Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
Add more filters

Publication year range
1.
Mol Psychiatry ; 28(11): 4622-4631, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37723283

ABSTRACT

Although mitochondrial dysfunction is known to play an essential role in the pathophysiology of bipolar disorder (BD), there is a glaring gap in our understanding of how mitochondrial dysfunction can modulate clinical phenotypes. An emerging paradigm suggests mitochondria play an important non-energetic role in adaptation to stress, impacting cellular resilience and acting as a source of systemic allostatic load. Known as mitochondrial allostatic load, this (phenomenon) occurs when mitochondria are unable to recalibrate and maintain cell homeostasis. This study aimed to evaluate the composite mitochondrial health index (MHI) in BD subjects and non-psychiatry controls. We will also explore whether lower MIH will be related to higher cell-free mtDNA (ccf-mtDNA) levels and poor clinical outcomes. In this study, 14 BD-I patients and 16 age- and sex-matched non-psychiatry controls were enrolled. Peripheral blood mononuclear cells (PBMCs) were used to measure the enzymatic activities of citrate synthase and complexes I, II, and IV and mtDNA copy number. Ccf-mtDNA was evaluated by qPCR in plasma. Mitochondrial quality control (MQC) proteins were evaluated by western blotting. After adjusting for confounding variables, such as age, sex, body mass index (BMI), and smoking status, patients with BD presented lower MHI compared to non-psychiatry controls, as well as higher ccf-mtDNA levels that negatively correlated with MHI. Because the MQC network is essential to maintain mitochondrial health, MHI and ccf-mtDNA were also examined in relation to several MQC-related proteins, such as Fis-1, Opa-1, and LC3. Our results showed that MHI correlated negatively with Fis-1 and positively with Opa-1 and LC3. Accordingly, ccf-mtDNA had a positive correlation with Fis-1 and a negative correlation with Opa-1 and LC3. Furthermore, we found a noteworthy inverse correlation between illness severity and MHI, with lower MHI and higher ccf-mtDNA levels in subjects with a longer illness duration, worse functional status, and higher depressive symptoms. Our findings indicate that mitochondrial allostatic load contributes to BD, suggesting mitochondria represent a potential biological intersection point that could contribute to impaired cellular resilience and increased vulnerability to stress and mood episodes. Ultimately, by linking mitochondrial dysfunction to disease progression and poor outcomes, we might be able to build a predictive marker that explains how mitochondrial function and its regulation contribute to BD development and that may eventually serve as a treatment guide for both old and new therapeutic targets.


Subject(s)
Bipolar Disorder , Mitochondrial Diseases , Humans , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Leukocytes, Mononuclear/metabolism , Mitochondria/metabolism , DNA, Mitochondrial/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Diseases/metabolism
2.
Mol Psychiatry ; 27(2): 1095-1102, 2022 02.
Article in English | MEDLINE | ID: mdl-34650203

ABSTRACT

Recent studies have suggested that mitochondrial dysfunction and dysregulated neuroinflammatory pathways are involved in the pathophysiology of major depressive disorder (MDD). Here, we aimed to assess the differences in markers of mitochondrial dynamics, mitophagy, general autophagy, and apoptosis in peripheral blood mononuclear cells (PBMCs) of MDD patients (n = 77) and healthy controls (HCs, n = 24). Moreover, we studied inflammation engagement as a moderator of mitochondria dysfunctions on the severity of depressive symptoms. We found increased levels of Mfn-2 (p < 0.001), short Opa-1 (S-Opa-1) (p < 0.001) and Fis-1 (p < 0.001) in MDD patients, suggesting an increase in the mitochondrial fragmentation. We also found that MDD patients had higher levels of Pink-1 (p < 0.001), p62/SQSTM1 (p < 0.001), LC3B (p = 0.002), and caspase-3 active (p = 0.001), and lower levels of parkin (p < 0.001) compared with HCs. Moreover, we showed that that MDD patients with higher CRP levels had higher levels of Mfn-2 (p = 0.001) and LC3B (p = 0.002) when compared with MDD patients with low CRP. Another notable finding was that the severity of depressive symptoms in MDD is associated with changes in protein levels in pathways related to mitochondrial dynamics and mitophagy, and can be dependent on the inflammatory status. Overall, our study demonstrated that a disruption in the mitochondrial dynamics network could initiate a cascade of abnormal changes relevant to the critical pathological changes during the course of MDD and lead to poor outcomes.


Subject(s)
Depressive Disorder, Major , Mitophagy , Apoptosis/physiology , Depressive Disorder, Major/metabolism , Humans , Inflammation , Leukocytes, Mononuclear/metabolism , Mitochondrial Dynamics , Mitophagy/physiology
3.
Adv Exp Med Biol ; 1411: 191-208, 2023.
Article in English | MEDLINE | ID: mdl-36949311

ABSTRACT

Bipolar disorder (BD) is a severe and chronic psychiatric disorder that affects approximately 1-4% of the world population and is characterized by recurrent episodes of mania or hypomania and depression. BD is also associated with illnesses marked by immune activation, such as metabolic syndrome, obesity, type 2 diabetes mellitus, and cardiovascular diseases. Indeed, a connection has been suggested between neuroinflammation and peripheral inflammatory markers in the pathophysiology of BD, which can be associated with the modulation of many dysfunctional processes, including synaptic plasticity, neurotransmission, neurogenesis, neuronal survival, apoptosis, and even cognitive/behavioral functioning. Rising evidence suggests that synaptic dysregulations, especially glutamatergic system dysfunction, are directly involved in mood disorders. It is becoming clear that dysregulations in connection and structural changes of glial cells play a central role in the BD pathophysiology. This book chapter highlighted the latest findings that support the theory of synaptic dysfunction in BD, providing an overview of the alterations in neurotransmitters release, astrocytic uptake, and receptor signaling, as well as the role of inflammation on glial cells in mood disorders. Particular emphasis is given to the alterations in presynaptic and postsynaptic neurons and glial cells, all cellular elements of the "tripartite synapse," compromising the neurotransmitters system, excitatory-inhibitory balance, and neurotrophic states of local networks in mood disorders. Together, these studies provide a foundation of knowledge about the exact role of the glial-neuronal interaction in mood disorders.


Subject(s)
Bipolar Disorder , Diabetes Mellitus, Type 2 , Humans , Bipolar Disorder/metabolism , Diabetes Mellitus, Type 2/metabolism , Neuroglia/physiology , Neurons/metabolism , Neurotransmitter Agents/metabolism , Synapses/metabolism
4.
Metab Brain Dis ; 37(5): 1585-1596, 2022 06.
Article in English | MEDLINE | ID: mdl-35394251

ABSTRACT

Maple Syrup Urine Disease (MSUD) is caused by the deficiency in the activity of the branched-chain α-ketoacid dehydrogenase complex (BCKDC), resulting in the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, and their respective branched-chain α-keto acids. Patients with MSUD are at high risk of developing chronic neuropsychiatric disorders; however, the pathophysiology of brain damage in these patients remains unclear. We hypothesize that MSUD can cause depressive symptoms in patients. To test our hypothesis, Wistar rats were submitted to the BCAA and tianeptine (antidepressant) administration for 21 days, starting seven days postnatal. Depression-like symptoms were assessed by testing for anhedonia and forced swimming after treatments. After the last test, the brain structures were dissected for the evaluation of neutrophins. We demonstrate that chronic BCAA administration induced depressive-like behavior, increased BDNF levels, and decreased NGF levels, suggesting a relationship between BCAA toxicity and brain damage, as observed in patients with MSUD. However, the administration of tianeptine was effective in preventing behavioral changes and restoring neurotrophins levels.


Subject(s)
Maple Syrup Urine Disease , Thiazepines , Amino Acids, Branched-Chain/metabolism , Animals , Maple Syrup Urine Disease/metabolism , Nerve Growth Factors/metabolism , Rats , Rats, Wistar , Thiazepines/pharmacology
5.
Metab Brain Dis ; 37(4): 1155-1161, 2022 04.
Article in English | MEDLINE | ID: mdl-35275349

ABSTRACT

Maple Syrup Urine Disease (MSUD) is an autosomal recessive inherited disorder caused by a deficiency in the activity of the branched-chain alpha-ketoacid dehydrogenase complex leading to the accumulation of branched-chain amino acids (BCAA) leucine, isoleucine, and valine and their respective branched-chain α-ketoacids and corresponding hydroxy acids. Considering that Danio rerio, known as zebrafish, has been widely used as an experimental model in several research areas because it has favorable characteristics that complement other experimental models, this study aimed to evaluate oxidative stress parameters in zebrafish exposed to high levels of leucine (2 mM and 5 mM), in a model similar of MSUD. Twenty-four hours after exposure, the animals were euthanized, and the brain content dissected for analysis of oxidative stress parameters: thiobarbituric acid reactive substances (TBARS), 2',7'-dichlorofluorescein oxidation assay (DCF); content of sulfhydryl, and superoxide dismutase (SOD) and catalase (CAT) activities. Animals exposed to 2 mM and 5 mM leucine showed an increase in the measurement of TBARS and decreased sulfhydryl content. There were no significant changes in DCF oxidation. In addition, animals exposed to 2 mM and 5 mM leucine were found to have decreased SOD activity and increased CAT activity. Based on these results, exposure of zebrafish to high doses of leucine can act as a promising animal model for MSUD, providing a better understanding of the toxicity profile of leucine exposure and its use in future investigations and strategies related to the pathophysiology of MSUD.


Subject(s)
Maple Syrup Urine Disease , Zebrafish , Animals , Antioxidants/pharmacology , Brain/metabolism , Leucine/metabolism , Leucine/pharmacology , Maple Syrup Urine Disease/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Zebrafish/metabolism
6.
Bipolar Disord ; 23(7): 689-696, 2021 11.
Article in English | MEDLINE | ID: mdl-33098737

ABSTRACT

BACKGROUND: There has been growing scientific evidence in recent years that bipolar disorder (BD) is associated with alterations in the kynurenine (KYN) pathway. However, many of these studies have been limited by their focus on adults. Thus, this preliminary study investigated differences in the peripheral levels of KYN metabolites in children and adolescents with BD, unaffected offspring of parents with BD, and healthy controls (HCs). METHODS: Plasma samples were collected from 49 youths with BD, 19 bipolar offspring, and 31 HCs. Tryptophan (TRP), KYN, and kynurenic acid (KYNA) were separated using electrospray ionization. RESULTS: One-Way ANCOVA after controlling for age, gender, race, BMI-for-age, and smoking status showed that BD had lower levels of KYN, while unaffected high-risk offspring subjects had lower levels of TRP, KYN, and KYNA when compared to HCs. Moreover, we found that KYN, KYN/TRP, and KYNA/KYN levels predicted the severity of depressive symptoms, while the YMRS score was not associated with any metabolite. CONCLUSIONS: In summary, this preliminary study has shown that KYN metabolites are decreased in both affected and unaffected subjects, strengthening the idea that the KYN pathway might underlie the familial risk of BD shown by high-risk offspring individuals. However, longitudinal studies are needed to examine whether the alterations observed in this study represent early markers of risk for later developing BD.


Subject(s)
Bipolar Disorder , Kynurenine , Adolescent , Adult , Bipolar Disorder/metabolism , Child , Humans , Kynurenic Acid , Parents , Tryptophan
7.
Metab Brain Dis ; 36(1): 185-192, 2021 01.
Article in English | MEDLINE | ID: mdl-33034842

