Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 98(6): 1092-1100, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27236921

ABSTRACT

Bacteremia (bacterial bloodstream infection) is a major cause of illness and death in sub-Saharan Africa but little is known about the role of human genetics in susceptibility. We conducted a genome-wide association study of bacteremia susceptibility in more than 5,000 Kenyan children as part of the Wellcome Trust Case Control Consortium 2 (WTCCC2). Both the blood-culture-proven bacteremia case subjects and healthy infants as controls were recruited from Kilifi, on the east coast of Kenya. Streptococcus pneumoniae is the most common cause of bacteremia in Kilifi and was thus the focus of this study. We identified an association between polymorphisms in a long intergenic non-coding RNA (lincRNA) gene (AC011288.2) and pneumococcal bacteremia and replicated the results in the same population (p combined = 1.69 × 10(-9); OR = 2.47, 95% CI = 1.84-3.31). The susceptibility allele is African specific, derived rather than ancestral, and occurs at low frequency (2.7% in control subjects and 6.4% in case subjects). Our further studies showed AC011288.2 expression only in neutrophils, a cell type that is known to play a major role in pneumococcal clearance. Identification of this novel association will further focus research on the role of lincRNAs in human infectious disease.


Subject(s)
Bacteremia/genetics , Pneumonia, Pneumococcal/genetics , Polymorphism, Genetic/genetics , RNA, Long Noncoding/genetics , Streptococcus pneumoniae/genetics , Adolescent , Bacteremia/microbiology , Bacteremia/pathology , Case-Control Studies , Child , Child, Preschool , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/pathology , Risk Factors
2.
PLoS Genet ; 11(6): e1005272, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26106896

ABSTRACT

Identification of candidate causal variants in regions associated with risk of common diseases is complicated by linkage disequilibrium (LD) and multiple association signals. Nonetheless, accurate maps of these variants are needed, both to fully exploit detailed cell specific chromatin annotation data to highlight disease causal mechanisms and cells, and for design of the functional studies that will ultimately be required to confirm causal mechanisms. We adapted a Bayesian evolutionary stochastic search algorithm to the fine mapping problem, and demonstrated its improved performance over conventional stepwise and regularised regression through simulation studies. We then applied it to fine map the established multiple sclerosis (MS) and type 1 diabetes (T1D) associations in the IL-2RA (CD25) gene region. For T1D, both stepwise and stochastic search approaches identified four T1D association signals, with the major effect tagged by the single nucleotide polymorphism, rs12722496. In contrast, for MS, the stochastic search found two distinct competing models: a single candidate causal variant, tagged by rs2104286 and reported previously using stepwise analysis; and a more complex model with two association signals, one of which was tagged by the major T1D associated rs12722496 and the other by rs56382813. There is low to moderate LD between rs2104286 and both rs12722496 and rs56382813 (r2 ≃ 0:3) and our two SNP model could not be recovered through a forward stepwise search after conditioning on rs2104286. Both signals in the two variant model for MS affect CD25 expression on distinct subpopulations of CD4+ T cells, which are key cells in the autoimmune process. The results support a shared causal variant for T1D and MS. Our study illustrates the benefit of using a purposely designed model search strategy for fine mapping and the advantage of combining disease and protein expression data.


Subject(s)
Bayes Theorem , Chromosome Mapping/methods , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , Multiple Sclerosis/genetics , Algorithms , Chromosome Mapping/statistics & numerical data , Haplotypes , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Stochastic Processes
3.
Hum Mol Genet ; 23(7): 1916-22, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24234648

ABSTRACT

Genome-wide association studies have been successful in identifying common variants that influence the susceptibility to complex diseases. From these studies, it has emerged that there is substantial overlap in susceptibility loci between diseases. In line with those findings, we hypothesized that shared genetic pathways may exist between multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). While both diseases may have inflammatory and neurodegenerative features, epidemiological studies have indicated an increased co-occurrence within individuals and families. To this purpose, we combined genome-wide data from 4088 MS patients, 3762 ALS patients and 12 030 healthy control individuals in whom 5 440 446 single-nucleotide polymorphisms (SNPs) were successfully genotyped or imputed. We tested these SNPs for the excess association shared between MS and ALS and also explored whether polygenic models of SNPs below genome-wide significance could explain some of the observed trait variance between diseases. Genome-wide association meta-analysis of SNPs as well as polygenic analyses fails to provide evidence in favor of an overlap in genetic susceptibility between MS and ALS. Hence, our findings do not support a shared genetic background of common risk variants in MS and ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/genetics , Multiple Sclerosis/epidemiology , Multiple Sclerosis/genetics , Comorbidity , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide
4.
Brain ; 138(Pt 3): 632-43, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25616667

ABSTRACT

Immunological hallmarks of multiple sclerosis include the production of antibodies in the central nervous system, expressed as presence of oligoclonal bands and/or an increased immunoglobulin G index-the level of immunoglobulin G in the cerebrospinal fluid compared to serum. However, the underlying differences between oligoclonal band-positive and -negative patients with multiple sclerosis and reasons for variability in immunoglobulin G index are not known. To identify genetic factors influencing the variation in the antibody levels in the cerebrospinal fluid in multiple sclerosis, we have performed a genome-wide association screen in patients collected from nine countries for two traits, presence or absence of oligoclonal bands (n = 3026) and immunoglobulin G index levels (n = 938), followed by a replication in 3891 additional patients. We replicate previously suggested association signals for oligoclonal band status in the major histocompatibility complex region for the rs9271640*A-rs6457617*G haplotype, correlated with HLA-DRB1*1501, and rs34083746*G, correlated with HLA-DQA1*0301 (P comparing two haplotypes = 8.88 × 10(-16)). Furthermore, we identify a novel association signal of rs9807334, near the ELAC1/SMAD4 genes, for oligoclonal band status (P = 8.45 × 10(-7)). The previously reported association of the immunoglobulin heavy chain locus with immunoglobulin G index reaches strong evidence for association in this data set (P = 3.79 × 10(-37)). We identify two novel associations in the major histocompatibility complex region with immunoglobulin G index: the rs9271640*A-rs6457617*G haplotype (P = 1.59 × 10(-22)), shared with oligoclonal band status, and an additional independent effect of rs6457617*G (P = 3.68 × 10(-6)). Variants identified in this study account for up to 2-fold differences in the odds of being oligoclonal band positive and 7.75% of the variation in immunoglobulin G index. Both traits are associated with clinical features of disease such as female gender, age at onset and severity. This is the largest study population so far investigated for the genetic influence on antibody levels in the cerebrospinal fluid in multiple sclerosis, including 6950 patients. We confirm that genetic factors underlie these antibody levels and identify both the major histocompatibility complex and immunoglobulin heavy chain region as major determinants.


Subject(s)
Genetic Variation , Immunoglobulin G/cerebrospinal fluid , Major Histocompatibility Complex/genetics , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Europe , Female , Genetic Association Studies , Humans , Immunoglobulin G/blood , Male , Middle Aged , Multiple Sclerosis/blood , Oligoclonal Bands/blood , Oligoclonal Bands/cerebrospinal fluid , Severity of Illness Index , Smad4 Protein/genetics , Tumor Suppressor Proteins/genetics , Young Adult
5.
Nat Genet ; 39(9): 1083-91, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17660817

ABSTRACT

Multiple sclerosis is a demyelinating neurodegenerative disease with a strong genetic component. Previous genetic risk studies have failed to identify consistently linked regions or genes outside of the major histocompatibility complex on chromosome 6p. We describe allelic association of a polymorphism in the gene encoding the interleukin 7 receptor alpha chain (IL7R) as a significant risk factor for multiple sclerosis in four independent family-based or case-control data sets (overall P = 2.9 x 10(-7)). Further, the likely causal SNP, rs6897932, located within the alternatively spliced exon 6 of IL7R, has a functional effect on gene expression. The SNP influences the amount of soluble and membrane-bound isoforms of the protein by putatively disrupting an exonic splicing silencer.


Subject(s)
Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide , Receptors, Interleukin-7/genetics , Adult , Alternative Splicing , Animals , Case-Control Studies , Cell Line, Tumor , Chromosome Mapping , Europe , Family Health , Female , Gene Expression , Gene Frequency , Genetic Predisposition to Disease , Genotype , Haplotypes , HeLa Cells , Humans , Linkage Disequilibrium , Male , Middle Aged , Odds Ratio , Transfection , United States
6.
Brain ; 136(Pt 2): 392-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23413260

ABSTRACT

Carriers of mutations in the glucocerebrosidase gene (GBA) are at increased risk of developing Parkinson's disease. The frequency of GBA mutations in unselected Parkinson's disease populations has not been established. Furthermore, no previous studies have investigated the influence of GBA mutations on the natural history of Parkinson's disease using prospective follow-up. We studied DNA from 262 cases who had been recruited at diagnosis into one of two independent community-based incidence studies of Parkinson's disease. In 121 cases, longitudinal data regarding progression of motor disability and cognitive function were derived from follow-up assessments conducted every 18 months for a median of 71 months. Sequencing of the GBA was performed after two-stage polymerase chain reaction amplification. The carrier frequency of genetic variants in GBA was determined. Baseline demographic and clinical variables were compared between cases who were either GBA mutation carriers, polymorphism carriers or wild-type homozygotes. Cox regression analysis was used to model progression to major motor (Hoehn and Yahr stage 3), and cognitive (dementia) end-points in cases followed longitudinally. We show that in a representative, unselected UK Parkinson's disease population, GBA mutations are present at a frequency of 3.5%. This is higher than the prevalence of other genetic mutations currently associated with Parkinson's disease and indicates that GBA mutations make an important contribution to Parkinson's disease encountered in the community setting. Baseline clinical characteristics did not differ significantly between cases with and without GBA sequence variants. However, the hazard ratio for progression both to dementia (5.7, P = 0.003) and Hoehn and Yahr stage 3 (4.2, P = 0.003) were significantly greater in GBA mutation carriers. We also show that carriers of polymorphisms in GBA which are not generally considered to increase Parkinson's disease risk are at significantly increased risk of progression to Hoehn and Yahr stage 3 (3.2, P = 0.004). Our results indicate that genetic variation in GBA has an important impact on the natural history of Parkinson's disease. To our knowledge, this is the first time a genetic locus has been shown to influence motor progression in Parkinson's disease. If confirmed in further studies, this may indicate that GBA mutation status could be used as a prognostic marker in Parkinson's disease. Elucidation of the molecular mechanisms that underlie this effect will further our understanding of the pathogenesis of the disease and may in turn suggest novel therapeutic strategies.


Subject(s)
Glucosylceramidase/genetics , Mutation/genetics , Parkinson Disease/enzymology , Parkinson Disease/genetics , Residence Characteristics , Aged , Cohort Studies , Female , Follow-Up Studies , Genetic Variation/genetics , Humans , Incidence , Male , Middle Aged , Parkinson Disease/epidemiology , Population Surveillance/methods , Prospective Studies
7.
Hum Mol Genet ; 20(17): 3517-24, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21653641

ABSTRACT

Multiple sclerosis (MS) is a neurodegenerative, autoimmune disease of the central nervous system, and numerous studies have shown that MS has a strong genetic component. Independent studies to identify MS-associated genes have often indicated multiple signals in physically close genomic regions, although by their proximity it is not always clear if these data indicate redundant or truly independent genetic signals. Recently, three MS study samples were genotyped in parallel using an Illumina Custom BeadChip. These revealed multiple significantly associated single-nucleotide polymorphisms within a 600 kb stretch on chromosome 16p13. Here we present a detailed analysis of variants in this region that clarifies the independent nature of these signals. The linkage disequilibrium patterns in the region and logistic regression analysis of the associations suggest that this region likely harbors three independent MS disease loci. Further, we examined cis-expression QTLs, histone modifications and CCCTC-binding factor (CTCF) binding data in the region. We also tested for correlated expression of the genes from the region using whole-genome expression array data from lymphoblastoid cell lines. Three of the genes show expression correlations across loci. Furthermore, in the GM12878 lymphoblastoid cell line, these three genes are in a continuous region devoid of H3K27 methylation, suggesting an open chromatin configuration. This region likely only contributes minimal risk to MS; however, investigation of this region will undoubtedly provide insight into the functional mechanisms of these genes. These data highlight the importance of taking a closer look at the expression and function of chromosome 16p13 in the pathogenesis of MS.


Subject(s)
Chromosomes, Human, Pair 16/genetics , Lectins, C-Type/genetics , Monosaccharide Transport Proteins/genetics , Multiple Sclerosis/genetics , Suppressor of Cytokine Signaling Proteins/genetics , CCCTC-Binding Factor , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genotype , Humans , Linkage Disequilibrium/genetics , Logistic Models , Male , Quantitative Trait Loci/genetics , Repressor Proteins/genetics , Suppressor of Cytokine Signaling 1 Protein
8.
Hum Mol Genet ; 20(2): 345-53, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21044948

ABSTRACT

We performed a genome-wide association study (GWAS) in 1705 Parkinson's disease (PD) UK patients and 5175 UK controls, the largest sample size so far for a PD GWAS. Replication was attempted in an additional cohort of 1039 French PD cases and 1984 controls for the 27 regions showing the strongest evidence of association (P< 10(-4)). We replicated published associations in the 4q22/SNCA and 17q21/MAPT chromosome regions (P< 10(-10)) and found evidence for an additional independent association in 4q22/SNCA. A detailed analysis of the haplotype structure at 17q21 showed that there are three separate risk groups within this region. We found weak but consistent evidence of association for common variants located in three previously published associated regions (4p15/BST1, 4p16/GAK and 1q32/PARK16). We found no support for the previously reported SNP association in 12q12/LRRK2. We also found an association of the two SNPs in 4q22/SNCA with the age of onset of the disease.


Subject(s)
Chromosomes, Human, Pair 17/genetics , Genetic Predisposition to Disease , Parkinson Disease/genetics , alpha-Synuclein/genetics , Age of Onset , Case-Control Studies , Genome-Wide Association Study , Haplotypes , Humans , Polymorphism, Single Nucleotide , Sample Size , White People
9.
Am J Hum Genet ; 86(4): 621-5, 2010 Apr 09.
Article in English | MEDLINE | ID: mdl-20362272

ABSTRACT

It is well established that the risk of developing multiple sclerosis is substantially increased in the relatives of affected individuals and that most of this increase is genetically determined. The observed pattern of familial recurrence risk has long suggested that multiple variants are involved, but it has proven difficult to identify individual risk variants and little has been established about the genetic architecture underlying susceptibility. By using data from two independent genome-wide association studies (GWAS), we demonstrate that a substantial proportion of the thousands of variants that individually fail to show statistically significant evidence of association have allele frequencies in cases that are skewed away from the null distribution through the effects of multiple as-yet-unidentified risk loci. The collective effect of 12,627 SNPs with Cochran-Mantel-Haenszel test (p < 0.2) in our discovery GWAS set optimally explains approximately 3% of the variance in MS risk in our independent target GWAS set, estimated by Nagelkerke's pseudo-R(2). This model has a highly significant fit (p = 9.90E-19). These results statistically demonstrate a polygenic component to MS susceptibility and suggest that the risk alleles identified to date represent just the tip of an iceberg of risk variants likely to include hundreds of modest effects and possibly thousands of very small effects.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Multifactorial Inheritance/genetics , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide/genetics , Case-Control Studies , Cohort Studies , Genome, Human , Humans , Randomized Controlled Trials as Topic
10.
Hum Mol Genet ; 19(11): 2331-40, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20211854

ABSTRACT

The MHC class II transactivator gene (CIITA) is an important transcription factor regulating gene required for HLA class II MHC-restricted antigen presentation. Association with HLA class II variation, particularly HLA-DRB1*1501, has been well-established for multiple sclerosis (MS). In addition, the -168A/G CIITA promoter variant (rs3087456) has been reported to be associated with MS. Thus, a multi-stage investigation of variation within CIITA, DRB1*1501 and MS was undertaken in 6108 individuals. In stage 1, 24 SNPs within CIITA were genotyped in 1320 cases and 1363 controls (n = 2683). Rs4774 (missense +1614G/C; G500A) was associated with MS (P = 4.9 x 10(-3)), particularly in DRB1*1501 +individuals (P = 1 x 10(-4)). No association was observed for the -168A/G promoter variant. In stage 2, rs4774 was genotyped in 973 extended families; rs4774*C was also associated with increased risk for MS in DRB1*1501+ families (P = 2.3 x 10(-2)). In a third analysis, rs4774 was tested in cases and controls (stage 1) combined with one case per family (stage 2) for increased power. Rs4774*C was associated with MS (P = 1 x 10(-3)), particularly in DRB1*1501+ cases and controls (P = 1 x 10(-4)). Results obtained from logistic regression analysis showed evidence for interaction between rs4774*C and DRB1*1501 associated with risk for MS (ratio of ORs = 1.72, 95% CI 1.28-2.32, P = 3 x 10(-4)). Furthermore, rs4774*C was associated with DRB1*1501+ MS when conditioned on the presence (OR = 1.67, 95% CI = 1.19-2.37, P = 1.9 x 10(-3)) and absence (OR = 1.49, 95% CI = 1.15-1.95, P = 2.3 x 10(-3)) of CLEC16A rs6498169*G, a putative MS risk allele adjacent to CIITA. Our results provide strong evidence supporting a role for CIITA variation in MS risk, which appears to depend on the presence of DRB1*1501.


Subject(s)
Antigen Presentation/genetics , Genetic Variation , HLA-DR Antigens/genetics , Multiple Sclerosis/genetics , Nuclear Proteins/genetics , Trans-Activators/genetics , HLA-DR Antigens/metabolism , HLA-DRB1 Chains , Humans , Logistic Models , Nuclear Proteins/metabolism , Polymorphism, Single Nucleotide/genetics , Risk Factors , Trans-Activators/metabolism
11.
Hum Mol Genet ; 19(21): 4286-95, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20699326

ABSTRACT

The primary genetic risk factor in multiple sclerosis (MS) is the HLA-DRB1*1501 allele; however, much of the remaining genetic contribution to MS has yet to be elucidated. Several lines of evidence support a role for neuroendocrine system involvement in autoimmunity which may, in part, be genetically determined. Here, we comprehensively investigated variation within eight candidate hypothalamic-pituitary-adrenal (HPA) axis genes and susceptibility to MS. A total of 326 SNPs were investigated in a discovery dataset of 1343 MS cases and 1379 healthy controls of European ancestry using a multi-analytical strategy. Random Forests, a supervised machine-learning algorithm, identified eight intronic SNPs within the corticotrophin-releasing hormone receptor 1 or CRHR1 locus on 17q21.31 as important predictors of MS. On the basis of univariate analyses, six CRHR1 variants were associated with decreased risk for disease following a conservative correction for multiple tests. Independent replication was observed for CRHR1 in a large meta-analysis comprising 2624 MS cases and 7220 healthy controls of European ancestry. Results from a combined meta-analysis of all 3967 MS cases and 8599 controls provide strong evidence for the involvement of CRHR1 in MS. The strongest association was observed for rs242936 (OR = 0.82, 95% CI = 0.74-0.90, P = 9.7 × 10(-5)). Replicated CRHR1 variants appear to exist on a single associated haplotype. Further investigation of mechanisms involved in HPA axis regulation and response to stress in MS pathogenesis is warranted.


Subject(s)
Multiple Sclerosis/genetics , Receptors, Corticotropin-Releasing Hormone/genetics , Case-Control Studies , Humans , Mass Spectrometry , Polymorphism, Single Nucleotide
12.
Mov Disord ; 27(2): 312-5, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22102531

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a common neurodegenerative disorder of unknown etiology. The characteristic α-synuclein aggregation of PD is also a feature of Sanfilippo syndrome, a storage disorder caused by α-N-acetylglucosaminidase (NAGLU) gene mutations. We explored genetic links between these disorders and studied the pathology of Sanfilippo syndrome to investigate a common pathway toward α-synuclein aggregation. METHODS: We typed the 2 single-nucleotide polymorphisms that tag the common haplotypes of NAGLU in 926 PD patients and 2308 controls and also stained cortical tissue from 2 cases of Sanfilippo A syndrome using the anti-α-synuclein antibody, Per7. RESULTS: Allelic analysis showed an association between rs2071046 and risk for PD (P 1.3 × 10(-3) ). Intracellular α-synuclein accumulation was observed in the cortical tissue of both Sanfilippo A syndrome cases. CONCLUSIONS: This study suggests a possible role of NAGLU in susceptibility to PD while extending evidence for α-synuclein aggregation in the brain in lysosomal storage disorders. Our findings support a mechanism involving lysosomal dysfunction more generally in the pathogenesis of PD.


Subject(s)
Acetylglucosaminidase/genetics , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Polymorphism, Single Nucleotide/genetics , Aged , Cohort Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Genetic Testing , Genotype , Humans , Male , Middle Aged , alpha-Synuclein/metabolism
13.
Mov Disord ; 27(12): 1522-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22956510

ABSTRACT

Approximately 3.6% of patients with Parkinson's disease develop symptoms before age 45. Early-onset Parkinson's disease (EOPD) patients have a higher familial recurrence risk than late-onset patients, and 3 main recessive EOPD genes have been described. We aimed to establish the prevalence of mutations in these genes in a UK cohort and in previous studies. We screened 136 EOPD probands from a high-ascertainment regional and community-based prevalence study for pathogenic mutations in PARK2 (parkin), PINK1, PARK7 (DJ-1), and exon 41 of LRRK2. We also carried out a systematic review, calculating the proportion of cases with pathogenic mutations in previously reported studies. We identified 5 patients with pathogenic PARK2, 1 patient with PINK1, and 1 with LRRK2 mutations. The rate of mutations overall was 5.1%. Mutations were more common in patients with age at onset (AAO) < 40 (9.5%), an affected first-degree relative (6.9%), an affected sibling (28.6%), or parental consanguinity (50%). In our study EOPD mutation carriers were more likely to present with rigidity and dystonia, and 6 of 7 mutation carriers had lower limb symptoms at onset. Our systematic review included information from >5800 unique cases. Overall, the weighted mean proportion of cases with PARK2 (parkin), PINK1, and PARK7 (DJ-1) mutations was 8.6%, 3.7%, and 0.4%, respectively. PINK1 mutations were more common in Asian subjects. The overall frequency of mutations in known EOPD genes was lower than previously estimated. Our study shows an increased likelihood of mutations in patients with lower AAO, family history, or parental consanguinity.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Mutation/genetics , Oncogene Proteins/genetics , Parkinson Disease/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Cohort Studies , DNA Mutational Analysis , Female , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Male , Parkinson Disease/epidemiology , Protein Deglycase DJ-1 , United Kingdom/epidemiology
14.
Proc Natl Acad Sci U S A ; 106(44): 18680-5, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19846760

ABSTRACT

The human MHC represents the strongest susceptibility locus for autoimmune diseases. However, the identification of the true predisposing gene(s) has been handicapped by the strong linkage disequilibrium across the region. Furthermore, most studies to date have been limited to the examination of a subset of the HLA and non-HLA genes with a marker density and sample size insufficient for mapping all independent association signals. We genotyped a panel of 1,472 SNPs to capture the common genomic variation across the 3.44 megabase (Mb) classic MHC region in 10,576 DNA samples derived from patients with systemic lupus erythematosus, Crohn's disease, ulcerative colitis, rheumatoid arthritis, myasthenia gravis, selective IgA deficiency, multiple sclerosis, and appropriate control samples. We identified the primary association signals for each disease and performed conditional regression to identify independent secondary signals. The data demonstrate that MHC associations with autoimmune diseases result from complex, multilocus effects that span the entire region.


Subject(s)
Chromosome Mapping , Genetic Predisposition to Disease , Immune System Diseases/genetics , Major Histocompatibility Complex/genetics , Major Histocompatibility Complex/immunology , Polymorphism, Single Nucleotide/genetics , Polymorphism, Single Nucleotide/immunology , Databases, Genetic , Genetic Testing , HLA Antigens/genetics , Humans
15.
Nat Genet ; 54(3): 251-262, 2022 03.
Article in English | MEDLINE | ID: mdl-35288711

ABSTRACT

The resolution of causal genetic variants informs understanding of disease biology. We used regulatory quantitative trait loci (QTLs) from the BLUEPRINT, GTEx and eQTLGen projects to fine-map putative causal variants for 12 immune-mediated diseases. We identify 340 unique loci that colocalize with high posterior probability (≥98%) with regulatory QTLs and apply Bayesian frameworks to fine-map associations at each locus. We show that fine-mapping credible sets derived from regulatory QTLs are smaller compared to disease summary statistics. Further, they are enriched for more functionally interpretable candidate causal variants and for putatively causal insertion/deletion (INDEL) polymorphisms. Finally, we use massively parallel reporter assays to evaluate candidate causal variants at the ITGA4 locus associated with inflammatory bowel disease. Overall, our findings suggest that fine-mapping applied to disease-colocalizing regulatory QTLs can enhance the discovery of putative causal disease variants and enhance insights into the underlying causal genes and molecular mechanisms.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Bayes Theorem , Causality , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
16.
EClinicalMedicine ; 47: 101417, 2022 May.
Article in English | MEDLINE | ID: mdl-35505938

ABSTRACT

Background: Preliminary evidence has highlighted a possible association between severe COVID-19 and persistent cognitive deficits. Further research is required to confirm this association, determine whether cognitive deficits relate to clinical features from the acute phase or to mental health status at the point of assessment, and quantify rate of recovery. Methods: 46 individuals who received critical care for COVID-19 at Addenbrooke's hospital between 10th March 2020 and 31st July 2020 (16 mechanically ventilated) underwent detailed computerised cognitive assessment alongside scales measuring anxiety, depression and post-traumatic stress disorder under supervised conditions at a mean follow up of 6.0 (± 2.1) months following acute illness. Patient and matched control (N = 460) performances were transformed into standard deviation from expected scores, accounting for age and demographic factors using N = 66,008 normative datasets. Global accuracy and response time composites were calculated (G_SScore & G_RT). Linear modelling predicted composite score deficits from acute severity, mental-health status at assessment, and time from hospital admission. The pattern of deficits across tasks was qualitatively compared with normal age-related decline, and early-stage dementia. Findings: COVID-19 survivors were less accurate (G_SScore=-0.53SDs) and slower (G_RT=+0.89SDs) in their responses than expected compared to their matched controls. Acute illness, but not chronic mental health, significantly predicted cognitive deviation from expected scores (G_SScore (p=​​0.0037) and G_RT (p = 0.0366)). The most prominent task associations with COVID-19 were for higher cognition and processing speed, which was qualitatively distinct from the profiles of normal ageing and dementia and similar in magnitude to the effects of ageing between 50 and 70 years of age. A trend towards reduced deficits with time from illness (r∼=0.15) did not reach statistical significance. Interpretation: Cognitive deficits after severe COVID-19 relate most strongly to acute illness severity, persist long into the chronic phase, and recover slowly if at all, with a characteristic profile highlighting higher cognitive functions and processing speed. Funding: This work was funded by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC), NIHR Cambridge Clinical Research Facility (BRC-1215-20014), the Addenbrooke's Charities Trust and NIHR COVID-19 BioResource RG9402. AH is funded by the UK Dementia Research Institute Care Research and Technology Centre and Imperial College London Biomedical Research Centre. ETB and DKM are supported by NIHR Senior Investigator awards. JBR is supported by the Wellcome Trust (220258) and Medical Research Council (SUAG/051 G101400). VFJN is funded by an Academy of Medical Sciences/ The Health Foundation Clinician Scientist Fellowship. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

17.
Am J Epidemiol ; 172(2): 217-24, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20522537

ABSTRACT

Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system with a prominent genetic component. The primary genetic risk factor is the human leukocyte antigen (HLA)-DRB1*1501 allele; however, much of the remaining genetic contribution to MS has not been elucidated. The authors investigated the relation between variation in DNA repair pathway genes and risk of MS. Single-locus association testing, epistatic tests of interactions, logistic regression modeling, and nonparametric Random Forests analyses were performed by using genotypes from 1,343 MS cases and 1,379 healthy controls of European ancestry. A total of 485 single nucleotide polymorphisms within 72 genes related to DNA repair pathways were investigated, including base excision repair, nucleotide excision repair, and double-strand breaks repair. A single nucleotide polymorphism variant within the general transcription factor IIH, polypeptide 4 gene, GTF2H4, on chromosome 6p21.33 was significantly associated with MS (odds ratio = 0.7, P = 3.5 x 10(-5)) after accounting for multiple testing and was not due to linkage disequilibrium with HLA-DRB1*1501. Although other candidate genes examined here warrant further follow-up studies, collectively, these results derived from a well-powered study do not support a strong role for common variation within DNA repair pathway genes in MS.


Subject(s)
DNA Repair/genetics , Multiple Sclerosis/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide , White People
18.
Hum Genet ; 127(5): 525-35, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20112030

ABSTRACT

Multiple sclerosis (MS) is characterized as an autoimmune demyelinating disease. Numerous family studies have confirmed a strong genetic component underlying its etiology. After several decades of frustrating research, the advent and application of affordable genotyping of dense SNP maps in large data sets has ushered in a new era in which rapid progress is being made in our understanding of the genetics underlying many complex traits. For MS, one of the first discoveries to emerge in this new era was the association with rs6897932[T244I] in the interleukin-7 receptor alpha chain (IL7RA) gene (Gregory et al. in Nat Genet 39(9):1083-1091, 2007; International Multiple Sclerosis Genetics Consortium in N Engl J Med 357(9):851-862, 2007; Lundmark in Nat Genet 39(9):1108-1113, 2007), a discovery that was accompanied by functional data that suggest this variant is likely to be causative rather than a surrogate proxy (Gregory et al. in Nat Genet 39(9):1083-1091, 2007). We hypothesized that variations in other genes functionally related to IL7RA might also influence MS. We investigated this hypothesis by examining genes in the extended biological pathway related to IL7RA to identify novel associations. We identified 73 genes with putative functional relationships to IL7RA and subsequently genotyped 7,865 SNPs in and around these genes using an Illumina Infinium BeadChip assay. Using 2,961 case-control data sets, two of the gene regions examined, IL7 and SOCS1, had significantly associated single-nucleotide polymorphisms (SNPs) that further replicated in an independent case-control data set (4,831 samples) with joint p values as high as 8.29 x 10(-6) and 3.48 x 10(-7), respectively, exceeding the threshold for experiment-wise significance. Our results also implicate two additional novel gene regions that are likely to be associated with MS: PRKCE with p values reaching 3.47 x 10(-4), and BCL2 with p values reaching 4.32 x 10(-4). The TYK2 gene, which also emerged in our analysis, has recently been associated with MS (Ban et al. 2009). These results help to further delineate the genetic architecture of MS and validate our pathway approach as an effective method to identify novel associations in a complex disease.


Subject(s)
Gene Frequency , Interleukin-7 Receptor alpha Subunit/genetics , Interleukin-7/genetics , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide , Signal Transduction/genetics , Adolescent , Adult , Aged , Case-Control Studies , Female , Genetic Predisposition to Disease , Genetic Variation , Genotype , Humans , Male , Middle Aged , Odds Ratio , Young Adult
19.
J Neurol Neurosurg Psychiatry ; 81(8): 890-1, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20462916

ABSTRACT

OBJECTIVE: The core pathology of Parkinson's disease (PD) is a loss of the dopaminergic neurons in the nigro-striatal pathway, but this is only part of a more widespread pathological process, the nature of which is unknown. Recent data suggest a possible role for inflammation in this disease process. The Human Leucocyte Antigen (HLA) region is one of the most important genetic susceptibility factors in many immune-mediated diseases but has not been extensively investigated in PD. METHODS: The authors typed the HLA class II loci HLA-DRB1 and -DQB1 in 528 patients with Parkinson's disease and 3430 controls from the UK. RESULTS: The authors observed an association of HLA-DRB1 with susceptibility to Parkinson's disease. In particular, HLA-DRB1*03 was more common in patients compared with controls. CONCLUSIONS: These data suggest a possible role of the HLA region in susceptibility to Parkinson's disease and as such are consistent with other evidence supporting the role of an inflammatory process in the cellular loss in Parkinson's disease, especially of the nigral dopaminergic neurons.


Subject(s)
HLA Antigens/genetics , Parkinson Disease/genetics , Adult , Aged , Aged, 80 and over , Alleles , Cohort Studies , Disease Susceptibility , Female , Genes, MHC Class II/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Histocompatibility Testing , Humans , Linkage Disequilibrium , Male , Middle Aged , Parkinson Disease/epidemiology , United Kingdom/epidemiology
20.
Brain ; 132(Pt 11): 2958-69, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19812213

ABSTRACT

Cognitive abnormalities are common in Parkinson's disease, with important social and economic implications. Factors influencing their evolution remain unclear but are crucial to the development of targeted therapeutic strategies. We have investigated the development of cognitive impairment and dementia in Parkinson's disease using a longitudinal approach in a population-representative incident cohort (CamPaIGN study, n = 126) and here present the 5-year follow-up data from this study. Our previous work has implicated two genetic factors in the development of cognitive dysfunction in Parkinson's disease, namely the genes for catechol-O-methyltransferase (COMT Val(158)Met) and microtubule-associated protein tau (MAPT) H1/H2. Here, we have explored the influence of these genes in our incident cohort and an additional cross-sectional prevalent cohort (n = 386), and investigated the effect of MAPT H1/H2 haplotypes on tau transcription in post-mortem brain samples from patients with Lewy body disease and controls. Seventeen percent of incident patients developed dementia over 5 years [incidence 38.7 (23.9-59.3) per 1000 person-years]. We have demonstrated that three baseline measures, namely, age >or=72 years, semantic fluency less than 20 words in 90 s and inability to copy an intersecting pentagons figure, are significant predictors of dementia risk, thus validating our previous findings. In combination, these factors had an odds ratio of 88 for dementia within the first 5 years from diagnosis and may reflect the syndrome of mild cognitive impairment of Parkinson's disease. Phonemic fluency and other frontally based tasks were not associated with dementia risk. MAPT H1/H1 genotype was an independent predictor of dementia risk (odds ratio = 12.1) and the H1 versus H2 haplotype was associated with a 20% increase in transcription of 4-repeat tau in Lewy body disease brains. In contrast, COMT genotype had no effect on dementia, but a significant impact on Tower of London performance, a frontostriatally based executive task, which was dynamic, such that the ability to solve this task changed with disease progression. Hence, we have identified three highly informative predictors of dementia in Parkinson's disease, which can be easily translated into the clinic, and established that MAPT H1/H1 genotype is an important risk factor with functional effects on tau transcription. Our work suggests that the dementing process in Parkinson's disease is predictable and related to tau while frontal-executive dysfunction evolves independently with a more dopaminergic basis and better prognosis.


Subject(s)
Cognition Disorders , Dementia , Parkinson Disease , Aged , Catechol O-Methyltransferase/genetics , Cognition/physiology , Cognition Disorders/etiology , Cognition Disorders/genetics , Cognition Disorders/physiopathology , Cohort Studies , Dementia/etiology , Dementia/genetics , Dementia/physiopathology , Disease Progression , Dopamine/metabolism , Female , Follow-Up Studies , Genetic Predisposition to Disease , Haplotypes , Humans , Male , Middle Aged , Neuropsychological Tests , Parkinson Disease/complications , Parkinson Disease/genetics , Parkinson Disease/physiopathology , Regression Analysis , Risk Factors , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL