila , Pupa
6.
BMC Genet ; 13: 53, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22747657

ABSTRACT

BACKGROUND: Variation of microorganism communities in the rumen of cattle (Bos taurus) is of great interest because of possible links to economically or environmentally important traits, such as feed conversion efficiency or methane emission levels. The resolution of studies investigating this variation may be improved by utilizing untargeted massively parallel sequencing (MPS), that is, sequencing without targeted amplification of genes. The objective of this study was to develop a method which used MPS to generate "rumen metagenome profiles", and to investigate if these profiles were repeatable among samples taken from the same cow. Given faecal samples are much easier to obtain than rumen fluid samples; we also investigated whether rumen metagenome profiles were predictive of faecal metagenome profiles. RESULTS: Rather than focusing on individual organisms within the rumen, our method used MPS data to generate quantitative rumen micro-biome profiles, regardless of taxonomic classifications. The method requires a previously assembled reference metagenome. A number of such reference metagenomes were considered, including two rumen derived metagenomes, a human faecal microflora metagenome and a reference metagenome made up of publically available prokaryote sequences. Sequence reads from each test sample were aligned to these references. The "rumen metagenome profile" was generated from the number of the reads that aligned to each contig in the database. We used this method to test the hypothesis that rumen fluid microbial community profiles vary more between cows than within multiple samples from the same cow. Rumen fluid samples were taken from three cows, at three locations within the rumen. DNA from the samples was sequenced on the Illumina GAIIx. When the reads were aligned to a rumen metagenome reference, the rumen metagenome profiles were repeatable (P < 0.00001) by cow regardless of location of sampling rumen fluid. The repeatability was estimated at 9%, albeit with a high standard error, reflecting the small number of animals in the study. Finally, we compared rumen microbial profiles to faecal microbial profiles. Our hypothesis, that there would be a stronger correlation between faeces and rumen fluid from the same cow than between faeces and rumen fluid from different cows, was not supported by our data (with much greater significance of rumen versus faeces effect than animal effect in mixed linear model). CONCLUSIONS: We have presented a simple and high throughput method of metagenome profiling to assess the similarity of whole metagenomes, and illustrated its use on two novel datasets. This method utilises widely used freeware. The method should be useful in the exploration and comparison of metagenomes.


Subject(s)
Cattle/microbiology , High-Throughput Nucleotide Sequencing/methods , Metagenome , Rumen/microbiology , Animals , Feces/microbiology , Transcriptome
7.
Viruses ; 14(12)2022 12 11.
Article in English | MEDLINE | ID: mdl-36560765

ABSTRACT

Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.


Subject(s)
Arbovirus Infections , Arboviruses , Culicidae , Animals , Humans , Arboviruses/genetics , Phylogeny , Mosquito Vectors , Victoria
8.
J Fungi (Basel) ; 8(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36012871

ABSTRACT

Ascochyta Blight (AB) is a major disease of many cool-season legumes globally. In field pea, three fungal pathogens have been identified to be responsible for this disease in Australia, namely Peyronellaea pinodes, Peyronellaea pinodella and Phoma koolunga. Limited genomic resources for these pathogens have been generated, which has hampered the implementation of effective management strategies and breeding for resistant cultivars. Using Oxford Nanopore long-read sequencing, we report the first high-quality, fully annotated, near-chromosome-level nuclear and mitochondrial genome assemblies for 18 isolates from the Australian AB complex. Comparative genome analysis was performed to elucidate the differences and similarities between species and isolates using phylogenetic relationships and functional diversity. Our data indicated that P. pinodella and P. koolunga are heterothallic, while P. pinodes is homothallic. More homology and orthologous gene clusters are shared between P. pinodes and P. pinodella compared to P. koolunga. The analysis of the repetitive DNA content showed differences in the transposable repeat composition in the genomes and their expression in the transcriptomes. Significant repeat expansion in P. koolunga's genome was seen, with strong repeat-induced point mutation (RIP) activity being evident. Phylogenetic analysis revealed that genetic diversity can be exploited for species marker development. This study provided the much-needed genetic resources and characterization of the AB species to further drive research in key areas such as disease epidemiology and host-pathogen interactions.

9.
J Bacteriol ; 193(3): 785-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21131493

ABSTRACT

Here, we present the genome of a strain of Erwinia amylovora, the fire blight pathogen, with pathogenicity restricted to Rubus spp. Comparative genomics of ATCC BAA-2158 with E. amylovora strains from non-Rubus hosts identified significant genetic differences but support the inclusion of this strain within the species E. amylovora.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Erwinia amylovora/genetics , Genome, Bacterial , Erwinia amylovora/isolation & purification , Molecular Sequence Data , Plant Diseases/microbiology , Rosaceae/microbiology , Sequence Analysis, DNA
10.
Microorganisms ; 9(6)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199453

ABSTRACT

Research into the bacterial component of the seed microbiome has been intensifying, with the aim of understanding its structure and potential for exploitation. We previously studied the intergenerational seed microbiome of one cultivar of perennial ryegrass with and without one strain of the commercially deployed fungal endophyte Epichloë festucae var. lolii. The work described here expands on our previous study by exploring the bacterial seed microbiome of different commercial cultivar/Epichloë festucae var. lolii combinations in collections of single seeds from the harvest year 2016. In this dataset, a cultivar effect could be seen between the seed microbiomes from cultivars Alto and Trojan. The bacterial component of the seed microbiome from pooled seeds from a single cultivar/E. festucae var. lolii combination harvested from 13 seed production farms around Canterbury in the year 2018 was also studied. This dataset allows the effect of different production locations on the bacterial seed microbiome to be examined. By comparing the two sets of data, bacteria from the genera Pantoea, Pseudomonas, Duganella, Massilia, and an unknown Enterobacteriaceae were observed to be in common. This core bacterial microbiome was stable over time but could be affected by supplemental taxa derived from the growth environment of the parental plant; differing microbiomes were seen between different seed production farms. By comparison to a collection of bacterial isolates, we demonstrated that many of the members of the core microbiome were culturable. This allows for the possibility of exploiting these microbes in the future.

11.
J Fungi (Basel) ; 7(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652636

ABSTRACT

The Podosphaera tridactyla species complex is highly variable morphologically and causes powdery mildew on a wide range of Prunus species, including stone fruit. A taxonomic revision of the Po. tridactyla species complex in 2020 identified 12 species, seven of which were newly characterised. In order to clarify which species of this complex are present in Australia, next generation sequencing was used to isolate the fungal ITS+28S and host matK chloroplast gene regions from 56 powdery mildew specimens of stone fruit and ornamental Prunus species accessioned as Po. tridactyla or Oidium sp. in Australian reference collections. The specimens were collected in Australia, Switzerland, Italy and Korea and were collected from 1953 to 2018. Host species were confirmed using matK phylogenetic analysis, which identified that four had been misidentified as Prunus but were actually Malusprunifolia. Podosphaera species were identified using ITS+28S phylogenetic analysis, recognising three Podosphaera species on stone fruit and related ornamental Prunus hosts in Australia. These were Po.pannosa, the rose powdery mildew, and two species in the Po. tridactyla species complex: Po. ampla, which was the predominant species, and a previously unidentified species from peach, which we describe here as Po. cunningtonii.

12.
Virol J ; 7: 308, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-21062506

ABSTRACT

BACKGROUND: With the exception of the oyster herpesvirus OsHV-1, all herpesviruses characterized thus far infect only vertebrates. Some cause neurological disease in their hosts, while others replicate or become latent in neurological tissues. Recently a new herpesvirus causing ganglioneuritis in abalone, a gastropod, was discovered. Molecular analysis of new herpesviruses, such as this one and others, still to be discovered in invertebrates, will provide insight into the evolution of herpesviruses. RESULTS: We sequenced the genome of a neurotropic virus linked to a fatal ganglioneuritis devastating parts of a valuable wild abalone fishery in Australia. We show that the newly identified virus forms part of an ancient clade with its nearest relatives being a herpesvirus infecting bivalves (oyster) and, unexpectedly, one we identified, from published data, apparently integrated within the genome of amphioxus, an invertebrate chordate. Predicted protein sequences from the abalone virus genome have significant similarity to several herpesvirus proteins including the DNA packaging ATPase subunit of (putative) terminase and DNA polymerase. Conservation of amino acid sequences in the terminase across all herpesviruses and phylogenetic analysis using the DNA polymerase and terminase proteins demonstrate that the herpesviruses infecting the molluscs, oyster and abalone, are distantly related. The terminase and polymerase protein sequences from the putative amphioxus herpesvirus share more sequence similarity with those of the mollusc viruses than with sequences from any of the vertebrate herpesviruses analysed. CONCLUSIONS: A family of mollusc herpesviruses, Malacoherpesviridae, that was based on a single virus infecting oyster can now be further established by including a distantly related herpesvirus infecting abalone, which, like many vertebrate viruses is neurotropic. The genome of Branchiostoma floridae (amphioxus) provides evidence for the existence of a herpesvirus associated with this invertebrate chordate. The virus which likely infected amphioxus is, by molecular phylogenetic analysis, more closely related to the other 2 invertebrate viruses than to herpesviruses infecting vertebrates (ie chordates).


Subject(s)
Chordata/virology , DNA, Viral/genetics , Gastropoda/virology , Genome, Viral , Herpesviridae/classification , Herpesviridae/genetics , Ostreidae/virology , Amino Acid Sequence , Animals , Australia , DNA-Directed DNA Polymerase/genetics , Endodeoxyribonucleases/genetics , Herpesviridae/isolation & purification , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology , Viral Proteins/genetics
13.
PLoS One ; 15(5): e0232535, 2020.
Article in English | MEDLINE | ID: mdl-32401807

ABSTRACT

The purpose of this study was to identify a reliable DNA extraction protocol to use on 25-year-old powdery mildew specimens from the reference collection VPRI in order to produce high quality sequences suitable to address taxonomic phylogenetic questions. We tested 13 extraction protocols and two library preparation kits and found the combination of the E.Z.N.A.® Forensic DNA kit for DNA extraction and the NuGen Ovation® Ultralow System library preparation kit was the most suitable for this purpose.


Subject(s)
Ascomycota/genetics , DNA, Fungal/isolation & purification , Sequence Analysis, DNA/methods , DNA, Fungal/genetics , Malus/microbiology , Plant Diseases/microbiology , Polymerase Chain Reaction
14.
Sci Rep ; 9(1): 19398, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852942

ABSTRACT

The ability to identify all the viruses within a sample makes metatranscriptomic sequencing an attractive tool to screen mosquitoes for arboviruses. Practical application of this technique, however, requires a clear understanding of its analytical sensitivity and specificity. To assess this, five dilutions (1:1, 1:20, 1:400, 1:8,000 and 1:160,000) of Ross River virus (RRV) and Umatilla virus (UMAV) isolates were spiked into subsamples of a pool of 100 Culex australicus mosquitoes. The 1:1 dilution represented the viral load of one RRV-infected mosquito in a pool of 100 mosquitoes. The subsamples underwent nucleic acid extraction, mosquito-specific ribosomal RNA depletion, and Illumina HiSeq sequencing. The viral load of the subsamples was also measured using reverse transcription droplet digital PCR (RT-ddPCR) and quantitative PCR (RT-qPCR). Metatranscriptomic sequencing detected both RRV and UMAV in the 1:1, 1:20 and 1:400 subsamples. A high specificity was achieved, with 100% of RRV and 99.6% of UMAV assembled contigs correctly identified. Metatranscriptomic sequencing was not as sensitive as RT-qPCR or RT-ddPCR; however, it recovered whole genome information and detected 19 other viruses, including four first detections for Australia. These findings will assist arbovirus surveillance programs in utilising metatranscriptomics in routine surveillance activities to enhance arbovirus detection.


Subject(s)
Arboviruses/genetics , Culicidae/virology , Metagenome/genetics , Transcriptome/genetics , Animals , Arboviruses/isolation & purification , Australia/epidemiology , Culex/genetics , Culex/virology , Culicidae/genetics , Humans , Mosquito Vectors/genetics , Mosquito Vectors/virology , RNA, Viral/genetics , RNA, Viral/isolation & purification , Ross River virus/genetics , Ross River virus/isolation & purification , Sensitivity and Specificity
15.
Microorganisms ; 7(11)2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31766147

ABSTRACT

Epoxy-janthitrems are a class of indole diterpenes with structural similarity to lolitrem B. Two taxa of asexual Epichloë endophytes have been reported to produce epoxy-janthitrems, LpTG-3 (Lolium perenne Taxonomic Group 3; e.g., NEA12) and LpTG-4 (e.g., E1). Epichloë epoxy-janthitrems are not well understood, the biosynthetic pathway and associated gene complement have not been described and while the literature suggests they are associated with superior protection against pasture insect pests and are tremorgenic in grazing mammals, these properties have not been confirmed using isolated and purified compounds. Whole genome sequence analysis was used to identify candidate genes for epoxy-janthitrem biosynthesis that are unique to epoxy-janthitrem producing strains of Epichloë. A gene, jtmD, was identified with homology to aromatic prenyl transferases involved in synthesis of indole diterpenes. The location of the epoxy-janthitrem biosynthesis gene cluster (JTM locus) was determined in the assembled nuclear genomes of NEA12 and E1. The JTM locus contains cluster 1 and cluster 2 of the lolitrem B biosynthesis gene cluster (LTM locus), as well as four genes jtmD, jtmO, jtm01, and jtm02 that are unique to Epichloë spp. that produce epoxy-janthitrems. Expression of each of the genes identified was confirmed using transcriptome analysis of perennial ryegrass-NEA12 and perennial ryegrass-E1 symbiota. Sequence analysis confirmed the genes are functionally similar to those involved in biosynthesis of related indole diterpene compounds. RNAi silencing of jtmD and in planta assessment in host-endophyte associations confirms the role of jtmD in epoxy-janthitrem production. Using LCMS/MS technologies, a biosynthetic pathway for the production of epoxy-janthitrems I-IV in Epichloë endophytes is proposed.

16.
J Virol Methods ; 249: 79-84, 2017 11.
Article in English | MEDLINE | ID: mdl-28855093

ABSTRACT

With its small size and low cost, the hand-held MinION sequencer is a powerful tool for in-field surveillance. Using a metagenomic approach, it allows non-targeted detection of viruses in a sample within a few hours. This study aimed to determine the ability of the MinION to metagenomically detect and characterise a virus from an infected mosquito. RNA was extracted from an Aedes notoscriptus mosquito infected with Ross River virus (RRV), converted into cDNA and sequenced on the MinION. Bioinformatic analysis of the MinION reads led to detection of full-length RRV, with reads of up to 2.5kb contributing to the assembly. The cDNA was also sequenced on the MiSeq sequencer, and both platforms recovered the RRV genome with >98% accuracy. This proof of concept study demonstrates the metagenomic detection of an arbovirus, using the MinION, directly from a mosquito with minimal sample purification.


Subject(s)
Aedes/virology , High-Throughput Nucleotide Sequencing/instrumentation , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Ross River virus/genetics , Ross River virus/isolation & purification , Animals , Computational Biology , DNA, Complementary , Genome, Viral , High-Throughput Nucleotide Sequencing/economics , Nanopores , Proof of Concept Study , Sequence Analysis, DNA
17.
PLoS One ; 8(4): e61811, 2013.
Article in English | MEDLINE | ID: mdl-23637911

ABSTRACT

Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system.


Subject(s)
Biodegradation, Environmental , Gene Library , Metagenomics , Petroleum , Phenol/metabolism , Sewage/microbiology , Bioreactors/microbiology , Catechol 2,3-Dioxygenase/genetics , Catechol 2,3-Dioxygenase/metabolism , Cloning, Molecular , Contig Mapping , DNA, Bacterial/genetics , Genome, Bacterial , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Annotation , Molecular Sequence Data , Open Reading Frames , Phylogeny , Wastewater/microbiology
18.
AMB Express ; 2(1): 18, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22452812

ABSTRACT

In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

19.
Fungal Genet Biol ; 43(7): 465-75, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16554176

ABSTRACT

Large-scale gene discovery has been performed for the grass fungal endophytes Neotyphodium coenophialum, Neotyphodium lolii, and Epichloë festucae. The resulting sequences have been annotated by comparison with public DNA and protein sequence databases and using intermediate gene ontology annotation tools. Endophyte sequences have also been analysed for the presence of simple sequence repeat and single nucleotide polymorphism molecular genetic markers. Sequences and annotation are maintained within a MySQL database that may be queried using a custom web interface. Two cDNA-based microarrays have been generated from this genome resource. They permit the interrogation of 3806 Neotyphodium genes (Nchip microarray), and 4195 Neotyphodium and 920 Epichloë genes (EndoChip microarray), respectively. These microarrays provide tools for high-throughput transcriptome analysis, including genome-specific gene expression studies, profiling of novel endophyte genes, and investigation of the host grass-symbiont interaction. Comparative transcriptome analysis in Neotyphodium and Epichloë was performed.


Subject(s)
Gene Expression Profiling , Gene Expression , Hypocreales/genetics , RNA, Fungal/analysis , RNA, Messenger/analysis , Transcription, Genetic , Computational Biology , Culture Media , Expressed Sequence Tags , Gene Library , Genes, Fungal , Hypocreales/growth & development , Oligonucleotide Array Sequence Analysis , Poaceae/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL