Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cytotherapy ; 26(3): 276-285, 2024 03.
Article in English | MEDLINE | ID: mdl-38231166

ABSTRACT

BACKGROUND AIMS: Adipose mesenchymal stem cells (ASCs) represent a promising therapeutic approach in inflammatory neurological disorders, including multiple sclerosis (MS). Recent lines of evidence indicate that most biological activities of ASCs are mediated by the delivery of soluble factors enclosed in extracellular vesicles (EVs). Indeed, we have previously demonstrated that small EVs derived from ASCs (ASC-EVs) ameliorate experimental autoimmune encephalomyelitis (EAE), a murine model of MS. The precise mechanisms and molecular/cellular target of EVs during EAE are still unknown. METHODS: To investigate the homing of ASC-EVs, we intravenously injected small EVs loaded with ultra-small superparamagnetic iron oxide nanoparticles (USPIO) at disease onset in EAE-induced C57Bl/6J mice. Histochemical analysis and transmission electron microscopy were carried out 48 h after EV treatment. Moreover, to assess the cellular target of EVs, flow cytometry on cells extracted ex vivo from EAE mouse lymph nodes was performed. RESULTS: Histochemical and ultrastructural analysis showed the presence of labeled EVs in lymph nodes but not in lungs and spinal cord of EAE injected mice. Moreover, we identified the cellular target of EVs in EAE lymph nodes by flow cytometry: ASC-EVs were preferentially located in macrophages, with a consistent amount also noted in dendritic cells and CD4+ T lymphocytes. CONCLUSIONS: This represents the first direct evidence of the privileged localization of ASC-EVs in draining lymph nodes of EAE after systemic injection. These data provide prominent information on the distribution, uptake and retention of ASC-EVs, which may help in the development of EV-based therapy in MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Extracellular Vesicles , Mesenchymal Stem Cells , Multiple Sclerosis , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Multiple Sclerosis/therapy , Multiple Sclerosis/pathology , Lymph Nodes , Mice, Inbred C57BL
2.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891895

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motor neurons (MNs) in the brain and spinal cord, leading to progressive paralysis and death. Increasing evidence indicates that neuroinflammation plays an important role in ALS's pathogenesis and disease progression. Neuroinflammatory responses, primarily driven by activated microglia and astrocytes, and followed by infiltrating peripheral immune cells, contribute to exacerbate/accelerate MN death. In particular, the role of the microglia in ALS remains unclear, partly due to the lack of experimental models that can fully recapitulate the complexity of ALS's pathology. In this study, we developed and characterized a microglial cell line, SIM-A9-expressing human mutant protein Cu+/Zn+ superoxide dismutase_1 (SIM-A9hSOD1(G93A)), as a suitable model in vitro mimicking the microglia activity in ALS. The expression of hSOD1(G93A) in SIM-A9 cells induced a change in their metabolic activity, causing polarization into a pro-inflammatory phenotype and enhancing reactive oxygen species production, which is known to activate cell death processes and apoptosis. Afterward, we used our microglial model as an experimental set-up to investigate the therapeutic action of extracellular vesicles isolated from adipose mesenchymal stem cells (ASC-EVs). ASC-EVs represent a promising therapeutic treatment for ALS due to their neuroprotective and immunomodulatory properties. Here, we demonstrated that treatment with ASC-EVs is able to modulate activated ALS microglia, reducing their metabolic activity and polarizing their phenotype toward an anti-inflammatory one through a mechanism of reduction of reactive oxygen species.


Subject(s)
Amyotrophic Lateral Sclerosis , Extracellular Vesicles , Mesenchymal Stem Cells , Microglia , Superoxide Dismutase-1 , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Extracellular Vesicles/metabolism , Microglia/metabolism , Mesenchymal Stem Cells/metabolism , Humans , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Reactive Oxygen Species/metabolism , Cell Line , Adipose Tissue/cytology , Adipose Tissue/metabolism
3.
J Cell Sci ; 134(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34096605

ABSTRACT

Dysregulated immunity and widespread metabolic dysfunctions are the most relevant hallmarks of the passing of time over the course of adult life, and their combination at midlife is strongly related to increased vulnerability to diseases; however, the causal connection between them remains largely unclear. By combining multi-omics and functional analyses of adipose-derived stromal cells established from young (1 month) and midlife (12 months) mice, we show that an increase in expression of interferon regulatory factor 7 (IRF7) during adult life drives major metabolic changes, which include impaired mitochondrial function, altered amino acid biogenesis and reduced expression of genes involved in branched-chain amino acid (BCAA) degradation. Our results draw a new paradigm of aging as the 'sterile' activation of a cell-autonomous pathway of self-defense and identify a crucial mediator of this pathway, IRF7, as driver of metabolic dysfunction with age.


Subject(s)
Amino Acids, Branched-Chain , Interferon Regulatory Factor-7 , Adipose Tissue/metabolism , Aging/genetics , Animals , Interferon Regulatory Factor-7/metabolism , Mice , Stromal Cells/metabolism
4.
Neurol Sci ; 44(3): 919-930, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36394661

ABSTRACT

Down syndrome is a common genetic disorder caused by partial or complete triplication of chromosome 21. This syndrome shows an overall and progressive impairment of olfactory function, detected early in adulthood. The olfactory neuronal cells are located in the nasal olfactory mucosa and represent the first sensory neurons of the olfactory pathway. Herein, we applied the olfactory swabbing procedure to allow a gentle collection of olfactory epithelial cells in seven individuals with Down syndrome and in ten euploid controls. The aim of this research was to investigate the peripheral gene expression pattern in olfactory epithelial cells through RNAseq analysis. Validated tests (Sniffin' Sticks Extended test) were used to assess olfactory function. Olfactory scores were correlated with RNAseq results and cognitive scores (Vineland II and Leiter scales). All Down syndrome individuals showed both olfactory deficit and intellectual disability. Down syndrome individuals and euploid controls exhibited clear expression differences in genes located in and outside the chromosome 21. In addition, a significant correlation was found between olfactory test scores and gene expression, while a non-significant correlation emerged between olfactory and cognitive scores. This first preliminary step gives new insights into the Down syndrome olfactory system research, starting from the olfactory neuroepithelium, the first cellular step on the olfactory way.


Subject(s)
Down Syndrome , Olfaction Disorders , Humans , Pilot Projects , Olfaction Disorders/etiology , Odorants , Smell/physiology
5.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769247

ABSTRACT

Neurodegenerative diseases are fatal disorders of the central nervous system (CNS) which currently lack effective treatments. The application of mesenchymal stem cells (MSCs) represents a new promising approach for treating these incurable disorders. Growing evidence suggest that the therapeutic effects of MSCs are due to the secretion of neurotrophic molecules through extracellular vesicles. The extracellular vesicles produced by MSCs (MSC-EVs) have valuable innate properties deriving from parental cells and could be exploited as cell-free treatments for many neurological diseases. In particular, thanks to their small size, they are able to overcome biological barriers and reach lesion sites inside the CNS. They have a considerable pharmacokinetic and safety profile, avoiding the critical issues related to the fate of cells following transplantation. This review discusses the therapeutic potential of MSC-EVs in the treatment of neurodegenerative diseases, focusing on the strategies to further enhance their beneficial effects such as tracking methods, bioengineering applications, with particular attention to intranasal delivery as a feasible strategy to deliver MSC-EVs directly to the CNS in an effective and minimally invasive way. Current progresses and limiting issues to the extent of the use of MSC-EVs treatment for human neurodegenerative diseases will be also revised.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/therapy , Central Nervous System , Mesenchymal Stem Cells/physiology
6.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162978

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder. There is no cure and current treatments fail to slow the progression of the disease. Epigenetic modulation in the acetylation state of NF-kB RelA and the histone 3 (H3) protein, involved in the development of neurodegeneration, is a drugable target for the class-I histone deacetylases (HDAC) inhibitors, entinostat or valproate, and the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator, resveratrol. In this study, we demonstrated that the combination of valproate and resveratrol can restore the normal acetylation state of RelA in the SOD1(G93A) murine model of ALS, in order to obtain the neuroprotective form of NF-kB. We also investigated the sexually dimorphic development of the disease, as well as the sex-sensibility to the treatment administered. We showed that the combined drugs, which rescued AMPK activation, RelA and the histone 3 acetylation state, reduced the motor deficit and the disease pathology associated with motor neuron loss and microglial reactivity, Brain-Derived Neurotrophic Factor (BDNF) and B-cell lymphoma-extra large (Bcl-xL) level decline. Specifically, vehicle-administered males showed earlier onset and slower progression of the disease when compared to females. The treatment, administered at 50 days of life, postponed the time of onset in the male by 22 days, but not in a significant way in females. Nevertheless, in females, the drugs significantly reduced symptom severity of the later phase of the disease and prolonged the mice's survival. Only minor beneficial effects were produced in the latter stage in males. Overall, this study shows a beneficial and sexually dimorphic response to valproate and resveratrol treatment in ALS mice.


Subject(s)
Amyotrophic Lateral Sclerosis , AMP-Activated Protein Kinases/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Female , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histones/metabolism , Male , Mice , Mice, Transgenic , NF-kappa B/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Sirtuin 1/metabolism , Superoxide Dismutase/metabolism , Valproic Acid/pharmacology , Valproic Acid/therapeutic use
7.
Int J Mol Sci ; 21(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455791

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motoneurons. To date, there is no effective treatment available. Exosomes are extracellular vesicles that play important roles in intercellular communication, recapitulating the effect of origin cells. In this study, we tested the potential neuroprotective effect of exosomes isolated from adipose-derived stem cells (ASC-exosomes) on the in vivo model most widely used to study ALS, the human SOD1 gene with a G93A mutation (SOD1(G93A)) mouse. Moreover, we compared the effect of two different routes of exosomes administration, intravenous and intranasal. The effect of exosomes administration on disease progression was monitored by motor tests and analysis of lumbar motoneurons and glial cells, neuromuscular junction, and muscle. Our results demonstrated that repeated administration of ASC-exosomes improved the motor performance; protected lumbar motoneurons, the neuromuscular junction, and muscle; and decreased the glial cells activation in treated SOD1(G93A) mice. Moreover, exosomes have the ability to home to lesioned ALS regions of the animal brain. These data contribute by providing additional knowledge for the promising use of ASC-exosomes as a therapy in human ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Exosomes/transplantation , Mesenchymal Stem Cell Transplantation/methods , Adipose Tissue/cytology , Amyotrophic Lateral Sclerosis/genetics , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL , Motor Neurons/metabolism , Motor Neurons/physiology , Movement , Mutation, Missense , Neuromuscular Junction/metabolism , Neuromuscular Junction/physiology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
8.
Magn Reson Med ; 79(1): 459-469, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28370153

ABSTRACT

PURPOSE: The first part of the experiment identifies and validates MRI biomarkers distinctive of the disease progression in the transgenic superoxide dismutase gene (SOD1(G93A)) animal model. The second part assesses the efficacy of a mesenchymal stem cell-based therapy through the MRI biomarkers previously defined. METHODS: The first part identifies MRI differences between SOD1(G93A) and healthy mice. The second part of the experiment follows the disease evolution of stem cell-treated and non-stem-cell treated SOD1(G93A) mice. The analysis focused on voxel-based morphometry and T2 mapping on the brain tissues, and T2-weighted imaging and diffusion tensor imaging (DTI) on the hind limbs. RESULTS: Comparing diseased mice to healthy control revealed gray matter alterations in the brainstem area, accompanied by increased T2 relaxation time. Differences in muscle volume, muscle signal intensity, fractional anisotropy, axial diffusivity, and radial diffusivity were measured in the hind limbs. In the comparison between stem cell-treated mice and nontreated ones, differences in muscle volume, muscle signal intensity, and DTI-derived maps were found. CONCLUSION: MRI-derived biomarkers can be used to identify differences between stem cell-treated and nontreated SOD1(G93A) mice. Magn Reson Med 79:459-469, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Stem Cell Transplantation , Stem Cells , Superoxide Dismutase-1/genetics , Animals , Anisotropy , Behavior, Animal , Biomarkers/metabolism , Brain/metabolism , Brain Stem/metabolism , Diffusion Tensor Imaging , Disease Models, Animal , Disease Progression , Female , Humans , Male , Mice , Phenotype , Promoter Regions, Genetic , Superoxide Dismutase/genetics , Transgenes
9.
J Neurooncol ; 136(1): 51-62, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29076001

ABSTRACT

Malignant gliomas, the most frequent primary brain tumors, are characterized by a dismal prognosis. Reliable biomarkers complementary to neuroradiology in the differential diagnosis of gliomas and monitoring for post-surgical progression are unmet needs. Altered expression of several microRNAs in tumour tissues from patients with gliomas compared to normal brain tissue have been described, thus supporting the rationale of using microRNA-based biomarkers. Although different circulating microRNAs were proposed in association with gliomas, they have not been introduced into clinical practice so far. Blood samples were collected from patients with high and low grade gliomas, both before and after surgical resection, and the expression of miR-21, miR-222 and miR-124-3p was measured in exosomes isolated from serum. The expression levels of miR-21, miR-222 and miR-124-3p in serum exosomes of patients with high grade gliomas were significantly higher than those of low grade gliomas and healthy controls and were sharply decreased in samples obtained after surgery. The analysis of miR-21, miR-222 and miR-124-3p in serum exosomes of patients affected by gliomas can provide a minimally invasive and innovative tool to help the differential diagnosis of gliomas at their onset in the brain and predict glioma grading and non glial metastases before surgery.


Subject(s)
Brain Neoplasms/blood , Brain Neoplasms/diagnosis , Exosomes/metabolism , Glioma/blood , Glioma/diagnosis , MicroRNAs/blood , Adult , Aged , Biomarkers, Tumor , Brain Neoplasms/surgery , Diagnosis, Differential , Female , Glioma/surgery , Humans , Male , Middle Aged , Sensitivity and Specificity
10.
Exp Cell Res ; 340(1): 150-8, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26708289

ABSTRACT

Therapeutic strategies for the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) have not yet provided satisfactory results. Interest in stem cells for the treatment of neurodegenerative diseases is increasing and their beneficial action seems to be due to a paracrine effect via the release of exosomes, main mediators of cell-cell communication. Here we wished to assess, in vitro, the efficacy of a novel non-cell therapeutic approach based on the use of exosomes derived from murine adipose-derived stromal cells on motoneuron-like NSC-34 cells expressing ALS mutations, and used as in vitro models of disease. In particular, we set out to investigate the effect of exosomes on NSC-34 naïve cells and NSC-34 cells overexpressing human SOD1(G93A) or SOD1(G37R) or SOD1(A4V) mutants, exposed to oxidative stress. The data presented here indicate for the first time that exosomes (0.2 µg/ml) are able to protect NSC-34 cells from oxidative damage, which is one of the main mechanism of damage in ALS, increasing cell viability. These data highlight a promising role of exosomes derived from stem cells for potential therapeutic applications in motoneuron disease.


Subject(s)
Adipose Tissue/cytology , Amyotrophic Lateral Sclerosis/pathology , Exosomes/metabolism , Models, Biological , Neuroprotective Agents , Stem Cells/cytology , Stromal Cells/cytology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Apoptosis/drug effects , Cell Survival , Cells, Cultured , Humans , Hydrogen Peroxide/pharmacology , Mice , Mice, Inbred C57BL , Mutation , Oxidative Stress/genetics
11.
Eur J Histochem ; 68(3)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963135

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder involving motor neuron (MN) loss in the motor cortex, brainstem and spinal cord leading to progressive paralysis and death. Due to the pathogenetic complexity, there are no effective therapies available. In this context the use of mesenchymal stem cells and their vesicular counterpart is an emerging therapeutic strategy to counteract neurodegeneration. The extracellular vesicles derived from adipose stem cells (ASC-EVs) recapitulate and ameliorate the neuroprotective effect of stem cells and, thanks to their small dimensions, makes their use suitable to develop novel therapeutic approaches for neurodegenerative diseases as ALS. Here we investigate a therapeutic regimen of ASC-EVs injection in SOD1(G93A) mice, the most widely used murine model of ALS. Repeated intranasal administrations of high doses of ASC-EVs were able to ameliorate motor performance of injected SOD1(G93A) mice at the early stage of the disease and produce a significant improvement at the end-stage in the lumbar MNs rescue. Moreover, ASC-EVs preserve the structure of neuromuscular junction without counteracting the muscle atrophy. The results indicate that the intranasal ASC-EVs administration acts in central nervous system sites rather than at peripheral level in SOD1(G93A) mice. These considerations allow us to identify future applications of ASC-EVs that involve different targets simultaneously to maximize the clinical and neuropathological outcomes in ALS in vivo models.


Subject(s)
Amyotrophic Lateral Sclerosis , Extracellular Vesicles , Mesenchymal Stem Cells , Superoxide Dismutase-1 , Animals , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/pathology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Mice, Transgenic , Disease Models, Animal , Adipose Tissue/metabolism , Motor Neurons/metabolism , Neuromuscular Junction/metabolism
12.
Stem Cell Res Ther ; 15(1): 94, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561840

ABSTRACT

BACKGROUND: Spinal Muscular Atrophy (SMA) is an autosomal-recessive neuromuscular disease affecting children. It is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene resulting in lower motor neuron (MN) degeneration followed by motor impairment, progressive skeletal muscle paralysis and respiratory failure. In addition to the already existing therapies, a possible combinatorial strategy could be represented by the use of adipose-derived mesenchymal stem cells (ASCs) that can be obtained easily and in large amounts from adipose tissue. Their efficacy seems to be correlated to their paracrine activity and the production of soluble factors released through extracellular vesicles (EVs). EVs are important mediators of intercellular communication with a diameter between 30 and 100 nm. Their use in other neurodegenerative disorders showed a neuroprotective effect thanks to the release of their content, especially proteins, miRNAs and mRNAs. METHODS: In this study, we evaluated the effect of EVs isolated from ASCs (ASC-EVs) in the SMNΔ7 mice, a severe SMA model. With this purpose, we performed two administrations of ASC-EVs (0.5 µg) in SMA pups via intracerebroventricular injections at post-natal day 3 (P3) and P6. We then assessed the treatment efficacy by behavioural test from P2 to P10 and histological analyses at P10. RESULTS: The results showed positive effects of ASC-EVs on the disease progression, with improved motor performance and a significant delay in spinal MN degeneration of treated animals. ASC-EVs could also reduce the apoptotic activation (cleaved Caspase-3) and modulate the neuroinflammation with an observed decreased glial activation in lumbar spinal cord, while at peripheral level ASC-EVs could only partially limit the muscular atrophy and fiber denervation. CONCLUSIONS: Our results could encourage the use of ASC-EVs as a therapeutic combinatorial treatment for SMA, bypassing the controversial use of stem cells.


Subject(s)
Extracellular Vesicles , Muscular Atrophy, Spinal , Humans , Child , Mice , Animals , Disease Models, Animal , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Muscular Atrophy, Spinal/pathology , Motor Neurons , Stem Cells/metabolism , Extracellular Vesicles/metabolism
13.
IBRO Neurosci Rep ; 16: 443-454, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38544793

ABSTRACT

Calabash chalk (CaC) is an aluminium silicate hydroxide compound with heavy metal constituents, making it a potential neurotoxicant. Pregnant women often consume CaC as an antiemetic, which may interfere with the normal development of the foetal brain. Here, we evaluated the effects of CaC administration in pregnant rats on the brain of the offspring. Wistar rat dams were assigned to one of three groups: control, 200 mg/kg and 800 mg/kg of a CaC suspension. Administrations lasted 14 days (gestation days 7-20). On day 14, 5-bromo-2'-deoxyuridine (BrdU) was administered and dams were allowed to term. Behavioural tests were performed on different days as the pups matured, and they were sacrificed on post-natal days 30 and 60. Brains were processed for histology and Western blotting. Results showed no significant differences in surface righting reflex, cliff avoidance, negative geotaxis and open-field activity. No hippocampal and somatosensory cortical cytoarchitectonic alterations and no significant signs of glial fibrillary acidic protein (GFAP) activation were observed. Neuronal nuclei counts showed variability in the somatosensory cortex and hippocampus of the CaC group. BrdU-positive cells were significantly lower in the 200 mg/kg group and higher in the 800 mg/kg group. Doublecortin-X-positive cells were not different in all the CaC groups. Astrocytes and microglia Western blotting quantification confirmed no significant increase in pup glial cells in adulthood. Prenatal consumption of CaC at indicated dosages may not be deleterious to the developing brain, especially after cessation of exposure and during maturation of the animal. However, the differences in neuronal and glial populations may be due to their ability to cope with CaC.

14.
Biomolecules ; 14(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062548

ABSTRACT

In animal models of epilepsy, cranial surgery is often required to implant electrodes for electroencephalography (EEG) recording. However, electrode implants can lead to the activation of glial cells and interfere with physiological neuronal activity. In this study, we evaluated the impact of epidural electrode implants in the pilocarpine mouse model of temporal lobe epilepsy. Brain neuroinflammation was assessed 1 and 3 weeks after surgery by cytokines quantification, immunohistochemistry, and western blotting. Moreover, we investigated the effect of pilocarpine, administered two weeks after surgery, on mice mortality rate. The reported results indicate that implanted mice suffer from neuroinflammation, characterized by an early release of pro-inflammatory cytokines, microglia activation, and subsequent astrogliosis, which persists after three weeks. Notably, mice subjected to electrode implants displayed a higher mortality rate following pilocarpine injection 2 weeks after the surgery. Moreover, the analysis of EEGs recorded from implanted mice revealed a high number of single spikes, indicating a possible increased susceptibility to seizures. In conclusion, epidural electrode implant in mice promotes neuroinflammation that could lower the seizure thresholds to pilocarpine and increase the death rate. An improved protocol considering the persistent neuroinflammation induced by electrode implants will address refinement and reduction, two of the 3Rs principles for the ethical use of animals in scientific research.


Subject(s)
Disease Models, Animal , Electrodes, Implanted , Neurons , Pilocarpine , Animals , Pilocarpine/adverse effects , Mice , Electrodes, Implanted/adverse effects , Male , Neurons/metabolism , Neurons/pathology , Neuroglia/metabolism , Neuroglia/pathology , Electroencephalography , Epilepsy/chemically induced , Epilepsy/etiology , Epilepsy/pathology , Cytokines/metabolism , Epilepsy, Temporal Lobe/chemically induced , Microglia/metabolism , Microglia/pathology , Mice, Inbred C57BL
15.
Front Pharmacol ; 13: 1017364, 2022.
Article in English | MEDLINE | ID: mdl-36339574

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, progressive paralysis and finally death. Despite the research efforts, currently there is no cure for ALS. In recent years, multiple epigenetic mechanisms have been associated with neurodegenerative diseases. A pathological role for histone hypoacetylation and the abnormal NF-κB/RelA activation involving deacetylation of lysines, with the exclusion of lysine 310, has been established in ALS. Recent findings indicate that the pathological acetylation state of NF-κB/RelA and histone 3 (H3) occurring in the SOD1(G93A) murine model of ALS can be corrected by the synergistic combination of low doses of the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator resveratrol and the histone deacetylase (HDAC) inhibitors MS-275 (entinostat) or valproate. The combination of the epigenetic drugs, by rescuing RelA and the H3 acetylation state, promotes a beneficial and sexually dimorphic effect on disease onset, survival and motor neurons degeneration. In this mini review, we discuss the potential of the epigenetic combination of resveratrol with HDAC inhibitors in the ALS treatment.

16.
Microsc Res Tech ; 85(12): 3777-3792, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36131631

ABSTRACT

Oxygen-ozone (O2 -O3 ) therapy is an adjuvant/complementary treatment based on the activation of antioxidant and cytoprotective pathways driven by the nuclear factor erythroid 2-related factor 2 (Nrf2). Many drugs, including dimethyl fumarate (DMF), that are used to reduce inflammation in oxidative-stress-related neurodegenerative diseases, act through the Nrf2-pathway. The scope of the present investigation was to get a deeper insight into the mechanisms responsible for the beneficial result of O2 -O3 treatment in some neurodegenerative diseases. To do this, we used an integrated approach of multimodal microscopy (bright-field and fluorescence microscopy, transmission and scanning electron microscopy) and biomolecular techniques to investigate the effects of the low O3 concentrations currently used in clinical practice in lipopolysaccharide (LPS)-activated microglial cells human microglial clone 3 (HMC3) and in DMF-treated LPS-activated (LPS + DMF) HMC3 cells. The results at light and electron microscopy showed that LPS-activation induced morphological modifications of HMC3 cells from elongated/branched to larger roundish shape, cytoplasmic accumulation of lipid droplets, decreased electron density of the cytoplasm and mitochondria, decreased amount of Nrf2 and increased migration rate, while biomolecular data demonstrated that Heme oxygenase 1 gene expression and the secretion of the pro-inflammatory cytokines, Interleukin-6, and tumor necrosis factor-α augmented. O3 treatment did not affect cell viability, proliferation, and morphological features of both LPS-activated and LPS + DMF cells, whereas the cell motility and the secretion of pro-inflammatory cytokines were significantly decreased. This evidence suggests that modulation of microglia activity may contribute to the beneficial effects of the O2 -O3 therapy in patients with neurodegenerative disorders characterized by chronic inflammation. HIGHLIGHTS: Low-dose ozone (O3 ) does not damage activated microglial cells in vitro Low-dose O3 decreases cell motility and pro-inflammatory cytokine secretion in activated microglial cells in vitro Low-dose O3 potentiates the effect of an anti-inflammatory drug on activated microglial cells.


Subject(s)
Neurodegenerative Diseases , Ozone , Humans , Microglia/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , NF-E2-Related Factor 2/therapeutic use , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Lipopolysaccharides/therapeutic use , Ozone/pharmacology , Ozone/metabolism , Ozone/therapeutic use , Microscopy , Inflammation/drug therapy , Cytokines , Dimethyl Fumarate/metabolism , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use
17.
Eur J Cell Biol ; 101(2): 151206, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35158302

ABSTRACT

Multipotent stem cells persist within the stromal vascular fraction (SVF) of adipose tissue during adulthood. These cells, commonly referred to as adipose-derived stromal cells (ASC), have been extensively investigated over the past years as a promising therapeutic tool based on their regenerative and immunomodulatory properties. However, how ASC might mirror the age-related alteration of the fat they reside in remains unclear. Herein, we show that inguinal adipose tissue in mice turns from brown/beige- to white-like with age and resident ASC readily mirror these changes both at mRNA and microRNA transcriptional level. Mechanistically, our data suggest that these brown/age-related changes in ASC transcription rely on changes in the activity of E2F1 and NFkB transcription factors.


Subject(s)
Adipose Tissue , Stromal Cells , Animals , Mice
18.
Exp Cell Res ; 315(6): 915-27, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19371636

ABSTRACT

Skeletal muscle regeneration relies on satellite cells, a population of myogenic precursors. Inflammation also plays a determinant role in the process, as upon injury, macrophages are attracted by the damaged myofibers and the activated satellite cells and act as key elements of dynamic muscle supportive stroma. Yet, it is not known how macrophages interact with the more profound stem cells of the satellite cell niche. Here we show that in the presence of a murine macrophage conditioned medium (mMCM) a subpopulation of multipotent cells could be selected and expanded from adult rat muscle. These cells were small, round, poorly adhesive, slow-growing and showed mesenchymal differentiation plasticity. At the same time, mMCM showed clear myogenic capabilities, as experiments with satellite cells mechanically isolated from suspensions of single myofibers showed that the macrophagic factors inhibited their tendency to shift towards adipogenesis. In vivo, intramuscular administrations of concentrated mMCM in a rat model of extensive surgical ablation dramatically improved muscle regeneration. Altogether, these findings suggest that macrophagic factors could be of great help in developing therapeutic protocols with myogenic stem cells.


Subject(s)
Culture Media, Conditioned/chemistry , Macrophages/metabolism , Multipotent Stem Cells/physiology , Muscle Development/physiology , Muscle, Skeletal , Satellite Cells, Skeletal Muscle/physiology , Animals , Cell Differentiation/physiology , Cell Line , Cell Proliferation , Humans , Macrophages/cytology , Male , Mice , Multipotent Stem Cells/cytology , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Rats , Rats, Wistar , Regeneration/physiology , Satellite Cells, Skeletal Muscle/cytology
20.
Front Neurosci ; 13: 1070, 2019.
Article in English | MEDLINE | ID: mdl-31680811

ABSTRACT

The amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motoneurons death. Mutations in the superoxide dismutase 1 (SOD1) protein have been identified to be related to the disease. Beyond the different altered pathways, the mitochondrial dysfunction is one of the major features that leads to the selective death of motoneurons in ALS. The NSC-34 cell line, overexpressing human SOD1(G93A) mutant protein [NSC-34(G93A)], is considered an optimal in vitro model to study ALS. Here we investigated the energy metabolism in NSC-34(G93A) cells and in particular the effect of the mutated SOD1(G93A) protein on the mitochondrial respiratory capacity (complexes I-IV) by high resolution respirometry (HRR) and cytofluorimetry. We demonstrated that NSC-34(G93A) cells show a reduced mitochondrial oxidative capacity. In particular, we found significant impairment of the complex I-linked oxidative phosphorylation, reduced efficiency of the electron transfer system (ETS) associated with a higher rate of dissipative respiration, and a lower membrane potential. In order to rescue the effect of the mutated SOD1 gene on mitochondria impairment, we evaluated the efficacy of the exosomes, isolated from adipose-derived stem cells, administrated on the NSC-34(G93A) cells. These data show that ASCs-exosomes are able to restore complex I activity, coupling efficiency and mitochondrial membrane potential. Our results improve the knowledge about mitochondrial bioenergetic defects directly associated with the SOD1(G93A) mutation, and prove the efficacy of adipose-derived stem cells exosomes to rescue the function of mitochondria, indicating that these vesicles could represent a valuable approach to target mitochondrial dysfunction in ALS.

SELECTION OF CITATIONS
SEARCH DETAIL