ABSTRACT

Maple syrup urine disease (MSUD) is characterized by a deficiency in the mitochondrial branched-chain α-keto acid dehydrogenase complex activity and, consequently, accumulation of the branched-chain amino acids and their respective branched-chain α-keto acids in fluids and the tissue. MSUD clinical symptoms include neurological alterations. KIC is considered one of the significant neurotoxic metabolites since its increased plasma concentrations are associated with neurological symptoms. We evaluated the effect of KIC intracerebroventricular (ICV) injection in hippocampal mitochondria function in rats. We also investigated the impact of KIC in cells' metabolic activity (using MTT assay) and reactive species (RS) production in HT-22 cells. For this, thirty-day-old male rats were bilaterally ICV injected with KIC or aCSF. Thus, 1 hour after the administration, animals were euthanized, and the hippocampus was harvested for measured the activities of mitochondrial respiratory chain enzymes and RS production. Furthermore, HT-22 cells were incubated with KIC (1-10 mM) in 6, 12, and 24 h. Mitochondrial complexes activities were reduced, and the formation of RS was increased in the hippocampus of rats after KIC administration. Moreover, KIC reduced the cells' metabolic ability to reduce MTT and increased RS production in hippocampal neurons. Impairment in hippocampal mitochondrial function seems to be involved in the neurotoxicity induced by KIC.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Hippocampus/drug effects , Keto Acids/pharmacology , Oxidative Stress/drug effects , Animals , Cell Line , Hippocampus/metabolism , Male , Maple Syrup Urine Disease/metabolism , Mice , Rats , Rats, Wistar
8.
Metab Brain Dis ; 36(5): 1057-1067, 2021 06.
Article in English | MEDLINE | ID: mdl-33616841

ABSTRACT

D-galactose (D-gal) is a carbohydrate widely distributed in regular diets. However, D-gal administration in rodents is associated with behavioral and neurochemical alterations similar to features observed in aging. In this regard, this study aimed to investigate the effects of D-gal exposure, in different periods, in rats' brain regions' activities of creatine kinase (CK) and tricarboxylic acid (TCA) cycle enzymes. Male adult Wistar rats received D-gal (100 mg/kg, gavage) for 1, 2, 4, 6 or 8 weeks. CK and TCA enzymes' activities were evaluated in rats' prefrontal cortex and hippocampus. In general, the results showed an increase in citrate synthase (CS) and succinate dehydrogenase (SDH) activities in animals treated with D-gal compared to the control group in the prefrontal cortex and hippocampus. Also, in the fourth week, the malate dehydrogenase (MD) activity increased in the hippocampus of rats that received D-gal compared to control rats. In addition, we observed an increase in the CK activity in the prefrontal cortex and hippocampus in the first and eighth weeks of treatment in the D-gal group compared to the control group. D-gal administration orally administered modulated TCA cycle enzymes and CK activities in the prefrontal cortex and hippocampus, which were also observed in aging and neurodegenerative diseases. However, more studies using experimental models are necessary to understand better the impact and contribution of these brain metabolic abnormalities associated with D-gal consumption for aging.


Subject(s)
Brain/drug effects , Citric Acid Cycle/drug effects , Creatine Kinase/metabolism , Galactose/administration & dosage , Malate Dehydrogenase/metabolism , Tricarboxylic Acids/metabolism , Administration, Oral , Animals , Brain/metabolism , Male , Rats , Rats, Wistar
9.
J Neuroinflammation ; 17(1): 5, 2020 Jan 04.
Article in English | MEDLINE | ID: mdl-31901235

ABSTRACT

BACKGROUND: Bacterial meningitis is a devastating central nervous system (CNS) infection with acute and long-term neurological consequences, including cognitive impairment. The aim of this study was to understand the association between activated microglia-induced neuroinflammation and post-meningitis cognitive impairment. METHOD: Meningitis was induced in male Wistar rats by injecting Streptococcus pneumoniae into the brain through the cisterna magna, and rats were then treated with ceftriaxone. Twenty-four hours and 10 days after meningitis induction, rats were imaged with positron emission tomography (PET) using [11C]PBR28, a specific translocator protein (TSPO) radiotracer, to determine in vivo microglial activation. Following imaging, the expression of TSPO, cardiolipin, and cytochrome c, inflammatory mediators, oxidative stress markers, and glial activation markers were evaluated in the prefrontal cortex and hippocampus. Ten days after meningitis induction, animals were subjected to behavioral tests, such as the open-field, step-down inhibitory avoidance, and novel object recognition tests. RESULTS: Both 24-h (acute) and 10-day (long-term) groups of rats demonstrated increased [11C]PBR28 uptake and microglial activation in the whole brain compared to levels in the control group. Although free from infection, 10-day group rats exhibited increased expression levels of cytokines and markers of oxidative stress, microglial activation (IBA-1), and astrocyte activation (GFAP) similar to those seen in the 24-h group. Acute meningitis induction also elevated TSPO, cytochrome c, and caspase-3 levels with no change in caspase-9 levels. Furthermore, upregulated levels of TSPO, cytochrome c, and caspase-3 and caspase-9 were observed in the rat hippocampus 10 days after meningitis induction with a simultaneous reduction in cardiolipin levels. Animals showed a cognitive decline in all tasks compared with the control group, and this impairment may be at least partially mediated by activating a glia-mediated immune response and upregulating TSPO. CONCLUSIONS: TSPO-PET could potentially be used as an imaging biomarker for microglial activation and long-term cognitive impairment post-meningitis. Additionally, this study opens a new avenue for the potential use of TSPO ligands after infection-induced neurological sequelae.


Subject(s)
Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Inflammation Mediators/metabolism , Meningitis/diagnostic imaging , Meningitis/metabolism , Positron-Emission Tomography/methods , Animals , Avoidance Learning/physiology , Cognitive Dysfunction/microbiology , Male , Meningitis/microbiology , Rats , Rats, Wistar , Streptococcus pneumoniae
11.
Bipolar Disord ; 22(5): 498-507, 2020 08.
Article in English | MEDLINE | ID: mdl-31746071

ABSTRACT

OBJECTIVES: Evidence suggests accelerated aging mechanisms in bipolar disorder (BD), including DNA methylation (DNAm) aging in blood. However, it is unknown whether such mechanisms are also evident in the brain, in particular in association with other biological clocks. To investigate this, we interrogated genome-wide DNAm in postmortem hippocampus from 32 BD-I patients and 32 non-psychiatric controls group-matched for age and sex from the NIMH Human Brain Collection Core. METHODS: DNAm age and epigenetic aging acceleration were estimated using the Horvath method. Telomere length (TL) and mitochondrial DNA (mtDNA) copy number were quantified by real-time PCR. Between-group differences were assessed by linear regression and univariate general linear models with age, sex, race, postmortem interval, tissue pH, smoking, and body mass index included as co-variates. RESULTS: Groups did not differ for epigenetic aging acceleration when considering the entire sample. However, after splitting the sample by the median age, an epigenetic aging acceleration was detected in patients compared to controls among older subjects (P = .042). While TL did not differ between groups, a reduction in mtDNA copy number was observed in patients compared to controls (P = .047). In addition, significant correlations were observed between epigenetic aging acceleration and TL (r = -.337, P = .006), as well as between TL and mtDNA copy number (r = .274, P = .028). CONCLUSIONS: Hippocampal aging may underlie neurocognitive dysfunctions observed in BD patients. Moreover, our results suggest a complex cross-talk between biological clocks in hippocampus that may underlie clinical manifestations of premature aging in BD.


Subject(s)
Aging , Bipolar Disorder , Aging/genetics , Bipolar Disorder/genetics , DNA Methylation , DNA, Mitochondrial/genetics , Epigenesis, Genetic , Hippocampus , Humans
12.
Metab Brain Dis ; 35(2): 295-303, 2020 02.
Article in English | MEDLINE | ID: mdl-31828693

ABSTRACT

Tyrosinemia type II is an autosomal recessive inborn error of metabolism caused by hepatic cytosolic tyrosine aminotransferase deficiency. Importantly, this disease is associated with neurological and developmental abnormalities in many patients. Considering that the mechanisms underlying neurological dysfunction in hypertyrosinemic patients are poorly understood, in the present work we investigated the levels of cytokines - tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6 and IL-10 - in cerebellum, hippocampus, striatum of young rats exposed to chronic administration of L-tyrosine. In addition, we also investigated the impact of the supplementation with Omega-3 fatty acids (n-3 PUFA) on the rodent model of Tyrosinemia. Notably, previous study demonstrated an association between L-tyrosine toxicity and n-3 PUFA deficiency. Our results showed a significant increase in the levels of pro- and anti-inflammatory cytokines in brain structures when animals were administered with L-tyrosine. Cerebral cortex and striatum seem to be more susceptible to the inflammation induced by tyrosine toxicity. Importantly, n-3 PUFA supplementation attenuated the alterations on cytokines levels induced by tyrosine exposure in brain regions of infant rats. In conclusion, the brain inflammation is also an important process related to tyrosine neurotoxicity observed in the experimental model of Tyrosinemia. Finally, n-3 PUFA supplementation could be considered as a potential neuroprotective adjunctive therapy for Tyrosinemias, especially type II.


Subject(s)
Dietary Supplements , Encephalitis/chemically induced , Encephalitis/drug therapy , Fatty Acids, Omega-3/administration & dosage , Inflammation Mediators/antagonists & inhibitors , Tyrosine/toxicity , Animals , Animals, Newborn , Drug Administration Schedule , Encephalitis/metabolism , Inflammation Mediators/metabolism , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Wistar , Tyrosine/administration & dosage
13.
Metab Brain Dis ; 35(1): 193-200, 2020 01.
Article in English | MEDLINE | ID: mdl-31705440

ABSTRACT

Tyrosinemia type II is a genetic disorder characterized by elevated blood levels of the amino acid tyrosine caused by the deficiency of tyrosine aminotransferase enzyme, resulting in neurologic and developmental difficulties in the patients. Although neurological sequelae are common in Tyrosinemia type II patients, the mechanisms involved are still poorly understood. The oxidative stress appears to be, at least in part, responsible for neurological complication in this inborn error metabolism. We observed that an acute injection of tyrosine in rats caused a massive oxidative stress in different brain structures. The glutathione system and superoxide dismutase enzyme are relevant antioxidant strategies of the cells and tissues, including in the brain. Other important point is the strong relation between oxidative damage and inflammatory events. Herein, we investigated the effects of chronic administration of tyrosine in the hippocampus of young rats, with emphasis in the activity of GSH related enzymes and superoxide dismutase enzyme, and the astrocytosis. We observed that rats exposed to high levels of tyrosine presented an increased content of tyrosine, which was associated with an increment in the activity of glutathione peroxidase and glutathione reductase as well as with a diminished activity of superoxide dismutase. This antioxidant imbalance was accompanied by enhanced glial fibrillary acidic protein immunoreactivity, a marker of astrocytes, in the brain area studied. In conclusion, hippocampus astrogliosis is also a characteristic of brain alteration in Tyrosinemia. In addition, the chronic exposition to high levels of tyrosine is associated with an alteration in the activity of fundamental antioxidant enzymes.


Subject(s)
Antioxidants/metabolism , Astrocytes/metabolism , Gliosis/metabolism , Hippocampus/metabolism , Tyrosine/metabolism , Tyrosine/toxicity , Animals , Animals, Newborn , Astrocytes/drug effects , Astrocytes/pathology , Drug Administration Schedule , Gliosis/chemically induced , Gliosis/pathology , Hippocampus/drug effects , Hippocampus/pathology , Male , Rats , Rats, Wistar , Tyrosine/administration & dosage
16.
Metab Brain Dis ; 34(4): 1207-1219, 2019 08.
Article in English | MEDLINE | ID: mdl-30949952

ABSTRACT

Deficiency of hepatic enzyme tyrosine aminotransferase characterizes the innate error of autosomal recessive disease Tyrosinemia Type II. Patients may develop neurological and developmental difficulties due to high levels of the amino acid tyrosine in the body. Mechanisms underlying the neurological dysfunction in patients are poorly known. Importantly, Tyrosinemia patients have deficient Omega-3 fatty acids (n-3 PUFA). Here, we investigated the possible neuroprotective effect of the treatment with n-3 PUFA in the alterations caused by chronic administration of L-tyrosine on important parameters of energetic metabolism and oxidative stress in the hippocampus, striatum and cerebral cortex of developing rats. Chronic administration of L-tyrosine causes a decrease in the citrate synthase (CS) activity in the hippocampus and cerebral cortex, as well as in the succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH) activities, and an increase in the α-ketoglutarate dehydrogenase activity in the hippocampus. Moreover, in the striatum, L-tyrosine administration caused a decrease in the activities of CS, SDH, creatine kinase, and complexes I, II-III and IV of the mitochondrial respiratory chain. We also observed that the high levels of L-tyrosine are related to oxidative stress in the brain. Notably, supplementation of n-3 PUFA prevented the majority of the modifications caused by the chronic administration of L-tyrosine in the cerebral enzyme activities, as well as ameliorated the oxidative stress in the brain regions of rats. These results indicate a possible neuroprotective and antioxidant role for n-3 PUFA and may represent a new therapeutic approach and potential adjuvant therapy to Tyrosinemia Type II individuals.


Subject(s)
Brain/drug effects , Energy Metabolism/drug effects , Fatty Acids, Omega-3/pharmacology , Mitochondria/drug effects , Oxidative Stress/drug effects , Tyrosine/pharmacology , Animals , Aromatase/metabolism , Brain/metabolism , Male , Mitochondria/metabolism , Rats , Rats, Wistar
17.
Metab Brain Dis ; 34(3): 941-950, 2019 06.
Article in English | MEDLINE | ID: mdl-30919245

ABSTRACT

The present study aimed to evaluate the effects of resveratrol on behavior and oxidative stress parameters in the brain of rats submitted to the animal model of mania induced by m-AMPH. In the first model (reversal treatment), rats received intraperitoneal (i.p.) injection of saline or m-AMPH (1 mg/kg body weight) once a day for 14 days, and from the 8th to the 14th day, they were orally treated with water or resveratrol (15 mg/kg), once a day. In the second model (maintenance treatment), rats were orally pretreated with water or resveratrol (15 mg/kg) once a day, and from the 8th to the 14th day, they received saline or m-AMPH i.p., once a day. Locomotor and exploratory activities were assessed in the open-field test. Oxidative and nitrosative damage parameters to lipid and proteins were evaluated by TBARS, 4-HNE, carbonyl, and 3-nitrotyrosine in the brain submitted to the experimental models. m-AMPH administration increased the locomotor and exploratory activities; resveratrol was not able to reverse or prevent these manic-like behaviors. Additionally, m-AMPH increased the lipid and protein oxidation and nitrosylation in the frontal cortex, hippocampus, and striatum of rats. However, resveratrol prevented and reversed the oxidative and nitrosative damage to proteins and lipids in all cerebral areas assessed. Since oxidative stress plays an important role in BD pathophysiology, supplementation of resveratrol in BD patients could be regarded as a possible adjunctive treatment with mood stabilizers.


Subject(s)
Bipolar Disorder/drug therapy , Brain/drug effects , Motor Activity/drug effects , Resveratrol/pharmacology , Animals , Antimanic Agents/pharmacology , Brain/metabolism , Central Nervous System Stimulants/pharmacology , Disease Models, Animal , Male , Oxidative Stress/drug effects , Protective Agents/therapeutic use , Rats, Wistar
18.
Biochim Biophys Acta Mol Basis Dis ; 1864(2): 454-463, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29079519

ABSTRACT

During chronic limb ischemia, oxidative damage and inflammation are described. Besides oxidative damage, the decrease of tissue oxygen levels is followed by several adaptive responses. The purpose of this study was to determine whether supplementation with N-acetylcysteine (NAC) is effective in an animal model of chronic limb ischemia. Chronic limb ischemia was induced and animals were treated once a day for 30 consecutive days with NAC (30mg/kg). After this time clinical scores were recorded and soleus muscle was isolated and lactate levels, oxidative damage and inflammatory parameters were determined. In addition, several mechanisms associated with hypoxia adaptation were measured (vascular endothelial growth factor - VEGF and hypoxia inducible factor - HIF levels, ex vivo oxygen consumption, markers of autophagy/mitophagy, and mitochondrial biogenesis). The adaptation to chronic ischemia in this model included an increase in muscle VEGF and HIF levels, and NAC was able to decrease VEGF, but not HIF levels. In addition, ex vivo oxygen consumption under hypoxia was increased in muscle from ischemic animals, and NAC was able to decrease this parameter. This effect was not mediated by a direct effect of NAC on oxygen consumption. Ischemia was followed by a significant increase in muscle myeloperoxidase activity, as well as interleukin-6 and thiobarbituric acid reactive substances species levels. Supplementation with NAC was able to attenuate inflammatory and oxidative damage parameters, and improve clinical scores. In conclusion, NAC treatment decreases oxidative damage and inflammation, and modulates oxygen consumption under hypoxic conditions in a model of chronic limb ischemia.


Subject(s)
Acetylcysteine/pharmacology , Hindlimb/pathology , Ischemia/drug therapy , Animals , Disease Models, Animal , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation , Interleukin-6/metabolism , Ischemia/metabolism , Lactic Acid/metabolism , Male , Muscle, Skeletal/metabolism , Nitrates/metabolism , Nitrites/metabolism , Oxidative Stress , Oxygen/chemistry , Oxygen/metabolism , Oxygen Consumption , Peroxidase/metabolism , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances , Vascular Endothelial Growth Factor A/metabolism
19.
J Inherit Metab Dis ; 2018 May 08.
Article in English | MEDLINE | ID: mdl-29740775

ABSTRACT

Maple syrup urine disease (MSUD) is an autosomal recessive inherited disorder that affects branched-chain amino acid (BCAA) catabolism and is associated with acute and chronic brain dysfunction. Recent studies have shown that inflammation may be involved in the neuropathology of MSUD. However, these studies have mainly focused on single or small subsets of proteins or molecules. Here we performed a case-control study, including 12 treated-MSUD patients, in order to investigate the plasmatic biomarkers of inflammation, to help to establish a possible relationship between these biomarkers and the disease. Our results showed that MSUD patients in treatment with restricted protein diets have high levels of pro-inflammatory cytokines [IFN-γ, TNF-α, IL-1ß and IL-6] and cell adhesion molecules [sICAM-1 and sVCAM-1] compared to the control group. However, no significant alterations were found in the levels of IL-2, IL-4, IL-5, IL-7, IL-8, and IL-10 between healthy controls and MSUD patients. Moreover, we found a positive correlation between number of metabolic crisis and IL-1ß levels and sICAM-1 in MSUD patients. In conclusion, our findings in plasma of patients with MSUD suggest that inflammation may play an important role in the pathogenesis of MSUD, although this process is not directly associated with BCAA blood levels. Overall, data reported here are consistent with the working hypothesis that inflammation may be involved in the pathophysiological mechanism underlying the brain damage observed in MSUD patients.

20.
Am J Med Genet B Neuropsychiatr Genet ; 177(4): 388-396, 2018 06.
Article in English | MEDLINE | ID: mdl-29633502

ABSTRACT

Several studies have suggested a pathophysiological role of blood cell apoptosis in major depressive disorder (MDD). The aim of this study was to evaluate mRNA expression levels of Bcl-2, Bax, and Fas in peripheral blood mononuclear cells (PBMCs) of MDD patients with a high risk for suicide relative to those without a high risk for suicide as well as healthy subjects. The mRNA expression of Bcl-2, Bax, and Fas as well as the Bcl-2/Bax ratio was examined in the PBMCs of 30 MDD patients with a high risk for suicide, 30 MDD patients without a high risk for suicide, and 30 healthy controls. The mRNA expression of target genes was measured using real-time quantitative Polymerase Chain Reaction (PCR). FAS mRNA expression was significantly increased, and Bcl-2 mRNA expression and the Bcl-2/Bax expression ratio were significantly decreased, in the PBMCs of MDD patients with or without a high risk for suicide attempts compared to healthy controls (p < .001). However, Bax mRNA expression was significantly increased only in MDD patients with a high risk for suicide. Moreover, MDD patients with a high risk for suicide had increased Bax and FAS mRNA expression and decreased Bcl-2 and Bcl-2/Bax ratio when compared to patients without risk for suicide (p < .001). Our findings may support the role of both internal and external apoptotic pathways in the interplay between the immune system and depressive symptoms, especially in patients with a high risk for suicide.


Subject(s)
Apoptosis/genetics , Depressive Disorder, Major/physiopathology , Suicide/psychology , Adult , Apoptosis/physiology , Depression , Depressive Disorder, Major/metabolism , Female , Gene Expression Profiling/methods , Humans , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/physiology , Male , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Messenger/genetics , Risk Factors , Suicide, Attempted/psychology , bcl-2-Associated X Protein/genetics , fas Receptor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL