Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Biotechnol ; 39(4): 510-519, 2021 04.
Article in English | MEDLINE | ID: mdl-33257861

ABSTRACT

Human pluripotent stem cells (hPSCs) offer an unprecedented opportunity to model diverse cell types and tissues. To enable systematic exploration of the programming landscape mediated by transcription factors (TFs), we present the Human TFome, a comprehensive library containing 1,564 TF genes and 1,732 TF splice isoforms. By screening the library in three hPSC lines, we discovered 290 TFs, including 241 that were previously unreported, that induce differentiation in 4 days without alteration of external soluble or biomechanical cues. We used four of the hits to program hPSCs into neurons, fibroblasts, oligodendrocytes and vascular endothelial-like cells that have molecular and functional similarity to primary cells. Our cell-autonomous approach enabled parallel programming of hPSCs into multiple cell types simultaneously. We also demonstrated orthogonal programming by including oligodendrocyte-inducible hPSCs with unmodified hPSCs to generate cerebral organoids, which expedited in situ myelination. Large-scale combinatorial screening of the Human TFome will complement other strategies for cell engineering based on developmental biology and computational systems biology.


Subject(s)
Cellular Reprogramming Techniques/methods , Oligodendroglia/cytology , Pluripotent Stem Cells/cytology , Transcription Factors/genetics , Alternative Splicing , Cell Differentiation , Cell Engineering , Cells, Cultured , Coculture Techniques , Humans , Oligodendroglia/metabolism , Pluripotent Stem Cells/metabolism , Systems Biology
2.
ACS Chem Biol ; 15(8): 2137-2153, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32786289

ABSTRACT

Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins in vivo remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology. We found that the conformation of α-synuclein previously shown to drive yeast toxicity-an extended, membrane-bound helix-is largely unaffected by these chemical perturbations, underscoring the importance of this conformational state as a driver of cellular toxicity. On the other hand, the chemical perturbations have a significant effect on the ability of mutations to suppress α-synuclein toxicity. Moreover, we find that sequence determinants of α-synuclein toxicity are well described by a simple structural model of the membrane-bound helix. This model predicts that α-synuclein penetrates the membrane to constant depth across its length but that membrane affinity decreases toward the C terminus, which is consistent with orthogonal biophysical measurements. Finally, we discuss how parallelized chemical genetics experiments can provide a robust framework for inquiry-based graduate coursework.


Subject(s)
Saccharomyces cerevisiae/drug effects , alpha-Synuclein/toxicity , Amino Acid Sequence , Humans , Mutation , Parkinson Disease/metabolism , Protein Conformation , Saccharomyces cerevisiae/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
3.
Nat Commun ; 10(1): 4485, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582763

ABSTRACT

Trans-homolog interactions have been studied extensively in Drosophila, where homologs are paired in somatic cells and transvection is prevalent. Nevertheless, the detailed structure of pairing and its functional impact have not been thoroughly investigated. Accordingly, we generated a diploid cell line from divergent parents and applied haplotype-resolved Hi-C, showing that homologs pair with varying precision genome-wide, in addition to establishing trans-homolog domains and compartments. We also elucidate the structure of pairing with unprecedented detail, observing significant variation across the genome and revealing at least two forms of pairing: tight pairing, spanning contiguous small domains, and loose pairing, consisting of single larger domains. Strikingly, active genomic regions (A-type compartments, active chromatin, expressed genes) correlated with tight pairing, suggesting that pairing has a functional implication genome-wide. Finally, using RNAi and haplotype-resolved Hi-C, we show that disruption of pairing-promoting factors results in global changes in pairing, including the disruption of some interaction peaks.


Subject(s)
Chromosome Pairing , Chromosomes, Insect/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Genome, Insect , Animals , Cell Culture Techniques , Cell Line , Chromatin/metabolism , Female , High-Throughput Nucleotide Sequencing , Male , Sequence Homology, Nucleic Acid
4.
Nat Commun ; 10(1): 4486, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582744

ABSTRACT

Genome organization involves cis and trans chromosomal interactions, both implicated in gene regulation, development, and disease. Here, we focus on trans interactions in Drosophila, where homologous chromosomes are paired in somatic cells from embryogenesis through adulthood. We first address long-standing questions regarding the structure of embryonic homolog pairing and, to this end, develop a haplotype-resolved Hi-C approach to minimize homolog misassignment and thus robustly distinguish trans-homolog from cis contacts. This computational approach, which we call Ohm, reveals pairing to be surprisingly structured genome-wide, with trans-homolog domains, compartments, and interaction peaks, many coinciding with analogous cis features. We also find a significant genome-wide correlation between pairing, transcription during zygotic genome activation, and binding of the pioneer factor Zelda. Our findings reveal a complex, highly structured organization underlying homolog pairing, first discovered a century ago in Drosophila. Finally, we demonstrate the versatility of our haplotype-resolved approach by applying it to mammalian embryos.


Subject(s)
Chromosome Pairing , Chromosomes, Insect/genetics , Drosophila melanogaster/genetics , Genome, Insect , Animals , Cell Culture Techniques , Cell Line , Chromatin/metabolism , Computational Biology , Datasets as Topic , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Embryo, Mammalian , Embryo, Nonmammalian , Female , Genomics/methods , High-Throughput Nucleotide Sequencing , Male , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Small Interfering/metabolism , Sequence Homology, Nucleic Acid , Transcription, Genetic , Zygote
5.
Cell Rep ; 24(2): 479-488, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29996107

ABSTRACT

This study explores the relationship between three-dimensional genome organization and ultraconserved elements (UCEs), an enigmatic set of DNA elements that are perfectly conserved between the reference genomes of distantly related species. Examining both human and mouse genomes, we interrogate the relationship of UCEs to three features of chromosome organization derived from Hi-C studies. We find that UCEs are enriched within contact domains and, further, that the subset of UCEs within domains shared across diverse cell types are linked to kidney-related and neuronal processes. In boundaries, UCEs are generally depleted, with those that do overlap boundaries being overrepresented in exonic UCEs. Regarding loop anchors, UCEs are neither overrepresented nor underrepresented, but those present in loop anchors are enriched for splice sites. Finally, as the relationships between UCEs and human Hi-C features are conserved in mouse, our findings suggest that UCEs contribute to interspecies conservation of genome organization and, thus, genome stability.


Subject(s)
Conserved Sequence/genetics , Genome , Mammals/genetics , Animals , Chromosomes, Mammalian/genetics , DNA, Intergenic/genetics , Exons/genetics , Humans , Introns/genetics , Kidney/metabolism , Mice , RNA Processing, Post-Transcriptional/genetics , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL